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Abstract 

Coordinated collective behaviors often emerge from simple rules governing the 
interactions of individuals in groups. We model mechanisms of coordination among ants 
during cooperative transport, a challenging task that requires a consensus on travel 
direction. Decisions required for cooperative transport differ from other, well-studied 
consensus decisions because groups often deadlock, with individuals trying to move in 
opposing directions, and cooperative transport groups are often relatively small. Small 
groups may be more affected by individual nonconformity. Using deterministic and 
stochastic models, we investigate behavioral factors that affect deadlock duration. Our 
goal is to determine whether groups following simple behavioral rules can reach a 
consensus using minimal information. We define and investigate multiple types of 
behavioral rules that govern individual behavior and also differ in the information 
available. We find that if individuals more readily give up when they are going against 
the majority, groups rapidly break deadlocks. This occurs through positive and negative 
feedbacks that are implemented in our model via a single mechanism. We also find that 
to quickly reach a consensus, groups must have either a shared bias, high sensitivity to 
group behavior, or finely tuned persistence. While inspired by ants, our results are 
generalizable to other collective decisions with deadlocks, and demonstrate that groups of 
behaviorally simple individuals with no memory and extremely limited information can 
break symmetry and reach a consensus in a decision between two equal options.  
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Introduction 

Workers of some ant species collaborate to carry objects many thousands of times 
their mass (1–5). For example, weaver ants, Oecophylla longinoda, carry dead 
vertebrates including birds and reptiles (2). Like many collective decisions, this requires a 
high degree of coordination across many individuals. The individual behavioral rules that 
lead to this coordination are difficult to identify empirically because they cannot be 
directly measured. Therefore, we use a proof-of-concept model (6) to examine the 
consequences of multiple behavioral rules individuals may use, and to see what 
individual characteristics lead to groups of effective transporters.  

Across organizational scales, the patterns and complexity of many biological 
systems emerge from groups of individuals obeying relatively simple rules, often without 
a leader (7). The rules typically apply to individuals interacting with their neighbors, and 
exploit positive and negative feedback mechanisms leading to coordinated group 
dynamics. Of course rules do not have to be simple, but if robust, efficient coordination is 
possible with simple rules, then there is no reason for complex individual behaviors to 
evolve. Simple rules lead to group phenomena that are generally robust; when there is no 
leader, individuals are expendable, and the simplicity of the rules means that nearly any 
individual can perform appropriate behaviors with high fidelity and reliability.  

Because of these benefits, interest in discovering rules for coordination has 
produced a rich literature, and there has been particular interest in group decision making 
(8–11). This includes nest-site selection decisions in honeybees and Temnothorax ants 
(12–15), decisions by groups of neurons in brains (16), decisions in non-neuronal 
organisms (17), and more. Ant colonies are particularly well suited to studies of 
collective behavior because workers can be easily observed and manipulated, and indeed, 
pheromone trail formation in ants is a classic study system for self-organized decision 
making (7).  

One of the tasks groups of some ants pieces must complete is cooperative 
transport – the movement of large objects such as food items, intact, by multiple 
individuals (18). This is an interesting task for coordination research because it is prone 
to deadlocks, and has direct applications in robotics (4,19–22). A major challenge for 
cooperative transport is that the individuals must move the object the same direction. Ant 
species vary substantially in their ability to overcome this challenge. Some species move 
objects rapidly toward their nests, while many others are categorized as uncoordinated, 
with workers pulling in opposing directions for minutes or hours, making no progress 
(5,23). Prior research has revealed causes and effects of many aspects of cooperative 
transport, including selection pressures, ecology, recruitment, and more (reviewed in 
4,5,18). This previous research has also included detailed descriptions and models of 
cooperative transport, and in some cases models have been compared with empirical data 
(e.g. 4,22,24). But these studies have not focused on comparing alternative behavioral 
rules for overcoming the coordination challenge; thus, our understanding of behavioral 
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rules in cooperative transport is limited. Some investigators have suggested that ants in 
groups use the same rules as individual transporters (reviewed in 4). However, if rules for 
individual transport were sufficient, one would expect most ant species to be relatively 
efficient at cooperative transport. This is not the case, and it is reasonable to think that 
efficient cooperative transporters have behavioral rules tuned to this task. What 
behavioral mechanisms separate the coordinated from the uncoordinated transporters?  

We use models to explore in detail the consequences of several broad categories 
of behavioral rules for coordination, including the information individuals must be 
capable of receiving to follow the rules. Our goal is not to identify the exact rules 
employed by all ants, but rather to explore the simplest behaviors and minimum 
information required for successful transport. Thus, we leave the comparison of our 
predictions with empirical patterns of transport for future research. Like other proof-of-
concept models, the value in this work is that it tests the logic of verbal hypotheses and 
creates predictions that can be empirically tested (6). Our investigations generate 
hypotheses for cooperative transport adaptations and offer insights into consensus 
decisions in other groups. The broad modeling approach we employ has been used 
extensively to elucidate behavior that is difficult to measure in collective systems, 
including social insects, robots, and beyond (e.g. 25–30).  

As discussed above, we do not yet understand what adaptations, including 
behaviors and sensory systems, allow some species to coordinate group transport efforts. 
However, we do know that cooperative transport efforts in uncoordinated species are 
characterized by many deadlocks, or periods in which individuals are attempting to move 
the object in opposing directions (5). Even in species with efficient cooperative transport, 
short-lived deadlocks occur, as groups first have a period of uncoordinated efforts before 
a consensus about travel direction emerges (4,5). Given that workers from the same 
colony are all ostensibly working to bring the object back to the nest, it is perhaps 
surprising that they so frequently pull in opposing directions. However, careful 
consideration reveals several naturally occurring circumstances that intuitively predict 
deadlocks. If workers arrive at the object from different nest entrances, each would likely 
attempt to move the object back to the entrance from which it emerged. We also expect 
deadlocks if multiple paths lead back to the nest or if individuals have conflicting 
information about the direction of the nest. Even during a cooperative transport effort that 
is already successful, a deadlock may occur if the group comes across an obstacle, as this 
requires a decision about which direction to move around the obstacle. Overcoming 
deadlocks, regardless of the cause, is crucial for cooperative transport. 

Deadlocks are caused by workers being uncoordinated about travel direction 
(5,18). In a deadlock, some or all of the force that a worker imparts on the object is 
cancelled out by the forces of other workers. The resulting overall force is not large 
enough to allow for movement. Ants may also fail to move an object if an insufficient 
number of workers engage in transport, even if those workers are coordinated. We do not 
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consider this situation to be a deadlock; in our usage, “deadlocks” occur only due to 
workers attempting to move the object in different directions. If group members can 
coordinate their forces, then they will rapidly break a deadlock and begin moving, while 
other deadlocks may last hours (23).  

Cooperative transport is an especially interesting coordination task in part because 
of deadlocks. In other types of decisions, deadlocks may be unlikely or short-lived 
because early fluctuations are amplified by positive feedback (7). Also, large groups may 
be less likely to experience deadlocks, as they are less affected by single individuals. But 
cooperative transport groups can be as small as a few individuals, and deadlocks prevent 
transport in many species. Cooperative transport is also unusual because group members 
are physically tethered together by the object they are attempting to carry; split decisions 
are impossible. Groups must either break deadlocks or remain stuck. We evaluate the 
factors that affect the duration of deadlocks in cooperative transport, in a decision 
between two options – in our study, two travel directions. Specifically, we investigate the 
behavioral rules, information, and minimum complexity of individuals required in order 
to break deadlocks. Our approach consists of both deterministic and stochastic models of 
cooperative transport, in one spatial dimension. These models examine a decision 
between two options for direction of travel: left or right. Although real ants navigate in 
two dimensions, the one-dimensional problem is realistic in many scenarios, such as ants 
navigating along a defined pheromone trail or choosing which direction to move around 
an obstacle. We simulate transport under many conditions that vary in the behaviors of 
the individuals engaged in transport. Specifically, we model multiple broad categories of 
behavioral rules. These sets of rules differ in the kinds of information we allow 
individuals to perceive and the ways this information is used by individuals.  

We use this approach to answer two primary questions. First, can realistic, simple 
behavioral rules reliably overcome deadlocks? As part of this question, we look at what 
information individuals must minimally receive. Second, what effects do persistence 
(maximum engagement time with the object) and sensitivity to information have on 
coordination? In answering these questions we generate hypotheses for cooperative 
transport adaptations and provide insight into the factors that affect deadlocks during 
cooperative transport, and during other collective decisions.  
 

Models 

Assumptions 
We are interested in the minimum information and complexity requirements for 

deadlock breaking. We therefore assume individuals have minimal capabilities. As 
described below, we allow them only a few biologically plausible sources of information. 
Our simulated ants also have no memory, in that they do not use information from past 
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experiences to shape future behaviors. We further simplify real cooperative transport 
efforts by assuming that all ants are identical.   

Ants sense a wide range of stimuli (e.g. 31–33), though workers of a single 
species may be capable of sensing only a subset of the total possible information. There 
are several ways that workers in a cooperative transport group might gain information 
about what others in the group are doing. They could potentially communicate with one 
another, but while workers recruit additional help to the object to be carried, often with 
pheromone trails (18), there is no evidence of direct communication among ants after the 
recruitment phase. A more likely possibility is that workers communicate indirectly 
through the object being carried (4,19). Workers could sense the movements, 
deformations, and/or vibrations transmitted through the object, caused by the other 
workers’ efforts (18,19,22). This indirect communication does not require an evolved 
signal, as workers are simply detecting physical cues that necessarily arise when forces 
are applied to an object. Hence, in terms of the kinds of information available in our 
model, we only consider cues and information transmitted through the object itself, 
including the size and direction of the overall force vector applied to the object. Our 
model thus serves as a logical test of this hypothesis regarding information transfer. We 
determine whether information easily transferred indirectly through the object is 
sufficient to bread deadlocks. Our assumptions are appropriate based on existing 
literature regarding complexity requirements for group decisions and hypotheses specific 
to cooperative transport (17,18).  
 

Deterministic Model 

We developed a deterministic, ordinary differential equations (ODE) model that 
simulates the average behavior of individuals. The model is Markovian – individuals 
have no memory – but non-linear. We model movement in one spatial dimension 
implicitly – we do not explicitly model the location of individuals or the object in space – 
and use continuous time and continuous abundances of individuals (but see individual-
based model below). Individuals are identical, and the total number of individuals is fixed 
at 20; for some analyses we explored the effect of changing group size analytically and 
by evaluating groups with a total of 6 or 200 individuals. It is appropriate to have a fixed 
number of individuals because the number of workers that can participate in cooperative 
transport will be limited by the number of grasping points on the object. Furthermore, our 
assumed behavioral states allow varying numbers of individuals to be engaged with the 
object at any one time. Specifically, our model assumes that each individual occupies one 
of three mutually exclusive behavioral states: 1) trying to move the object to the left, 2) 
trying to move the object to the right, or 3) disengaged from the object (Fig 1). We do not 
distinguish between pushing and pulling; individuals pushing from the left and pulling 
from the right are both in the “move right” behavioral state. Individuals move from the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 28, 2016. ; https://doi.org/10.1101/061010doi: bioRxiv preprint 

https://doi.org/10.1101/061010


6 

disengaged state to an active state by “joining,” and from one of the active states to the 
disengaged state by “giving up.” These transition rates are important model parameters 
that govern the number of individuals (abundance) in each behavioral state over time. We 
look at these abundances to see the extent to which the group converges on a single 
direction under the parameters of a specific model run.  

 

Joining. Disengaged individuals join the transport efforts to the left and right with rate 
constants JL and JR, respectively. The realized joining rates depend on the number of 
disengaged individuals; the instantaneous joining rate for the left state is JL multiplied by 
the number of disengaged ants. The joining rate constants do not change in time but may 
differ from each other, i.e. individuals may join the “move left” behavioral state at a 
higher rate than the “move right” state. If JL and JR are not equal, this ensures a 
directional bias, which is how we represent individuals having information about the 
direction of the goal. 

 In real ants, directional cues about the location of the nest come from one or 
more sources, such as pheromone trails, visual navigation, or path integration [5, 6]. 
Whatever the sensory modality may be, we assume this information is not perfect. That 
is, even if there is a directional bias, some individuals still choose the other direction (i.e., 
JL, JR > 0). Joining rate constants do not vary during the transport effort; for example, 
groups are not capable of altering their bias in favor of the “winning” direction (here we 
use the “winning” direction to indicate simply the direction that has more individuals). 
This makes sense given our conservative assumptions about individuals’ memory and 
sensory capabilities: individuals that are disengaged, and therefore not in contact with the 
object to sense information transmitted through it, cannot perceive which direction is 
winning and have no memory about which direction was winning when they were last 
engaged.  

 

Fig 1: Model diagram. 
Individuals belong to one of 
three behavioral states: 
moving left, moving right, and 
disengaged. Individuals move 
between these states at rate 
constants GL, GR, JL, and JR.  
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Giving-up. Individuals in the active behavioral states (left and right) give up at rate 
constants GL and GR, respectively. We model three sets of behavioral rules for giving up 
rates. These sets of rules also differ in the kinds of information individuals act upon 
(Table 1). We do not suggest that all of the variation in cooperative transport behavior in 
ants is captured by these three sets of rules; rather, we explore these rules in an effort to 
see if such simple rules are sufficient to break deadlocks, and if so, under what 
conditions.   
 
 

Table 1: Modeled sets of behavioral rules and information required for each.  

 Rule(s) Information used 

Uninformed If in one of the active states, give up 
(become disengaged) with a constant rate 

None 

Oblivious If in one of the active states, give up 
more readily when transport is 
unsuccessful, and less readily when it is 
“successful” (see text) 

Must be capable of measuring the 
“success” (i.e. extent of coordination) 
but not the direction relative to ones 
own force input.  

Informed If in one of the active states, and if 
transport is successful, give up readily if 
going the opposite way as the majority 
and less readily if going the same way as 
the majority.  

Must be capable of measuring (i) extent 
of coordination and (ii) preferred 
direction of the majority and must 
compare to the direction of one’s own 
force input. 
 

 

Behavioral rules differ among different model runs, but within one run of the 
model all individuals are identical and have the same rules and parameter values. In 
“uninformed” groups, giving up rate constants, GL and GR, are equal and do not change 
over the course of the transport effort. In “oblivious” and “informed” groups (defined in 
Table 1), realized giving up rates can change over the course of the transport effort based 
on the abundances of individuals in the two active behavioral states (NR and NL). Giving 
up depends on the “success” of transport. “Success” is operationally defined here as a 
high extent of coordination, measured as the absolute value of NR - NL divided by the 
total number of individuals in the system. In other words, the extent of coordination is the 
degree to which individuals are unevenly distributed across the two active groups.  

In oblivious groups individuals can measure success but they cannot detect if they 
are contributing to or detracting from that success. Individuals give up less frequently 
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when | NL – NR | is high, i.e. when the magnitude of the overall force vector on the object 
is high, regardless of whether they are currently in the “right” or “left” state. Individuals 
are oblivious to their own contribution. If the transport is successful because many more 
individuals are trying to move the object to the left rather than the right, individuals 
moving right, who are going against the majority, still rarely give up. This would occur in 
ants if they were capable of measuring the magnitude of the overall force on the object 
(or a proxy), but not the direction; for example, by sensing movement speed.  

In informed groups individuals are capable of detecting the same information as 
in the “oblivious” case, but additionally they can determine if their contribution is with or 
against the majority. Individuals give up less frequently when the force vector on the 
object is high only if the direction of that vector matches their own direction. For 
example, when NL – NR is strongly positive, individuals in the “move left” state give up 
infrequently while individuals in the “move right” state give up quickly. Equations 
governing the giving-up rate constants, GL or GR, under each set of rules are listed in 
Table 2 and examples of how these functions behave are illustrated in Figure 2. In 
addition to the variables NR and NL, functions for determining GL and GR depend on one 
or more parameters (Table 2). These parameters represent persistence and sensitivity, and 
are discussed below.  
 

Table 2: Functions governing the giving-up rate constants under each set of rules. Ranges of 

parameter values explored are in parentheses. 

 

 GL GR Max G 
(Persistence-1) 

Shape 
parameter 

Uninformed 
(Fig 2A) 𝑎 𝑎 

𝑎 
 

(0.2 – 20) 
NA 

Oblivious 
(Fig 2B) 

  
𝑔!
𝑔!

 
 

(0.33 – 30) 

g1	
  
	
  

(0.1 – 100) 

Informed 
(Fig 2C) 

  b1	
  
	
  

(0.2 – 20) 
b2	
  

	
  

(0 – 100) 

 

 
 

g2
g1 + NL − N R

g2
g1 + NL − N R

b1
1+ e−b2 (NR−NL )

b1
1+ e−b2 (NL−NR )
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Note that NL – NR, is simply a measure of success that could be determined by ants in 
multiple ways. For example, large differences will correspond to larger speeds over 
ground, which an ant might measure by estimating optical flow, her own leg movements, 
or any other measure of speed. The direction of the force on the object, indicated by the 
sign of the difference between ants pulling to the left and to the right, could be estimated 
by comparing the direction of motion with the direction of an ant’s own effort. Similarly, 
if the object is not yet moving, high values of NL – NR (or highly negative values) may 
correspond to deformations in the object, which ants could detect as their grasping point 
moving toward or away from them. The same quantities could potentially be estimated 
using other sensory modes.  
 
Persistence and sensitivity. The giving up rates described above are tunable based on 
individuals’ persistence and sensitivity to information. These parameters govern the 
shape and maximum values of the giving-up functions (Fig 2). This maximum giving-up 
rate is the inverse of the engagement time under conditions when individuals give up 
fastest (e.g., when NL = NR in the oblivious and informed cases). We refer to this 
engagement time as persistence.  

Persistence is individuals’ resistance to changing their behavior based on 
information (18), which could come from other individuals in the group, or other sources. 
Persistence can be measured in actual ants as the time it takes for an individual to give up 
or change the direction they are trying to move the object being carried. Highly persistent 
ants keep trying to move the object in the same direction for a long time, even without 
progress. On the other hand an ant with low persistence will try new strategies frequently, 
by pulling in different directions or even abandoning the effort temporarily or 
permanently. Intuitively, one expects a tradeoff for persistence. Groups with high 

!10 !5 0 5 10
0.0

0.5

1.0

1.5

2.0

NL ! NR

R
at
e
of
an
ts
in
N
R
gi
vi
ng
up

!10 !5 0 5 10
0.0

0.5

1.0

1.5

2.0

NL ! NR

R
at
e
of
an
ts
in
N
R
gi
vi
ng
up

!10 !5 0 5 10
0.0

0.5

1.0

1.5

2.0

NL ! NR

R
at
e
of
an
ts
in
N
R
gi
vi
ng
up

CBA

Fig 2: Giving-up rate constants for individuals in the “move right” behavioral state at various levels of 
success for each set of rules. The x-axis indicates a measure of success: the size difference between the two 
groups. (A) Uninformed rules, a = 2. (B) Oblivious rules, g2/g1 = 2, g1 = 4 (solid line) or 0.5 (dashed line). 
(C) Informed rules, b1 = 2, b2 = 0.5 (solid line) or 3 (dashed line). In (B) and (C), dashed lines indicate 
sharper shape parameters.  
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persistence may have long-lasting deadlocks, while groups may also deadlock if no 
individual is persistent enough. We look at the effect of persistence in our model by 
varying the maximum possible giving-up rate of the group. A highly persistent group still 
varies their giving-up rates under the “oblivious” and “informed” rules as described 
above, but for these groups the highest possible giving-up rate, which we impose, is low 
compared with groups with low persistence (Fig 2). We ran the model with each of many 
maximum giving-up rate constants to examine the effect of persistence on extent of 
coordination; higher maximum giving-up rate constants mean lower persistence and vice 
versa (Table 2).  

For the oblivious and informed cases we can also tune the parameters to change 
the sensitivity of individuals to the success of transport, that is, the magnitude of |NL – 
NR|. We do this by changing the shape of the giving-up functions through manipulations 
of the shape parameters (g1 and b2; Table 2), making the transition from low to high 
giving-up rate constant sharper or more gradual (Fig 2). With a gradual shape, small 
changes in success mean only small changes in the frequency of giving-up; individuals 
with a gradual shape therefore have low sensitivity to transport success. On the other 
hand, for sharp shapes, a small change in success may lead to a dramatic change in this 
frequency; this means individuals are highly sensitive. Differences in sensitivity could be 
caused by a number of factors, including error in sensing the group sizes. This shape 
parameter can be parameterized for real organisms by fitting functions to data on 
individuals, for whom cooperative transport efficiencies are experimentally manipulated.  

 
Differential equations. The model consists of the following set of differential equations 
for the number of individuals in each behavioral state (moving left, moving right, 
disengaged):  
 
!"!
!"

= 𝐽!𝑁! 𝑡 − 𝑁! 𝑡 𝐺! (1) 

!"!
!"

= 𝐽!𝑁! 𝑡 − 𝑁! 𝑡 𝐺! (2) 

!"!
!"

= 𝑁! 𝑡 𝐺! + 𝑁! 𝑡 𝐺! − 𝐽! + 𝐽! 𝑁! 𝑡  (3) 

 
where ND is the number of individuals in the disengaged state (Fig 1). The ODE are non-
linear due to the dependence of GR and GL on NR and NL. There is a constant number of 
individuals total (i.e., ND + NR + NL = N = constant), so this is a closed system, making 
the third differential equation implicit in the first two. Therefore in some cases we present 
results for the number of ants in the left and right states only. The ODE will always 
satisfy the following equations at equilibrium.  
 
!!
∗

!!
∗ =

!!
!! !!

∗ ,!!
∗  (4) 
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!!
∗

!!
∗ =

!!
!! !!

∗ ,!!
∗  (5) 

!!
∗

!!
∗ =

!!
!!

!! !!
∗ ,!!

∗

!! !!
∗ ,!!

∗  (6) 

In the uninformed and oblivious cases, GL = GR, so equation 6 simplifies to the following.  
!!
∗

!!
∗ =

!!
!!

 (7) 

 
Because GR and GL are nonlinear functions of NR and NL in the oblivious and informed 
cases, it is difficult to solve this system differential of equations analytically. We 
numerically solved the ODE for each of nearly fifteen thousand sets of parameters, thus 
running the model under different sets of behavioral rules, global directional biases, and 
persistence and sensitivity. The range of parameter space explored for giving-up 
parameters is shown in Table 2. Additionally, we explored directional biases ranging 
from 0 to 0.89. We then queried the results for particular metrics of interest, including the 
maximum extent of coordination on a direction (unevenness in the distribution of 
individuals across the left and right groups). We obtained numerical solutions using 
Mathematica (version 9.0.1.0) and we analyzed our results using Mathematica and R 
(RStudio version 0.98.977). In addition to the numerical solutions, we analytically 
explored the stability of deadlocks in the informed case using fixed-point analysis (34, 
see S4 Appendix).   
 

Stochastic Extension 

Our ODE makes certain assumptions required for any ODE, including instantaneous 
updating of information and continuous, rather than discrete, individuals. To test whether 
our conclusions are robust to these assumptions, and to look at the potentially important 
influence of stochasticity, we extended the model to a stochastic framework. The 
stochastic extension is an individual-based model operating in discrete time. We 
converted the instantaneous joining and giving-up rate constants (JL, JR, GL, and GR) to 
probabilities of joining or giving up in a given time step with the equation 
𝑃! = 1− 𝑒(!!!!) (7) 
where Pt is the probability of a behavioral shift in one time step, δt is the length of a time 
step (here, time steps were always unit length), and R is the instantaneous rate constant, 
either JL, JR, GL, or GR. We ran the stochastic simulation for 60 time steps; this duration 
was more than sufficient to capture transient dynamics. All other model assumptions and 
parameters were the same as in the deterministic model, including the three sets of rules.  

In each time step we allow individuals to change their behavioral state. An active 
individual changes its status by giving-up with a probability equal to the giving-up 
probability for that individual’s current state (left or right), and disengaged individuals 
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can change their status by joining. Because disengaged individuals can change their 
status in one of two ways (joining the left group or the right group), we first calculated 
the joint probability of an individual joining at all. For individuals that were to join, we 
then stochastically determined whether they joined left or right using the relative 
probabilities of each. We ran the stochastic model under the same parameter sets as the 
deterministic model, querying 1,000 simulations for each set of parameters. As with the 
deterministic model, we examined the extent of coordination. We performed and 
analyzed stochastic simulations in R (RStudio version 0.98.977).  
 

Results 

Deterministic Model 

Our primary measurement of success is the extent of coordination, which is the 
difference in the number of individuals in the active behavioral states (left and right) 
divided by the total number of individuals in the system. If the transport is uncoordinated, 
there are roughly equal numbers of individuals pulling each direction, or most individuals 
are disengaged. Streamplot representations of the vector fields portray the dynamical 
behavior of the system in Figure 3. Panels in the figure show different parameter sets, 
corresponding to each set of behavioral rules with differing directional biases. The 
streamplots indicate the direction the system tends towards under all possible conditions 
for the numbers of individuals in each behavioral state (NL and NR). The number of 
disengaged individuals, ND, is not shown explicitly because the total number of 
individuals is fixed at 20. 
In the absence of a directional bias (JL = JR), both the uninformed and oblivious rules 
have stable equilibria (Fig 3C, 3F). These are deadlocks, with equal numbers of 
individuals pulling left and right (as shown in equation 7). Because they are stable, 
perturbations away from these equilibria lead back to them (Fig 3C, 3F). In other words, 
with no directional bias the uninformed and oblivious rules have deadlocks that cannot be 
broken. In informed groups, however, the equilibrium is unstable even if JL = JR (Fig 3I). 
If a deadlock occurs in this case, small perturbations grow exponentially, leading to 
convergence on one direction, which breaks symmetry. Although an unstable equilibrium 
occurs across most of the parameter space for informed groups, with small values of the 
shape parameter b2, the equilibrium is stable and deadlocks are maintained. Thus there is 
a critical value of b2 at which a phase transition occurs, from stable to unstable 
equilibrium. Using fixed-point analysis (34) we analytically determined that this critical 
value occurs when b2 has the following value: 
𝑏! =

!!!!!
!!"

 (8) 

where J is the joining rate constant for each side (J = JL = JR) and N is the total number of 
individuals in the system. This indicates that total group size affects deadlock breaking. 
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Smaller groups require higher sensitivity (b2) to break deadlocks even in the informed 
case, and sensitivity is less important for large groups. Details of the fixed-point analysis 
are included in S4 Appendix.  

 

 
 
 
Fig 3: Streamplots of system dynamics, showing the direction the system tends towards 
for various abundances in each behavioral state. A-C: Uninformed rules, a = 1; D-F: 
Oblivious rules, g1 = 4, g1/g2 = 1; G-I: Informed rules, b1 = 1, b2 = 0.5. A, D, and G: 
Strong directional bias, JL = 0.01, JR = 0.7; B, E, and H: Weak directional bias, JL = 0.3, 
JR = 0.7; C, F, and I: No directional bias, JL = JR = 0.3.  
 

When a directional bias is present (JL ≠ JR) more individuals attempt to move the 
object in the direction favored by the bias, regardless of the set of rules (Fig 3, two left-
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most columns, also see equations 6 and 7). This is true regardless of the initial conditions 
for uninformed and oblivious groups; for informed groups, a large enough difference in 
the initial group sizes can overcome a joining bias (see rightmost portion of Fig 3G, 3H). 
The presence of a directional bias increases the extent of coordination, and, intuitively, 
strong biases lead to more coordination than weak ones (Fig 3 left column compared with 
middle column). However, for a given directional bias, individuals in informed groups 
are still more coordinated than individuals in uninformed or oblivious groups. Stable 
equilibria involving individuals working against one another still occur with a weak bias 
using these sets of rules (Fig 3B, 3E). With a sufficiently strong directional bias, in both 
uninformed and oblivious groups, the system moves to a state with almost no individuals 
going against the bias (Fig 3A, 3D), but there are still a substantial number of disengaged 
individuals who do not contribute to the effort (shown implicitly in Figure 3). This is 
because the disengaged group is constantly replenished by individuals giving up from the 
two active states. There are almost no disengaged individuals in informed groups. Thus, a 
directional bias allows for an unequal distribution of individuals between the two active 
states regardless of the behavioral rules, but the informed case still outperforms the other 
behavioral rules in that it maximizes engagement and the difference in group sizes.  

 

Stochastic Model 

 The stochastic results match results from the deterministic model. Figure 4 shows 
the number of individuals in each behavioral state for two examples of stochastic 
simulations, under the same parameter sets shown in Figure 3. Histograms of the 
behavior across 1,000 simulations, at specific times, are shown in Figure 5 (also see S1 
Movie). When a directional bias is present more individuals try to move the object in that 
direction than in the other direction under our initial conditions of all individuals 
beginning as disengaged. In the absence of a directional bias, roughly equal numbers of 
individuals are in each active state in uninformed and oblivious groups, while individuals 
converge on either direction in informed groups. In each of 1,000 simulations, the 
informed case allowed for convergence to a pure state (every individual or nearly every 
individual in the system pulling the same direction) even with no directional bias (Fig 5 
and S1 Movie). On the other hand, oblivious groups perform no better than uninformed 
groups, and neither of these sets of rules ever allowed for convergence on one direction. 
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Fig 4: Abundance of ants in each behavioral state over time, for two example simulations 
with each set of parameters. Blue: moving right, Red: moving left, Black: disengaged. 
Columns are different directional biases and rows are different sets of behavioral rules. 
The parameter values are the same as the analogous panels in Figure 3. Uninformed 
rules: a = 1; oblivious rules: g1 = 4, g1/g2 = 1; informed rules: b1 = 1, b2 = 0.5. Strong 
directional bias: JL = 0.01, JR = 0.7; weak directional bias: JL = 0.3, JR = 0.7; no 
directional bias: JL = JR = 0.3. 
  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 28, 2016. ; https://doi.org/10.1101/061010doi: bioRxiv preprint 

https://doi.org/10.1101/061010


16 

 
Fig 5: Histograms showing the state of 1,000 simulations at given time points. The x-axis 
shows the number of ants, and the y-axis shows the number of simulations for which the 
given behavioral state had that many ants at that time. Blue bars are for ants moving 
right, red bars are for ants moving left, and black bars are for disengaged ants. Bars 
appear purple when red and blue overlap. The parameter values are the same as the 
analogous panels in Figures 3 and 4. Uninformed rules: a = 1; oblivious rules: g1 = 4, 
g1/g2 = 1; informed rules: b1 = 1, b2 = 0.5. Strong directional bias: JL = 0.01, JR = 0.7; no 
directional bias: JL = JR = 0.3. 
 
 When a directional bias is present, the informed case still leads to strikingly 
different performance than either of the other sets of rules. Individuals converge rapidly 
in informed groups, while in oblivious or uninformed groups convergence, which we 
define as an increasing coordination through time until all individuals are pulling the 
same direction, does not occur. There are more individuals pulling in the direction of bias 
but conditions do not improve over time (Figs. 4, 5, and S1 Movie).  
 
Effect of persistence and sensitivity 

 Figure 6 shows the effect of persistence – or maximum engagement time – on the 
extent of coordination in the deterministic model for groups with total size fixed at 20 
(see S2 Figure for results for other group sizes). The extent of coordination reported is the 
maximum observed over the time period evaluated. Parameter sets that converge more 
quickly on a direction will have a higher extent of coordination in that time period, and 
shorter deadlocks. Results in Figure 6 are therefore comparable across parameter sets, 
with higher agreement indicating more efficient transport. In the deterministic case the 
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small perturbations away from equilibrium that lead to convergence in informed groups 
do not occur, so with no directional bias there is no coordination.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig 6: Effect of persistence (inverse of maximum giving-up rate constant) on maximum 
coordination. Maximum giving-up rate constant is the maximum possible as defined by 
the function, actual values will depend on the number of individuals in each group. 
Extent of coordination is defined as the difference in the number of individuals pulling 
right and left, divided by the total number in the system. Maximum coordination is the 
maximum observed over a given time period, rather than an absolute maximum; higher 
values on the y-axis indicate faster convergence. (A) uninformed rules, (B) oblivious 
rules, (C) informed rules. Lines with smaller dashes indicate lower directional bias. Gray 
and black lines indicate “sharp” and “gradual” shapes (sensitivities), respectively. 
Parameter values for shape match those in Fig 2.  
 

The effect of persistence depends on the behavioral rules (Fig 6). In uninformed 
and oblivious groups, being highly persistent – having a low maximum giving-up rate 
constant – increases coordination (Fig 6A, 6B). In informed groups there is an optimal 
persistence value that maximizes coordination. The extent to which persistence affects 
coordination is stronger for small directional biases; at high directional biases there is a 
wide range of persistence values that result in high coordination. These results were not 
qualitatively different for different total group sizes, except that sensitivity, or sharpness 
of the giving-up function, was more and less important for smaller and larger groups, 
respectively (S2 Figure).  

For oblivious and informed groups, the sensitivity changes the effect of 
persistence (Fig 6C and Fig 7); the uniformed case has no sensitivity parameter. In the 
oblivious case, sharper functions (lower values of g1) increase coordination for a given 
persistence value. In the informed case there is a critical sensitivity below which 
deadlocks cannot be broken, as discussed above and in S4 Appendix. This threshold 
depends on group size. Above this threshold, sharper functions (higher values of b2) 
further increase coordination, which has the effect of widening the range of persistence 
values that lead to coordination. For a moderate group size of 20 individuals, with a 
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gradual shape and a small directional bias, there is a narrow range of persistence values 
that allow for high coordination. At small group sizes only groups with higher sensitivity 
or relatively strong directional bias coordinate successfully regardless of persistence, 
while large groups successfully coordinate across a wide range of persistence regardless 
of sensitivity and bias (S2 Figure). Figure 7 shows in detail the extent of coordination for 
moderately sized groups with a wide range of directional biases and persistence values 
for two shape values, both relatively gradual (see S3 Figure for small and large groups).  

 

 
 
Fig 7: Effect of persistence (inverse of maximum giving-up rate constant) on maximum 
coordination in informed groups at low (gradual) shape values. Maximum giving-up rate 
constant is the maximum possible as defined by the function, actual values will depend 
on the number of individuals in each group. Extent of coordination is defined as the 
difference in the number of individuals pulling right and left, divided by the total number 
in the system. Maximum coordination is the maximum observed over a given time 
period, rather than an absolute maximum; higher values on the y-axis indicate faster 
convergence. (A) shape parameter, b2 = 0.5, which corresponds to the solid line in Fig. 
2C. (B) b2 = 1, which is less gradual.  

 

Discussion 

 Can relatively simple individuals with minimal information break deadlocks? Our 
results show that, indeed, individuals with simple behavioral rules and no memory can 
break deadlocks. However, only individuals in our informed case convincingly 
succeeded. These individuals followed simple rules: 1) give up more readily if one is 
moving against the majority and 2) do this to a greater extent for extreme majorities than 
slight majorities. Using these simple rules, with minimal information available, groups 
rapidly converge on a single travel direction. Our deterministic and stochastic models 
agree, despite being formulated differently and having contrasting assumptions about 
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individuals and time. This suggests that our conclusions are robust to specifics of model 
formulation. 

In terms of information, it is sufficient for coordination for individuals to only be 
capable of measuring the direction that the majority of the group is trying to move the 
object and the relative sizes of the groups moving each direction (or a proxy, such as 
speed). This information is crucial; with insufficient sensitivity to these group sizes (low 
b2) groups do not form a consensus. The magnitude of the overall force on the object is a 
proxy of the relative group sizes (if the sizes of the two groups are approximately equal, 
the overall force vector will be small, as most of the force of one group is cancelled out 
by the other), and there are other possible proxies for relative group sizes. Ants may 
gather information about forces or group sizes by sensing the motion of the object itself, 
or if the object is not moving, by sensing vibrations or deformations in the object. If this 
is the case, a single sensory mode may provide all necessary information in informed 
groups. In nature, ants may have other information available, or may use different 
behavioral rules, but we show that by using these simple rules, groups are successful. 
Behavioral complexity comes at a cost, in terms of energy and information, so given that 
a simple solution exists it is likely that real ants adapted for cooperative transport also use 
simple rules.  

If individuals have global directional cues that correspond to a shared directional 
bias, this helps promote coordination regardless of the other information available. 
Additionally, if there is only one correct direction, for instance if there is a single nest 
entrance, a shared bias towards the nest would help ensure the group converges on the 
appropriate direction. But directional bias is neither necessary, nor sufficient, for 
convergence on a decision.  

These results make sense considering the high variation in cooperative transport 
ability among ant species. We expect workers of all species to be good at knowing the 
direction of the nest. So we expect directional biases to be common among species, at 
least for situations with only one correct direction. Considering that efficient cooperative 
transport is comparatively rare among ants (5,35), the presence or absence of directional 
biases is not a good explanation for the observed variation in efficiency. On the other 
hand, the behavioral rule of giving up more readily when an individual is moving against 
the majority is a potential adaptation that dramatically improves efficiency. Future 
research should test whether efficient transporters have this adaptation.  

Our second question asked what effects do persistence and sensitivity (the 
sharpness of the giving-up function) have on coordination? These effects are complex 
and depend on the total group size and the behavioral rules. In the uninformed and 
oblivious cases, groups are most coordinated if individuals are highly persistent. While 
somewhat surprising, this makes sense in light of a tradeoff in persistence. Groups of 
highly persistent individuals may pull in opposing directions for a long time, but if 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 28, 2016. ; https://doi.org/10.1101/061010doi: bioRxiv preprint 

https://doi.org/10.1101/061010


20 

movement does occur, either because of a directional bias or due to random fluctuations, 
the progress continues; they are unlikely to change their direction.  

This suggests that high persistence allows species without other adaptations for 
cooperative transport, for instance those with behavioral rules similar to our uninformed 
or oblivious rules, to at least sometimes succeed at bringing a large object home to the 
nest. In such species, individuals are equally likely to give up whether they are helping or 
hurting the effort; even when successful movement occurs, individuals pulling with the 
motion may give up. High persistence makes it less likely that anyone will give up, 
allowing existing movement to continue. If, as in our model, individuals are identical, the 
individuals going the wrong way will also be unlikely to give up, so to minimize the 
length of deadlocks there should only be a small number of these individuals. A sufficient 
directional bias would accomplish this, and directional biases should be common in many 
circumstances (such as if the object is relatively far from the nest). So if high persistence 
is paired with a directional bias, it may allow ant species with rudimentary behavioral 
rules to conduct cooperative transport. Analogously, agents involved in any decision 
between two options, when they are unable to determine which option is winning, should 
be persistent to maximize the chance that a single option will be chosen.  

In contrast to these results, in the informed case there is an optimum persistence 
value; groups with individuals more or less persistent than this value will be less 
coordinated. But the importance of persistence depends on directional bias, on the 
sharpness of the giving-up function, and on the group size. In most of the parameter 
space of our model, the range of persistence values that lead to high coordination is wide. 
Only when the directional bias is low and the sensitivity is above the critical threshold 
but still gradual does one find a narrow peak in coordination around the optimum 
persistence. This was especially true for smaller group sizes. Large groups had a wide 
range of persistence values that would lead to coordination regardless of sensitivity, 
indicating that it may be easier to coordinate in a large group rather than a small group. 
This makes sense given that small groups will be more affected by the behavior of single 
individuals. In order for informed individuals in groups of small to moderate size to be 
highly coordinated, they must have one, but do not need more than one, of the following: 
high directional bias (one option clearly favored over the other), high sensitivity to the 
sizes of the two groups, or finely-tuned persistence. Each of these is a potential 
adaptation for efficient cooperative transport in informed groups. This flexibility makes 
the behavioral rules in the informed case relatively robust to deficiencies in the 
individuals’ capabilities as long as they have at least minimal accuracy in sensing group 
sizes.  

The phase transition we observed in the shape parameter for the informed case 
indicates that individuals must have some threshold level of sensitivity of the sizes of the 
groups in order to reach a consensus. With more gradual shapes, the giving-up function 
approaches linear, and the less sensitive individuals are to the difference in size of the 
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two groups. The phase transition makes intuitive sense, as the giving-up function 
becomes more linear, individuals switch too frequently to overcome deadlocks.  

Because we did not constrain our model by tuning it to a particular species, our 
results are applicable to other collective decisions, especially those that are subject to 
deadlocks. A system in which groups must decide among multiple options is vulnerable 
to deadlocks, especially when the options are relatively equal (analogous to having no 
directional bias); small group size may also make deadlocks more likely. One of the best 
studied examples of collective decisions is nest-site selection in social insects (reviewed 
in 12). In fact, some recent work on the “stop-signal” in honeybees focuses on how this 
signal prevents deadlocks in nest-site selection (15,30,37).  

The outcome of our deterministic model with respect to the effect of behavioral 
rules looks similar to the results of Seeley et al. (15) and Pais et al. (30), who each 
investigated decision-making dynamics in honeybee nest site selection with similar 
models (for example, compare Fig 3C to Fig 3 in 35 and inset in 27 Fig 2). Both models 
investigate the accumulation of “votes” for one of two, mutually exclusive choices in a 
decision, and in each case the number of individuals aligned with the two options 
determines which option is chosen. A key difference between the models, however, 
involves the timing of the decision. In honeybee nest-site selection, a decision is reached 
when a quorum of scouts is present at one of the potential nests (13). In cooperative 
transport, a decision is reached when the difference between the number of individuals in 
each group reaches a certain threshold – enough to begin movement – rather than when 
the absolute number of individuals in a particular group is high. Another key difference is 
the consequence of error. In honeybee nest site selection, the stakes are high. It is 
possible for a quorum to be reached at multiple potential nest sites at once, which may 
lead to the colony splitting, dramatically reducing the chance of survival of the colony 
(13,38). Because of the fact that the difference between group sizes is what matters in 
cooperative transport, such a split-decision is impossible.  

But perhaps the most important difference between these models relates to 
communication. Unlike our model the Seeley et al. (35) and Pais et al. (27) models 
include direct communication among individuals. Honeybee scouts actively advertise for 
a particular nest site (a positive feedback mechanism) and stop other scouts from 
advertising for a different site using the stop signal (a negative feedback mechanism; 35). 
Our model produces some similar dynamics without direct communication through 
evolved signals; instead, individuals pick up on group cues. In informed groups, positive 
and negative feedback mechanisms are combined into a single mechanism that requires 
no signals. An individual is less likely to give up if her faction is large compared to the 
other faction (positive feedback), and more likely to give up if the opposite is true 
(negative feedback, analogous to cross-inhibition). Informed individuals only need to 
measure the relative group sizes to make effective decisions.   
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The Seeley et al. (35) and Pais et al. (27) models elegantly and realistically 
reproduce the dynamics of nest-site selection in honeybees. Our model is simpler, yet 
produces similar dynamics in terms of the accumulation of votes for a single option, 
indicating that communication among individuals is not necessary for a decision in the 
case of cooperative transport. The fact that some of our results are similar lends credence 
to the idea that results from one collective decision-making system can be generalizable 
to others. Among collective systems, social insects are uncommonly apt for experiment, 
since individuals are easily observed and manipulated. Because lessons are transferable 
across at least some systems, we can use social insects as model systems for other 
systems that are harder to study, like neuronal networks and immune systems.  

Our model demonstrates that simple behavioral rules can lead to a consensus 
about travel direction during cooperative transport, even without a directional bias. Our 
simulated ants had no memory, limited sensory ability, and followed only simple rules, 
yet made decisions rapidly in informed groups. We identify a potential adaptation – 
giving up more readily when going against the majority – that allows for deadlock-
breaking, and may explain why we see such large variation in cooperative transport 
ability among ant species. While it is currently not possible to directly measure this 
adaptation in ants, the consequences we have modeled here can, and should, be measured 
to see if real ants use this behavioral rule. Our model reproduces dynamics similar to 
those of other decision-making processes (15,30), and our conclusions are generalizable 
to other collective decisions, especially those prone to deadlock. Though cooperative 
transport is a challenging task that requires coordination, behavioral complexity is not a 
prerequisite for success.   
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