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Abstract 
Pairwise models are commonly used to describe many-species communities. In these models, a 

focal species receives additive fitness effects from pairwise interactions with other species in the 

community (“pairwise additivity assumption”), and all pairwise interactions are represented by a 

single canonical equation form (“universality assumption”). Here, we analyze the validity of 

pairwise modeling. We build mechanistic reference models for chemical-mediated interactions in 

microbial communities, and attempt to derive corresponding pairwise models. Even when one 

species affects another via a single chemical mediator, different forms of pairwise models are 

appropriate for consumable versus reusable mediators, with the wrong model producing 

qualitatively wrong predictions. For multi-mediator interactions, a canonical model becomes 

even less tenable. These results, combined with potential violation of the pairwise additivity 

assumption in communities of more than two species, suggest that although pairwise modeling 

can be useful, we should examine its validity before employing it. 

Introduction 

Multispecies microbial communities are ubiquitous. Microbial communities are important for 

industrial applications such as cheese and wine fermentation (van Hijum, Vaughan, and Vogel 

2013) and municipal waste treatment (Seghezzo et al. 1998). Microbial communities are also 

important for human health: they can modulate immune responses and food digestion (Round 

and Mazmanian 2009; Kau et al. 2011) or cause diseases (Kelly 1980).  

 

Community-level properties (e.g. species composition and biochemical activities) cannot be 

achieved, or achieved to the same extent, by summing the contributions of individual member 

species. Community-level properties are influenced by interactions wherein individuals alter the 

physiology of other individuals. To understand and predict properties of communities, choosing 

the appropriate mathematical model to describe species interactions is critical. 

 

Two commonly-used modeling approaches are mechanistic modeling and pairwise modeling, 

each with its pros and cons. In mechanistic modeling, interaction mechanisms are explicitly 

modeled (Fig 1A and B, left panels). Thus, a mechanistic model requires discovering and 

quantifying interaction mechanisms (Fig 1 Table, “parameter” rows under “Mech.” column). 
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Such a mechanistic model can in principle quantitatively predict community dynamics when 

species evolution is negligible. However, the complexity of microbial interactions and the 

difficulty in identifying and quantifying interactions have made it challenging to construct 

mechanistic models.  

 

In contrast to mechanistic modeling, pairwise modeling considers only the fitness effects of 

pairwise species interactions (Figs 1A and B, right panels). Pairwise models have two central 

assumptions. First, the “universality” assumption: Regardless of interaction mechanisms, how 

one species affects another can be abstracted into a single canonical equation form so that only 

parameters can vary among interactions. Second, the “pairwise additivity” assumption: a focal 

species receives additive fitness effects from pairwise interactions with other species in the 

community. Even though pairwise models do not capture the dynamics of chemical mediators, 

predicting species dynamics is still highly desirable in, for example, forecasting species diversity 

and compositional stability. 

 

Pairwise models are easy to construct because they do not require knowledge of interaction 

mechanisms and need fewer parameters than mechanistic models (Fig 1 table). Parameters are 

relatively easy to estimate using community dynamics (Stein et al. 2013), or more systematically, 

using dynamics of monocultures and pairwise cocultures (Fig 2).  

 

Not surprisingly, pairwise modeling has been commonly applied to communities (Wootton and 

Emmerson 2005). Pairwise models are often justified by their success in predicting ecological 

dynamics of two-species communities of prey-predation (Fig 1-FS1) (Volterra 1926; Wangersky 

1978; “BiologyEOC - PopulationChanges” 2016) and competition (Gause 1934a; Gause 1934b). 

Pairwise modeling has been extended to model communities of more than two species (defined 

as “multispecies communities”), with empirical support from, for example, an artificial 

community of four competing protozoa species (Vandermeer 1969). Multispecies pairwise 

models have been extensively used to predict how perturbations to steady-state species 

composition exacerbate or decline over time (May 1972; Cohen and Newman 1984; Pimm 1982; 

Thébault and Fontaine 2010; Mougi and Kondoh 2012; Allesina and Tang 2012; Suweis et al. 

2013; Coyte, Schluter, and Foster 2015). 

 

However, pairwise modeling has known limitations. For instance, in a multispecies community, 

an interaction between two species can be altered by a third species (Levine 1976; Tilman 1987; 

Wootton 2002; Werner and Peacor 2003; Stanton 2003). Indirect interactions via a third species 

fall under two categories (Wootton 1993), which can be illustrated using the example of 

carnivore, herbivore, and plant. In an “interaction chain” (also known as “density-mediated 

indirect interactions”), a carnivore affects the density of an herbivore which in turn affects the 

density of plants. In “interaction modification” (also known as “trait-mediated indirect 

interactions” or “higher order interactions” (Vandermeer 1969; Wootton 1994; Billick and Case 
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1994; Wootton 2002)), a carnivore affects how often an herbivore forages plants. Interaction 

modification (but not interaction chain) violates the pairwise additivity assumption (Methods-

Section 1). Interaction modification is thought to be common in ecological communities (Werner 

and Peacor 2003; Schmitz, Krivan, and Ovadia 2004). Limitation of pairwise modeling has also 

been studied experimentally (Dormann and Roxburgh 2005). However, empirically-observed 

failure of multispecies pairwise models could be due to limitations in data collection and analysis 

(Case and Bender 1981; Billick and Case 1994).  

 

Given the benefits, limitations, and intellectual influence of pairwise modeling, we examine 

conditions under which pairwise models produce realistic predictions. Instead of investigating 

natural communities where interaction mechanisms can be difficult to identify, we start with in 

silico communities where species engage in predefined chemical interactions of the types 

commonly encountered in microbial communities. Based on these interactions, we construct 

mechanistic models, and attempt to derive from them pairwise models. A mechanistic reference 

model offers several advantages: community dynamics is deterministically known; deriving a 

pairwise model is not limited by inaccuracy of experimental tools; and the flexibility in creating 

different reference models allows us to explore a variety of conditions. This has allowed us to 

examine the domain of validity for pairwise modeling. 

Results 

Establishing a mechanistic reference model 

In our mechanistic models (Fig 1A, left), we focus on chemical interactions which are 

widespread in microbial communities (Fig1-FS2) (Stams 1994; Czárán, Hoekstra, and Pagie 

2002; Duan et al. 2009). A mechanistic model includes a set of species as well as chemicals that 

mediate interactions among species. Species Si could release or consume chemical Cj, and 

chemical Cj could increase or decrease the growth rate of species Sk.  

 

We assume that fitness effects from different chemical mediators on a focal species are additive. 

Not making this assumption will likely violate the additivity assumption essential to pairwise 

modeling. Additive fitness effects have been observed for certain “homologous” metabolites. For 

example, in multi-substrate carbon-limited chemostats of E. coli, the fitness effects from glucose 

and galactose were additive (Lendenmann and Egli 1998). “Heterologous” metabolites (e.g. 

carbon and nitrogen sources) likely affect cell fitness in a multiplicative fashion. However, if 

released mediators cause small changes to the concentrations already in the environment, then 

additivity approximation may still be acceptable. For example, suppose that the fitness influences 

of released carbon and nitrogen with respect to those already in the environment are wc and wn, 

respectively. If wc, wn<<1, the additional relative fitness influence will be (1+wc)(1+wn)-1 ≈ 

wc+wn. However, even among homologous metabolites, fitness effects may not be additive 

(Hermsen et al. 2015). “Sequential” metabolites (e.g. diauxic shift) provide such examples. 
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We also assume that resources not involved in interactions are never limiting. We thus simulate 

continuous community growth similar to that in a turbidostat, diluting the total population to a 

low density once it has reached a high-density threshold. Within a dilution cycle, a mechanistic 

model can be represented by a set of first-order differential equations, as 
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         (Eq. 1).   

Si and Ci are state variables representing the concentrations of species Si and chemical Ci, 

respectively. ri0 is the basal fitness of an individual of species Si (the net growth rate of a single 

individual in the absence of any intra-species or inter-species interactions). 
i j

S C
r

 
reflects the 

maximal influence of chemical Cj on the growth rate of Si, while 
i j

S C
K  is the concentration of 

Cj achieving half maximal influence on the growth rate of Si. 
i j

C S
  and 

i j
C S

  are 

respectively the release rate and the maximum consumption rate of Ci by species Sj. 
i j

C S
K  is 

the Ci at which half maximal rate of consumption by Sj is achieved. All parameter definitions are 

summarized in Fig 1 table.  

Deriving a pairwise model 

Ideally we would want a canonical pairwise model to represent the fitness effect of one species 

on another regardless of interaction mechanisms. Specifically, an N-species pairwise model is: 

0
1

( )
N

i
i ij j i

j

dS
r f S S
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        (Eq. 2). 

Here, ri0 is the basal fitness of an individual of the focal species Si. ( )ij jf S  describes how Sj, 

the density of species Sj, positively or negatively affects the fitness of Si. When j=i, ( )ii if S  

represents intra-population density-dependent fitness effect on Si (e.g. inhibition or stimulation 

of growth at high cell densities). The pairwise additivity assumption means that ( )ij jf S  is a 

linear or nonlinear function of only Sj and not of a third species.  

 

( )ij jf S  can have several variations (Wangersky 1978): basic Lotka-Volterra, where the fitness 

influence of Sj on Si linearly increases with the abundance of Sj (Solé and Bascompte 2006); 

logistic Lotka-Volterra, which considers resource limitation by specifying a carrying capacity for 

each species (Thébault and Fontaine 2010; Mougi and Kondoh 2012); Lotka-Volterra with 

delayed influence, where the fitness influence of one species on another may lag in time 
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(Gopalsamy 1992), and saturable Lotka-Volterra, where the fitness effect of Sj on Si saturates at 

high density of Sj (Thébault and Fontaine 2010). Since we model continuous growth which does 

not impose carrying capacity and since chemical influence from one species to another is likely 

saturable, we have adopted the saturable Lotka-Volterra as our canonical pairwise model: 

0

ji
i ij i

j j ij

SdS
r r S

dt S K

 
  

  
        (Eq. 3). 

Here, rij is the maximal positive or negative fitness effect of Sj on Si, and Kij is the Sj exerting 

half maximal fitness influence on Si (parameter definition in Fig 1 table). When j=i, nonzero rii 

and Kii reflect density-dependent growth effect in Si. 

 

From a mechanistic model, we derive a pairwise model either analytically or numerically (Fig 

2A). In the latter case (Fig 2B-C, Methods-Section 2), we should already have a pre-specified 

pairwise model (e.g. the canonical pairwise model) in mind. We then use the dynamics of 

monocultures and pairwise cocultures obtained from the mechanistic model to find parameters 

that minimize the difference between the two models within a training time window T. 

Specifically, we define a distance measure D  as the fold-difference between the dynamics from 

the two models, averaged over any time interval  and species number N (Fig 2C): 

 10 , ,
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1 1 1 1
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i i

D D t dt S t S t dt
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    (Eq. 4). 

Here Si,pair and Si,mech are Si calculated using pairwise and mechanistic models, respectively. 

Since species with densities below a set extinction limit, Sext, are assumed to have gone extinct in 

the model, we set all densities below the extinction limit to Sext in calculating D  to avoid 

singularities. Within the training window T, minimizing ( )D T  using a nonlinear least square 

routine yields parameters of the best-matching pairwise model. We then use D  outside the 

training window to quantify how well the best-matching pairwise model predicts the mechanistic 

model. 

Reusable and consumable mediators are best represented by different forms of pairwise 

models 

To build a pairwise model, we must accurately represent the fitness influence of one species on 

another (rij and Kij). Even though this basic process seems straightforward as outlined in Fig 2, in 

practice, challenges may arise. For example, identifying the set of best-matching parameters for 

nonlinear functions may not be straightforward, and measurement errors further hamper 

parameter estimation. Partly due to these challenges, studies on deriving pairwise model 

parameters for a given community are scarce (Pascual and Kareiva 1996; Stein et al. 2013), 

despite the popularity of pairwise models. In this section, we analytically derive pairwise models 

from mechanistic models of two-species communities where one species affects the other species 

through a single mediator. The mediator is either reusable such as signaling molecules in quorum 

sensing (Duan et al. 2009; N.S. Jakubovics 2010) or consumable such as metabolites (Stams 
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1994; Freilich et al. 2011). To facilitate mathematical analysis, we consider community dynamics 

within a dilution cycle. We show that a single canonical pairwise model may not encompass 

these different interaction mechanisms. 

 

Consider a commensal community where species S1 stimulates the growth of species S2 by 

producing a reusable (Fig 3A) or a consumable chemical C1 (Fig 3B). When C1 is reusable, the 

mechanistic model can be transformed into a pairwise model (Fig 3A), provided that the 

concentration of the mediator (which is initially zero) has acclimated to be proportional to the 

producer population size (Fig 3A; Fig 3-FS1). This pairwise model takes the canonical form 

(compare with Fig 1B right). Thus, the canonical pairwise model is appropriate, regardless of 

whether the producer coexists with the consumer, outcompetes the consumer, or is outcompeted 

by the consumer. 

 

If C1 is consumable, different scenarios are possible within a dilution cycle (Methods-Section 3). 

Case I: When supplier S1 always grows faster than consumer S2 (
2 110 20 S Cr r r  ), C1 will 

accumulate within each dilution cycle (proportional to S1) without plateauing to a steady state 

(Fig 3-FS2 left panel, similar to a reusable mediator in Fig 3-FS1A). In this case, C1 may be 

approximated as a reusable mediator and can be predicted by the canonical pairwise model (Fig 

3-FS2 right panel, compare dotted and solid lines). 

 

Case II: When 
2 1 10 20 0S Cr r r   , a steady state solution for 1C  and SR S S 2 1/  exists 

(Eq.S3-4). We can rewrite  
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The above equations can be used to visualize the dynamics trajectory of the community in a 

phase plane (C1, RS) (Fig3-FS4, A-D). Qualitatively, starting from (0, RS(t=0)), the trajectory 

moves toward the curve 

1 2
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C S
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      (Eq. 5)  

(the “f-zero-isocline”, blue line in Fig 3-FS4, A-D) with time scale tf (Fig3-FS8B third column 

for Case II). Afterwards the trajectory moves closely along the f-zero-isocline until it reaches the 

steady state. During this time, we can assume 0f   to eliminate C1 and derive a pairwise 

model. The resultant equation below differs from the canonical pairwise model and takes the 

form  
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    (Eq. 6, Eq. S3-6), 

where ω and ψ are constants (Fig 3B-ii). As expected, parameter estimation for the alternative 

pairwise model is more accurate after the initial period of time (Fig 3-FS6 bottom panels).   

 

Case III: When supplier S1 always grows slower than consumer S2 ( 10 20r r ), Eqs. S3-2 and S3-

5 above are still valid. Thus, consumable C1 declines to zero concentration as it is consumed by 

S2 whose relative abundance over S1 eventually exponentially increases at a rate of 20 10r r . 

Similar to Case II, after time scale tf when community dynamics reaches the f-zero-isocline (Fig 

3-FS4 E-H; Fig3-FS8B third column for Case III), the alternative pairwise model (Eq. 6) can be 

derived.  

 

The alternative pairwise model always converges to the mechanistic model if 

S C C SK K   
2 1 1 2

1 0  or 
1 2 2 1C S S CK K  (Methods-Section 3, “Conditions for the 

alternative pairwise model to approximate the mechanistic model”; Fig 3-FS5A and C). Indeed, 

even if the initial species composition is not at steady state, the alternative model approaches the 

mechanistic model over time (compare dashed and solid lines in Fig 3-FS3 where   0 ). When 

0  , SR t    ( 0)  is required for the alternative pairwise model to work (Fig3-FS8A). 

Otherwise, we can get qualitatively wrong results (Fig 3-FS5B and D).  

  

If any of the requirements on initial conditions or time scale (Methods-Section 3; Fig3-FigS8) is 

violated, the alternative pairwise model may fail to represent the mechanistic model. For 

example, if dilution cycles are such that the community can never approach the f-zero-isocline, 

then C1 could accumulate proportionally to S1 even if 
2 1 10 20 0S Cr r r   . In this case, the 

canonical but not the alternative pairwise model is appropriate (Fig 3-FS7). Similarly, a gentler 

dilution scheme, which allows the community to remain near the f-zero-isocline, leads to better 

parameter estimation for a pairwise model (Fig 3-FS6). 

 

The alternative model can be further simplified to  

 where 2 1 1 1

1 2

2 1
20 2

2

S C C S

C S

rdS S
r S

dt S


 



 
   
 

   (Eq. 7) 

if additionally, the half-saturation constant K for C1 consumption (
1 2C SK ) is identical to that for 

C1’s influence on the growth of consumer (
2 1S CK ) (the “K assumption”), and if S2 has not gone 

extinct. This equation form has precedence in the literature (e.g. (Mougi and Kondoh 2012)), 

where the interaction strength r21 reflects the fact that the consumable mediator from S1 is 

divided among consumer S2.  
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The canonical and the alternative models are not interchangeable. The alternative pairwise model 

is not predictive of community dynamics where C1 accumulates without reaching a steady state 

(Fig 3-FS2, compare dashed and solid lines). Similarly, an interaction mediated by a consumable 

mediator that eventually reaches steady state can often be described by the alternative pairwise 

model (Fig 3-FS3, dashed lines). However, if we were to use a canonical model, model accuracy 

becomes uncertain: Parameters estimated at the steady state can predict community dynamics at 

steady state (Fig 3-FS3A), but not community dynamics when initial species ratios differ from 

the steady state ratio (Fig 3-FS3B and C, compare dotted with solid lines).  

 

We have shown here that even when one species affects another species via a single mediator, 

either a canonical or an alternative form of pairwise model may be more appropriate in different 

situations. Choosing the appropriate model depends on whether the mediator is reusable or 

consumable and if consumable, how the fitness of two species compare. Additionally, a pairwise 

model may approximate the mechanistic model properly only under appropriate initial conditions 

and after the estimated time scale (Fig 3-FS5, B and D; Fig3-FS8). Considering that reusable and 

consumable mediators are both common, our results call for revisiting the universality 

assumption of pairwise modeling. 

Multi-mediator interactions require pairwise models different from single-mediator 

interactions  

A species often affects another species via multiple mediators (Kato et al. 2008; Traxler et al. 

2013; Kim, Lee, and Ryu 2013). For example, a subpopulation from one species might die and 

release numerous chemicals that can affect another species in different ways. Here we examine 

cases where S1 releases two chemicals C1 and C2 which additively affect the growth of S2 (Fig 

4). We ask when two mediators can mathematically be regarded as one mediator (to facilitate 

further abstraction into a pairwise model), and how multi-mediator interactions affect pairwise 

modeling. 

 

When both mediators are reusable (Methods-Section 4), their combined effect (

2 1 2 2

2 1 1 1 2 2 2 1

1 1

1 10 1 10/ /

S C S C

S C C S S C C S

r S r S

S K r S K r 


 
) generally cannot be modeled as a single mediator 

except under special conditions (Fig 4). These special conditions (Methods-Section 4) include: 

(1) mediators share similar “potency” (Fig 4C, diagonal), or (2) one mediator has much stronger 

“potency” than the other (i.e. one mediator dominates the interaction; note the log scale in Fig 

4C).  

 

When both mediators are consumable as in Cases II and III, the interaction term becomes 

2 1 2 2

1 1 2 2

1 1

1 2 1 2

S C S C

C C C C

r S r S

S S S S   


 
. Except under special conditions (e.g. when both mediators 

satisfy the K assumption (Eq. 7), or when 
1 2 1 2C C C C    , or when one mediator 
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dominates the interaction), the two mediators may not be regarded as one. Similarly, when one 

mediator is a steady-state consumable and the other is reusable, they generally may not be 

regarded as a single mediator and would require yet a different pairwise model with more 

degrees of freedom (with the interaction term 2 1 2 2

1 1 2 2 2 1

1 1

1 2 1 10 /

S C S C

C C S C C S

r S r S

S S S K r  


 
). All these 

forms deviate from the canonical form.  

  

In summary, when S1 influences S2 through multiple mediators, rarely can we approximate them 

as a single mediator. Multiple mediators generally make equations of pairwise modeling more 

complex than single mediators, casting further doubt on the usefulness of a universal form for all 

community interactions. 

A multispecies pairwise model can work for interaction chains but generally not for 

interaction modifications  

For a community with more than two species, can we construct a multispecies pairwise model 

from two-species pairwise models? The answer is yes for an interaction chain mediated by 

chemicals (Fig 5A), so long as mediators between different species pairs are independent and 

each species pair can be represented by a pairwise model. The equation form of the multispecies 

pairwise model can vary (Methods-Section 5), as discussed in previous sections.  

 

Consistent with previous work (Methods-Section 1), interaction modification can cause a 

multispecies pairwise model to fail. For example, S1 releases C1 which stimulates S2 growth; C1 

is consumed by S3 and stimulates S3 growth (Fig 5C). Here, the presence of S3 changes the 

strength of interaction between S1 and S2, an example of interaction modification. Viewing this 

differently, S1 changes the nature of interactions between S2 and S3: S2 and S3 do not interact in 

the absence of S1, but S3 inhibits S2 in the presence of S1. This causes the three-species pairwise 

model to make qualitatively wrong conclusions about species persistence even though each 

species pair can be described by a pairwise model (Fig 5D). As expected, if S3 does not remove 

C1, the three-species pairwise model works (Fig 5-FS1, A-B). 

 

Interaction modification can occur even in communities where no species changes “the nature of 

interactions” between any other two species (Fig 5E). Here, both S1 and S3 contribute reusable C1 

to stimulate S2. S1 promotes S2 regardless of S3; S3 promotes S2 regardless of S1; S1 and S3 do not 

interact regardless of S2. However, a multispecies pairwise model assumes that the fitness effects 

from the two producers on S2 will be additive, whereas in reality, the fitness effect on S2 saturates 

at high C1. As a result, even though the dynamics of each species pair can be represented by a 

pairwise model (Fig 5F right, purple), the three-species pairwise model fails to capture 

community dynamics (Fig 5F). Thus, the nonlinearity in how a mediator affects a species can 

also violate the additivity assumption of a pairwise model. As expected, if C1 affects S2 in a 
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linear fashion, the community dynamics is accurately captured in the multispecies pairwise 

model (Fig 5-FS1, C-D).  

 

In summary, for chemical-mediated indirect interactions, a multispecies pairwise model can 

work for the interaction chain category but generally not the interaction modification category.  

Discussion 
Multispecies pairwise models are widely used in theoretical research due to their simplicity. In 

two-species interactions such as prey-predation based on contact-dependent inhibition (instead of 

diffusible chemical mediators), Lotka-Volterra pairwise models can in fact be the mechanistic 

representation of interactions and thus predictive of community dynamics (Fig 1-FS1). The 

inadequacy of multispecies pairwise models has been discussed theoretically (Wootton 2002; 

Wootton and Emmerson 2005) and empirically (Case and Bender 1981; Dormann and Roxburgh 

2005; Aschehoug and Callaway 2015), although the reasons for model failures in explaining 

particular experimental results are often unclear (Billick and Case 1994).  

 

Here, we have considered the validity of pairwise models in well-mixed two- and three-species 

communities where all species interactions are known and thus community dynamics can be 

described by a mechanistic reference model. We have focused on chemical-mediated interactions 

commonly encountered in microbial communities (Fig 1-FS2) (Kato et al. 2005; Gause 1934a; 

Ghuysen 1991; Nicholas S Jakubovics et al. 2008; Chen et al. 2004; D’Onofrio et al. 2010; 

Johnson et al. 1982; Hamilton and Ng 1983). To favor the odds of successful pairwise modeling, 

we have also assumed that different chemical mediators exert additive fitness effects on a target 

species. 

 

What are the conditions under which the influence of one species on another can be represented 

by a canonical two-species pairwise model (the universality assumption)? When an interaction 

employs a single mediator, then a canonical saturable pairwise model (Fig 1B) will work for a 

reusable mediator (Fig 3A). For a consumable mediator, depending on the fitness relationship 

between the two species, either a canonical (Fig 3A) or an alternative (Fig 3B) pairwise model is 

appropriate (Methods-Section 3, Fig3-FS8). Canonical and alternative models are not 

interchangeable (Fig 3-FS2; Fig 3-FS3; Fig 3-FS7). For the alternative pairwise model, 

depending on the relative strength of 
1 2C SK  and

2 1S CK , additional requirement on initial S2/S1 

may need to be satisfied for the pairwise model to converge to mechanistic model (Fig3-FS8A). 

Otherwise, qualitatively wrong predictions can ensue (Fig 3-FS5, B and D). In all cases, 

acclimation time is required for a pairwise model to converge to the mechanistic model (Fig3-

FS8B; Fig3A). If one species influences another through multiple mediators, then in general, 

these mediators may not be regarded as a single mediator (Fig 4 and Methods-Section 4). Thus, 

conditions for a working canonical pairwise model become even more restrictive.  
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In communities of more than two species, indirect interactions via a third species can occur. For 

indirect interactions in the form of interaction chains, as long as each two-species segment of the 

chain engages in independent interactions and can be represented by a pairwise model, then 

multispecies pairwise models will generally work (Figs 5A-B, Methods-Section 5). However, 

depending on whether each mediator is reusable or not, equation forms will vary. For indirect 

interactions in the form of interaction modification (higher-order interactions), even if each 

species pair can be accurately represented by a pairwise model, a multispecies pairwise model 

may fail (Fig 5, C-F). Interaction modification includes trait modification (Wootton 2002; 

Werner and Peacor 2003; Schmitz, Krivan, and Ovadia 2004), or, in our cases, mediator 

modification. Mediator modification is very common in microbial communities. For example, 

antibiotic released by one species to inhibit another species may be inactivated by a third species, 

and this type of indirect interactions can stabilize microbial communities (Kelsic et al. 2015; 

Bairey, Kelsic, and Kishony 2016). Moreover, interaction mediators are often shared among 

multiple species. For example in oral biofilms, organic acids such as lactic acid are generated 

from carbohydrate fermentation by many species (Bradshaw et al. 1994; Marsh and Bradshaw 

1997; Kuramitsu et al. 2007). Such by-products are also consumed by multiple species 

(Kolenbrander 2000).  

 

Pairwise modeling (or variations of it) still has its uses when simulating a particular community 

phenomenologically. One can even imagine that an extended pairwise model (e.g. 

2 12
20 2 2

1 2

S Cr SdS
r S S

dt S S  
 

 
) embodying both the canonical form and the alternative form 

can serve as a general-purpose model for pairwise interactions via a single mediator. Even the 

effects of indirect interactions may be quantified and included in the model by incorporating 

higher-order interaction terms (Case and Bender 1981; Worthen and Moore 1991), although 

many challenges will need to be overcome (Wootton 2002). In the end, although these strategies 

may lead to a sufficiently accurate phenomenological model for specific cases, “one-form-

fitting-all” may generate erroneous predictions when modeling different communities. 

 

How much information about interaction mechanisms do we need to construct a mechanistic 

model? That is, what is the proper level of abstraction which captures the phenomena of interest, 

yet avoids unnecessary details (Levins 1966; Durrett and Levin 1994; Damore and Gore 2012)? 

Tilman argued that if a small number of mechanisms (e.g. the “axes of trade-offs” in species’ 

physiological, morphological, or behavioral traits) could explain much of the observed pattern 

(e.g. species coexistence), then this abstraction would be highly revealing (Tilman 1987). 

However, the choice of abstraction is often not obvious. Consider for example a commensal 

community where S1 grows exponentially (not explicitly depicted in equations in Fig 6) and the 

growth rate of S2, which is normally zero, is promoted by mediator C from S1 in a linear fashion 

(Fig 6). If we do not know how S1 stimulates S2, we can still construct a pairwise model (Fig 
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6A). If we know the identity of mediator C and realize that C is consumable, then we can instead 

construct a mechanistic model incorporating C (Fig 6B). However, if C is produced from a 

precursor via an enzyme E released by S1, then we get a different form of mechanistic model 

(Fig 6C). If, on the other hand, E is anchored on the membrane of S1 and each cell expresses a 

similar amount of E, then equations in Fig 6D are mathematically equivalent to Fig 6B. This 

simple example, inspired by extracellular breakdown of cellulose into a consumable sugar C 

(Bayer and Lamed 1986; Felix and Ljungdahl 1993; Schwarz 2001)), illustrates how knowledge 

of mechanisms may eventually help us determine the right level of abstraction. 

 

In summary, under certain circumstances, we may already know that interaction mechanisms fall 

within the domain of validity for a pairwise model. In these cases, pairwise modeling provides 

the appropriate level of abstraction, and constructing a pairwise model can be far easier than 

measuring the many parameters required by a mechanistic model. However, if we do not know 

whether pairwise modeling is valid, we will need to be cautious about indiscriminative use of 

pairwise models since they can fail to even qualitatively capture community dynamics (e.g. in 

Fig 3-FS2, Fig 3-FS3, Fig 3-FS5, and Fig 5C-F). We will need to be equally careful in 

extrapolating and generalizing conclusions obtained from pairwise models. Considering recent 

advances in identifying and quantifying interactions, we advocate a transition to models that 

incorporate interaction mechanisms at the appropriate level of abstraction.  

Methods 

Section 1. Interaction modification but not interaction chain violates the pairwise 

additivity assumption  

In a pairwise model, the fitness of a focal species Si is the sum of its “basal fitness” (ri0, the net 

growth rate of a single individual in the absence of any intra-species or inter-species interactions) 

and the additive fitness effects exerted by pairwise interactions with other members of the 

community. Mathematically, an N-species pairwise model is often formulated as 

0
1

( )
N

i
i ij j i

j

dS
r f S S

dt


 
  
 
 

     (Eq. S1-1; Eq. 2 in the main text). 

Here, ( )ij jf S  describes how Sj, the density of species Sj, positively or negatively affects the 

fitness of Si, and is a linear or nonlinear function of only Sj and not of a third species.  

 

Indirect interactions via a third species fall under two categories (Wootton 1993). The first type 

is known as “interaction chain” or “density-mediated indirect interactions”. For example, the 

consumption of plant S1 by herbivore S2 is reduced when the density of herbivore is reduced by 

carnivore S3. In this case, the three-species pairwise model 
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dS
r f S S
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dS
r f S f S S

dt

dS
r f S S

dt


 




  



 


      (Eq. S1-2) 

does not violate the pairwise additivity assumption (compare with Eq. S1-1) (Case and Bender 

1981; Wootton 1994).  

 

The second type of indirect interactions is known as “interaction modification” or “trait-mediated 

indirect interactions” or “higher order interactions” (Vandermeer 1969; Wootton 1994; Billick 

and Case 1994; Wootton 2002), where a third species modifies the “nature of interaction” from 

one species to another (Wootton 2002; Werner and Peacor 2003; Schmitz, Krivan, and Ovadia 

2004). For example, when carnivore is present, herbivore will spend less time foraging and 

consequently plant density increases. In this case, f12 in Eq S1-2 is a function of both S2 and S3, 

violating the pairwise additivity assumption.  

 

Section 2. Summary of simulation files 

Simulations are based on Matlab® and executed on an ordinary PC. Steps are: 

Step 1: Identify monoculture parameters ri0, rii, and Kii (Fig 2C, Row 1 and Row 2). 

Step 2: Identify interaction parameters rij, rji, Kij, and Kji where i j (Fig 2C, Row 3). 

Step 3: Calculate distance D  between population dynamics of the reference mechanistic model 

and the approximate pairwise model over several generations outside of the training window to 

assess if the pairwise model is predictive. 

Fitting is performed using nonlinear least square (lsqnonlin routine) with default optimization 

parameters. The following list describes the m-files used for different steps of the analysis: 

File name Function 

FitCost_BasalFitness.m 

Source code 1 

 

Calculates the cost function for monocultures (i.e. the 

difference between the target mechanistic model 

dynamics and the dynamics obtained from the pairwise 

model) 
FitCost_BFSatLV.m 

Source code 2 
Calculates the cost function for communities (i.e. the 

difference between the target mechanistic model 

dynamics and the dynamics obtained from the canonical 

pairwise model) 
FitCost_BFSatLV_Dp.m 

Source code 3 
Calculates the cost function for communities (i.e. the 

difference between the target mechanistic model 

dynamics and the dynamics obtained from the alternative 

pairwise model) 
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DynamicsMM_WM_MonocultureDpMM.m 

Source code 4 
Returns growth dynamics for monocultures, based on the 

mechanistic model 
DynamicsMMSS_WM_NetworkDpMM.m 

Source code 5 
Returns growth dynamics for communities of multiple 

species, based on the mechanistic model 
DynamicsWM_NetworkBFSatLV.m 

Source code 6 
Returns growth dynamics for communities of multiple 

species, based on the canonical pairwise model 
DynamicsWM_NetworkBFSatLV_Dp.m 

Source code 7 
Returns growth dynamics for communities of multiple 

species, based on the alternative pairwise model 
DeriveBasalFitnessMM_WM_DpMM.m 

Source code 8 
Estimates monoculture parameters of pairwise model 

(Step 1) 
DeriveBFSatLVMMSS_WM_DpMM.m 

Source code 9 
Estimates canonical pairwise model interaction 

parameters (Step 2) 
DeriveBFSatLVMMSS_Dp_WM_DpMM.m 

Source code 10 
Estimates alternative pairwise model interaction 

parameters (Step 2) 
DeriveBFSatLVMMSS_WM_DpMM_r21.m 

Source code 11 
Estimates canonical pairwise model interaction 

parameters (r21 and K21) in cases where we know that S2 

is only affected by S1, to accelerate optimization 
DeriveBFSatLVMMSS_Dp_WM_DpMM_r21.m 

Source code 12 
Estimates alternative pairwise model interaction 

parameter (r21) in cases where we know that S2 is only 

affected by S1 and that KS2C1=KC1S2 to accelerate 

optimization 

 

 

Section 3. Deriving a pairwise model for interactions mediated by a single 

consumable mediator  

To facilitate mathematical analysis, we assume that requirements calculated below are eventually 

satisfied within each dilution cycle (see Fig3-FS7 for an example where dilution cycles violate 

requirements for deriving a pairwise model). We further assume 10 0r   and 20 0r   so that 

species cannot go extinct in the absence of dilution. See Fig3-FS8 for a summary of this section. 

 

When S1 releases a consumable mediator which stimulates the growth of S2, the mechanistic 

model as per Fig 3B, is 

2 1

2 1

1 1 1 2 1 1 1 2

1 2 1 2

1
10 1

2 1
20 2 2

1

1 1 1 2
1 2 1

1 1 1

S C
S C

C S C S C S C S
C S C S

dS
r S

dt

dS C
r S r S

dt C K

dC C C S
S S S

dt C K C K S
   








 



 
       
 

 (Eq. S3-1). 

Let 1 10 2 20 1 10( 0) ; ( 0) ; ( 0) 0S t S S t S C t C       . Note that the initial condition 10 0C   

can be easily imposed experimentally by prewashing cells. Under which conditions can we 

eliminate C1 so that we can obtain a pairwise model of S1 and S2?  
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Define 2 1SR S S  as the ratio of the two populations. 

2 1

2 1

2 1

2 1

2 1
1 2

1 2 2
20 10 12 2

1 11 1

1
20 10

1

S
S C

S C

S C S
S C

dS dS
S S

dR C S Sdt dt r r r S
dt C K SS S

C
r r r R

C K

  
    
 
 

 
   
 
 

  (Eq. S3-2). 

 

Case I: 
2 110 20 S Cr r r   

Since producer S1 always grows faster than consumer S2, 0SR   as 𝒕 → ∞. Define 

1 1 1C C S  (“~” indicating scaling against a function). 

 
1 2

1 1

1 2

1 2

1 1

1 2

1
1 1 1 2 1 1 10 1

1 1 11 11
2 2

1 1

1
1 10

1 10 10exp( )

C S
C S

C S

C S
C S S

C S

C
dC dS S S S C r S

S C C Kd C SdC dt dt

dt dt S S

C
C r R

C K r t S







 
  

  
   

  
 

 (Eq. S3-3). 

Since RS declines exponentially with a rate faster than 
2 120 10S Cr r r  , 

2 120 10(0)exp( | | )S S S CR R r r r t    . In the right hand side of Eq. S3-3, we can ignore the 

third term if it is much smaller than the first term. That is,  

1 2

1 2 1 2 2 1 1 1

1 2

1
20 10

1 10 10

(0)exp( | | )
exp( )

C S
S C S S C S S S C C S

C S

C
R R R r r r t

C K r t S


      

 
. 

Thus for 
1 2

2 1

1 1

20 10

(0)
ln( )

C S S
S C

C S

R
t r r r




  ,

1 1

1
1 10C S

dC
C r

dt
  . When initial 1C  is 0, this 

equation can be solved to yield:  
1 11 10 101 exp( )C SC r t r   . After time of the order of 101 r , 

the second term can be neglected. Thus, 
1 11 10C SC r after time of the order of 

1 2

2 1

1 1

20 10 10

(0)
max ln( ) ,1

C S S
S C

C S

R
r r r r





 
  
 
 

. Then 1C  can be replaced by 

 
1 1 10 1C S r S , and a canonical pairwise model can be derived. 
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Case II: 
2 1 10 20 0S Cr r r    

For Eq. S3-1, we find that a steady state solution for 1C  and SR , denoted respectively as 1 *C  

and *SR , exist. They can be easily found by setting the growth rates of S1 and S2 to be equal, 

and 1dC dt  to zero. 

2 1

2 1

1 1 1 2

1 2

* 10 20
1

20 10

*
1

* 1

S C
S C

C S C S

S
C S

r r
C K

r r r

K
R

C






  




 
    

 

      (Eq. S3-4). 

However, if C1 has not yet reached steady state, imposing steady state assumption would falsely 

predict Rs at steady state and thus remaining at its initial value (Fig 3-FS3, dotted lines). Since 

1dC dt  in Eq. S3-1 is the difference between two exponentially growing terms, we factor out 

the exponential term S1 to obtain 

1 1 1 2 1 1

1 2

1 1 2
1 1 1

1 1

( , )C S C S C S S
C S

dC C S
S f C R S

dt C K S
  

 
   
 
 

   (Eq. S3-5), 

where 
1 2

1 1 1 2

1
1

1

( , ) 1
C S

S S
C S C S

C
f C R R

C K




 


. When 𝒇 ≈ 0, we can eliminate C1 and obtain an 

alternative pairwise model 

1 1 1 2

2 1

1 1 1 2 2 1 1 2 2 1

12
20 2 2

1 2( )

C S C S

S C
C S C S S C C S S C

K SdS
r S r S

dt K K S K S



 
 

 
   

Or 

2 1 12
20 2 2

1 2

S Cr SdS
r S S

dt S S 
 


      (Eq. S3-6; also in Fig 3B, ii), 

where ω and ψ are constants (Fig 3B, ii).  

 

For certain conditions (which will be discussed at the end of this section, Fig3-FS8A), this 

alternative model can make reasonable predictions of community dynamics even before the 

community reaches the steady state (Fig 3-FS3, compare dashed and solid lines). Below we 

discuss the general properties of community dynamics and show that there exists a time scale 
ft  

after which it is reasonable to assume 0f   and the alternative model can be derived. We also 

estimate 
ft  for several scenarios.  

We first make C1 and 𝑹𝑺 dimensionless by defining 1 1 1
ˆ *C C C and ˆ *S S SR R R  (“^” 

indicating scaling against steady state values). Eq. S3-2 can then be rewritten as 
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2 1

2 1

1
20 10

1

ˆˆ
ˆ

ˆ ˆ
S

S C S
S C

dR C
r r r R

dt C K

 
   
 
 

     (Eq. S3-7) 

where 
2 1

ˆ
S CK =

2 1

*
1S CK C . 

 

From Eqs. S3-1 and S3-4, we obtain 

 

1 2 1 2

1 1 1 1

1 2 1 2

1 2 1 1 1 2

1 1

1 21 2

1 2

1 1

1
*

1 11
1 1* *

1 11 1

*
1 1

1* * * *
1 1 1 1 1

1

*
11

1 1 ˆ* *
*

1 ˆ 1

ˆ ˆ11
1

ˆ ˆ

C S C SS
C S S C S S S

C S S C S

C S C S C S

C S S
C SC S

C S

C S

C

C
d

C CRC
R S R R S

dt C K R C KC C

C C K
R S

C C C K C C

C K

C KC

 
 

 






   
      
    
   

  
    

     


 


1 2

1
ˆ

S

S

R S

 
 
 
 

 

or 

 
1 2

1 1

1 2

11
1

1

ˆ ˆ1ˆ
ˆ ˆ1

ˆ ˆ

C S

C S S

C S

C KdC
R S
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     (Eq. S3-8) 

where 
1 1 1 1

*
1

ˆ
C S C S C   and 

1 2 1 2

*
1

ˆ
C S C SK K C . 

 

Using these scaled variables, f can be rewritten as 

 
1 2

1 2

1

1

1

ˆ ˆ1
ˆ ˆ ˆ( , ) 1

ˆ ˆ

C S

S S

C S

C K
f C R R

C K


 


       (Eq. S3-9), 

and 

1 1

1
1 1

ˆ
ˆ ˆ ˆ( , )C S S

dC
f C R S

dt
        (Eq. S3-10). 

Equations S3-7 and S3-10 allow us to construct a phase portrait where the x axis is 1Ĉ  and the y 

axis is ˆ
SR  (Fig 3-FS4A-D). Note that at steady state, 1

ˆ ˆ( ,  )SC R = (1, 1). Setting Eq. S3-9 to 

zero: 

   
1 2 1 21

ˆˆ ˆ ˆ1 1S C S C SR K C K    or  
1 2 1 21

ˆ ˆ ˆ ˆ1 1C S S C SC K R K   
 

 (Eq. S3-11) 

defines the f-zero-isocline on the 1Ĉ - ˆ
SR  phase plane (i.e. values of 1

ˆ ˆ( ,  )SC R  at which 

1
ˆ ˆ( , ) 0Sf C R  , Fig 3-FS4A-D blue lines). The phase portrait dictates the direction of the 
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community dynamics trajectory ( ˆ
1C , ˆ SR ) as shown in grey arrows in Fig 3-FS4A. Starting from (

1
ˆ ( 0)C t  , ˆ ( 0)SR t  ), the trajectory (brown circles and orange lines) moves downward right 

(Fig3-FS4 A-D) until it hits 1
ˆ 1C  . Then, it moves upward right and eventually hits the f-zero-

isocline. Afterward, the trajectory moves toward the steady state (green circles) very closely 

along (and not superimposing) the f-zero-isocline during which the alternative pairwise model 

can be derived (Fig 3-FS4A-D).  

It is difficult to solve Eq. S3-7 and S3-8 analytically because the detailed community dynamics 

depends on the parameters and the initial species composition in a complicated way. However, 

under certain initial conditions, we can estimate 
f

t , the time scale for the community to 

approach the f-zero-isocline. Note that 
f

t  is not a precise value. Instead it estimates the 

acclimation time scale after which a pairwise model can be derived.  

One assumption used when estimating all 
f

t  is that 10S  is sufficiently high (Fig3-FS8B) to 

avoid the long lag phase that is otherwise required for the mediator to accumulate to a high 

enough concentration.  

From Eq. S3-11, the asymptotic value for the f-zero-isocline is 

 
1 21

ˆˆ ˆ( ) 1 1S C SR C K         (Eq. S3-12). 

This is plotted as a black dotted line in Fig 3-FS4, A-D. Below we consider three different initial 

conditions ˆ ( 0)SR t  : 

Case II-1.     S C SR t K 
1 2

ˆ ˆ0 1 1   

If we do not scale,    
1 2 1

0 1 1 *
* /

S S C S
R R K C . From Eq. S3-4, this becomes

 
1 1 1 2

0S C S C SR   .   

A typical trajectory of the system is shown in Fig 3-FS4B: at time t = 0, using Eqs. S3-7 and S3-

8, the community dynamics trajectory (orange solid line in Fig 3-FS4B inset) has a slope of 

 

1 11

20 10

ˆ1 1 1(0) 0 0

ˆˆ ˆ (0)

ˆ ˆ ˆ (0)

SS S

C SC t

r r RdR dR dt

dC dC dt S
 


     (Eq. S3-13). 

From Eqs. S3-11, the slope of the f-zero-isocline (blue line in Fig 3-FS4B inset) at 0ˆ ˆ ( )
S S

R R  

is  
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   (Eq. S3-14). 

The approximation in the last step is due to the very definition of Case II-1: 

   
1 2

ˆ ˆ1 0 1C S SK R t  . The initial steepness of the community dynamics trajectory (Eq. S3-13) 

will be much smaller than that of the f-zero-isocline (Eq. S3-14) if  
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     (Eq. S3-15). 

If we do not scale, together with Eq. S3-4, this becomes: 
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    (Eq. S3-15’). 

 

In this case, the community dynamics trajectory before getting close to the f-zero-isocline can be 

approximated as a straight line (the orange dotted line) and the change in ˆ
SR  can be 

approximated by the green segment in the inset of Fig 3-FS4B. Since the green segment, the 

orange dotted line and the red dashed line form a right angle triangle, the length of green 

segment can be calculated once we find the length of the red dashed line  1Ĉ , which is the 

horizontal distance between ( 1
ˆ (0)C , ˆ (0)SR ) and the f-zero-isocline and can be calculated from 

Eq. S3-9: 
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The approximation holds because under this condition,  1Ĉ  is close to zero. Thus,  
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      (Eq. S3-16). 

The green segment ˆ
SR  is then the length of red dashed line ( 1Ĉ , Eq. S3-16) multiplied with 
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 (Eq. S3-13), or 
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     (Eq. S3-17). 

Note that if Eq. S3-15 is satisfied, ˆ ˆ (0)S SR R . What is the time scale ft  for the 

community to traverse the orange dotted line to be close to the f-zero-isocline? Since from Eq. 

S3-7  
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 due to initial 1
ˆ 0C  ， 
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. 

Since here ˆ ˆ (0)S SR R  and ln(1 ) ~x x  for small x, we have 
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      (Eq. S3-18) 

If unscaled, using Eq. S3-4, this becomes 
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  (Eq. S3-18’). 

Case II-2.  ˆ 0SR  is comparable to 1.  

That is,   *
0S SR R . If 10S  is low, a typical example is shown in Fig 3-FS4D. Here because 

it takes a while for C1 to accumulate, during this lagging phase 
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    10 20
ˆ ˆ 0 exp( | | )

S S
R t R r r t    and there is a sharp plunge in ˆ

SR  before the trajectory 

levels off and climbs up. Although the trajectory eventually hits the f-zero-isocline where the 

alternative pairwise model can be derived, estimating 
ft  is more complicated. Here we consider 

a simpler case where 
10

S  is large enough so that the trajectory levels off immediately after 

0t   and ˆ 1SR   before the trajectory hits the f-zero-isocline (Fig3-FS4 A). Since ˆ
SR  

decreases until 1
ˆ 1C   and from Eq. S3-13, and similar to the reasoning in CaseII-1, if 
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or if  
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,                 (Eq. S3-19) 

a typical trajectory moves toward the f-zero-isocline almost horizontally (Fig 3-FS4A). The 

unscaled form of Eq. S3-19 is 
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        (Eq. S3-19’) 

To calculate the time it takes for the trajectory to reach the f-zero-isocline, let 1 1
ˆ ˆ 1sC C    and 

ˆ ˆ 1s S SR R   at any time point t to respectively represent deviation of (C t1
ˆ ( ) , SR tˆ ( )) away 

from their steady state values of (1, 1). We can thus linearize Eqs. S3-7 and S3-8 around the 

steady state. Note that at the steady state f = 0, s f f .    

Rewrite Eq. S3-7 as 
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to linearize it around the steady state 1
ˆ 1, 1ˆC SR   
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ˆ(1 ) ˆ ˆˆ ˆ1 ,1 (1,1)
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s s S s s S
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. 

At steady state, 
ˆ

(1,1) 0SdR
h

dt
  . Thus, 2 1

2 1

20 10ˆ1

S C

S C

r
r r

K
 


=0. 
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Thus, 
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       (Eq. S3-20).  

 

Recall Eqs. S3-8 and S3-10 as 

 
 

C S

C S S C S S

C S

C KdC
R S f C R S

dt C K
 

 
   
  
 

1 2

1 1 1 1

1 2

11
1 1 1

1

ˆ ˆ1ˆ
ˆ ˆ ˆˆ ˆ1 ,

ˆ ˆ
. 

Linearize around the steady state 1
ˆ 1, 1ˆC SR   (note f (1,1)=0): 
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Thus, 
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C R S
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        (Eq. S3-21). 

Similar to the above calculation, we expand f  around steady state 0,      
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11
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   (Eq. S3-22). 

Utilizing Eq. S3-20, Eq. S3-21, and Eq. S3-22, 
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               (Eq. S3-23) 

Taking the derivative of both sides, and using Eq. S3-21 and Eq. S3-22, we have 
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. 

The solution to the above equation is: 
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exp exp

r t r t
r t
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where  
2 1 2 1 1 1 2 1

2

10
ˆˆ ˆ1S C S C C S S Ca r K S K   and  

1 1 1 2 1 210
ˆ ˆ ˆ1C S C S C Sb K S K   are two 

positive constants. D1 and D2 are two constants that can be determined from the initial conditions 

of ˆ
SR  and 1Ĉ . ( , , )M z   and ( , , )W z   are Whittaker functions with argument z. As 

z   (http://dlmf.nist.gov/13.14.E20 and http://dlmf.nist.gov/13.14.E21) 
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( , , ) ~ exp( / 2)

( , , ) ~ exp( / 2)

M z z z

W z z z





 

 




 . 

Thus when 𝒆𝒓𝟏𝟎𝒕𝒃/𝒓𝟏𝟎 ≫ 𝟏, 
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The second term approaches zero much faster compared to the first term due to the negative 

exponent with an exponential term. Thus, 
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 (Eq. S3-24). 

Thus, s f  = f  approaches zero at a rate of 
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. Therefore, for  
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     (Eq. S3-25), 

the community is sufficiently close to f-zero-isocline. 

In unscaled form, this becomes: 
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(Eq. S3-25’). 

Case II-3.    
1 2

ˆ ˆ0 1 1S C SR t K   or  
1 1 1 2

0
S C S C S

R   .   

Similar to Case II-2, if Eq. S3-19 is satisfied, a typical trajectory is illustrated in Fig 3-FS4C 

where the trajectory is almost horizontal and 1Ĉ  increases to much greater than 1 before the 

system reaches the f-zero-isocline. ft  can then be estimated from how long it takes  ˆ 0SR  to 

increase to  
1 2

ˆ1 1 C SK . Using Eq. S3-7 and since 1Ĉ  is very large, 
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.  

This yields 
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   (Eq. S3-26). 

In the unscaled form, this becomes: 
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  (Eq. S3-26’). 

 

Case III: 
10 20r r  

In this case, supplier S1 always grows slower than S2. As t  , 2 1SR S S   and 

1 0C  . The phase portrait is separated into two parts by the f-zero-isocline (Fig 3-FS4E), 

where, as in Eq. S3-5, 
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Note that the asymptotic value of SR  (black dotted line, Fig 3-FS4, E-H) is  

 
1 1 1 21S C S C SR C          (Eq. S3-27). 

From Eq. S3-2, 0SdR dt  . From Eq. S3-1, below the f-zero-isocline, 1 0dC dt   and  

above the f-zero-isocline, 1 0dC dt  . Thus if the system starts from (0, (0))SR , the phase 

portrait dictates that it moves with a positive slope until a time of a scale 
f

t  when it hits the f-

zero-isocline, after which it moves upward to the left closely along the f-zero-isocline (Fig3-

FS4E). After 
f

t , the alternative pairwise model can be derived. Although 
f

t  is difficult to 

estimate in general, it is possible for the following cases.  

Case III-1. 
1 1 1 2

(0)S C S C SR    

Similar to the derivation in Case II-2, if 
10

S  is small, there is a lagging phase during which the 

trajectory rises steeply before leveling off (Fig 3-FS4H). Although the alternative pairwise model 

can be derived once the trajectory hits the f-zero-isocline, 
ft  takes a complicated form. Here we 

consider two cases where 
10

S  is large enough so that we can approximate the trajectory as a 

straight line going through (0, RS(t=0)) (Fig3-FS4, F, G). Graphically, 10S  is large enough so 
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that the green segment in Fig3-FS4F, whose length is  SR , is much smaller than (0)SR . In 

other words, 

1 2
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   .    

From Eqs. S3-1 and S3-2 
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And 
1 21( )C SC K , the red segment in Fig3-FS4F, is the horizontal distance between 

(0, (0))SR  and the f-zero-isocline and 
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or 
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,               (Eq. S3-28) 

from Eq. S3-2, 
f

t  can be calculated as 
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    (Eq. S3-29). 

Case III-2. 1 1 1 2
(0)S C S C SR  

  

If 10S  is large enough so that Eq. S3-28 is satisfied, a typical example is displayed in Fig3-

FS4G. The trajectory moves with a small positive slope so that the intersection of the community 
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dynamics trajectory with the f-zero-isocline is near the black dotted line 
1 1 1 2C S C S   (Eq. S3-

27) where 
1 21 C SC K  is large. 

f
t  can thus be estimated from Eq. S3-2: 
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which yields 
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     (Eq. S3-30). 

 

Conditions for the alternative pairwise model to approximate the mechanistic model 

 

Cases II and III showed that population dynamics of the mechanistic model could be described 

by the alternative pairwise model. However, since the initial condition for C1 cannot be specified 

in pairwise model, problems could occur. To illustrate, we examine the phase portrait of the 

pairwise equation 
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       (Eq. S3-6) 
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 . From Eqs. S3-6 and S3-1, 
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 (Eq. S3-31). 

Below, we plot Eq. S3-31 under different parameters (Fig 3-FS5) to reveal conditions for 

convergence between mechanistic and pairwise models. 

 Case II (
2 1 10 20 0S Cr r r   ): steady state RS* exists for mechanistic model.  

If 
2 1 1 2

1 0S C C SK K     (Fig 3-FS5A): When RS<RS*, SdR dt  is positive. When RS > 

RS*, SdR dt  is negative. Thus, wherever the initial RS, it will always converge toward the only 

steady state Rs* of the mechanistic model.  
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If 0   (Fig 3-FS5B): 0SR    or SR     creates singularity. Pairwise model RS 

will only converge toward the mechanistic model steady state if  

(0)SR        (Eq. S3-32). 

 Case III (
10 20r r ): RS increases exponentially in mechanistic model (Eq. S3-2). Thus, 

consumable C1 will decline toward zero as C1 is consumed by S2 whose relative abundance over 

S1 exponentially increases. Thus, from mechanistic model (Eq. S3-2), RS eventually increases 

exponentially at a rate of 20 10r r .  

If 0   (Fig 3-FS5C): Eq. S3-31 2 1

20 10

S CS
S

S

rdR
r r R

dt R 

 
     

>0. Thus, Eq. S3-31, which is 

based on alternative pairwise model, also predicts that Rs will eventually increase exponentially 

at a rate of 20 10r r , similar to the mechanistic model.  

If 0   (Fig 3-FS5D): (0)SR     (Eq. S3-32) is required for unbounded increase in RS 

(similar to the mechanistic model). Otherwise, RS converges to an erroneous value instead.  

 

Section 4. Conditions under which a pairwise model can represent one species 

influencing another via two reusable mediators.  

Here, we examine a simple case where S1 releases reusable C1 and C2, and C1 and C2 additively 

affect the growth of S2 (see example in Fig 4).    

The mechanistic model is: 
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 (Eq. S4-1). 

Now the question is whether the canonical pairwise model  
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can be a good approximation.  
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For simplicity, let’s define 
2 1 1 11 10C S C C SK K r   and 

2 2 12 10 2C S C C SK K r  . Small 

KCi means large potency (e.g. small 
2 2S CK  which means low C2 required to achieve half 

maximal effect on S2, and/or large synthesis rate 
12C S ). Since S1 from pairwise and 

mechanistic models are identical, we have  
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 (Eq. S4-2). 

D  can be close to zero when (i) 
C CK K1 2

 or (ii) 
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 and 
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r S

S K

2 2 1

1 2

(effects of C1 

and C2 on S2) differ dramatically in magnitude. For (ii), without loss of generality, suppose that 

the effect of C2 on S2 can be neglected. This can be achieved if (iia) S Cr
2 2

 is much smaller than 

2 1S Cr , or (iib)
CK 2

 is large compared to S1.  

 

Section 5. Multi-species pairwise model for an interaction chain. 

Without loss of generality, we consider an example where each step of an interaction chain is 

best represented by a different form of pairwise model. Suppose that S1 releases a reusable 

mediator C1 that promotes S2 and that S2 releases a consumable mediator C2 that promotes S3. 

The interaction mediated by C2 can be described by the alterative pairwise model. The 

corresponding community-pairwise model then will be: 

1
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      (Eq. S5-1). 

To see this, note that after a transient period of time, the mechanistic model of the three-species 

community is:  
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 (Eq. S5-2). 

Equations S5-2 and S5-1 are equivalent. 
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Figures 
 

 

Fig 1. The abstraction of interaction mechanisms in a pairwise model compared to a mechanistic 

model. 

(A) The mechanistic model (left) considers a bipartite network of species and chemical interaction 

mediators. A species can produce or consume chemicals (open arrowheads pointing towards and away 

from the chemical, respectively). A chemical mediator can positively or negatively influence the fitness of 
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its target species (filled arrowhead and bar, respectively). The corresponding pairwise model (right) 

includes only the fitness effects of species interactions, which can be positive (filled arrowhead), negative 

(bar), or zero (line terminus). (B) In the example here, species S1 releases chemical C1, and C1 is 

consumed by species S2 and promotes S2’s fitness. In the mechanistic model, the three equations 

respectively state that 1) S1 grows exponentially at a rate r10, 2) C1 is released by S1 at a rate 
1 1C S  and 

consumed by S2 with saturable kinetics, and 3) S2’s growth (basal fitness r20) is influenced by C1 in a 

saturable fashion. In the pairwise model here, the first equation is identical to that of the mechanistic 

model. The second equation is similar to the last equation of the mechanistic model except that r21 and K21 

together reflect how the density of S1 (S1) affects the fitness of S2 in a saturable fashion. For all 

parameters with double subscripts, the first subscript denotes the focal species or chemical, and the 

second subscript denotes the influencer. Note that unlike in mechanistic models, we have omitted “S” 

from subscripts in pairwise models (e.g. r21 instead of 
2 1S Sr ) for simplicity.   
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Fig 2. Deriving a pairwise model. 

(A) Analytically deriving a pairwise model from a mechanistic model allows us to uncover 

approximations required for such a transformation (top). Alternatively (bottom), through a “training 

window” of the mechanistic model population dynamics, we can numerically derive parameters for a pre-

selected pairwise model that best fits the mechanistic model. We then quantify how well such a pairwise 

model matches the mechanistic model under conditions different from those of the training window. (B) A 

mechanistic model of three species interacting via two chemicals (left) can be translated into a pairwise 

model of three interacting species (center). S1 inhibits S1 and promotes S2 (via C1). S2 promotes S2 and S3 

(via C2) as well as S1 (via removal of C1). S3 promotes S1 and inhibits S2 (via removal of C1 and C2, 

respectively). Take interactions between S2 and S3 for example: the saturable Lotka-Volterra pairwise 

model will require estimating ten parameters (colored, right), some of which (e.g. r33 in this case) may be 

zero. (C) In the numerical method, the six monoculture parameters (ri0, rii, and Kii, i=2, 3; green and red) 

are first estimated from training window T (within a dilution cycle) of monoculture mechanistic models. 

Subsequently, the four interaction parameters (rij and Kij, i j, olive) can be estimated from the training 
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window T of the S2 + S3 coculture mechanistic model. Parameter definitions are described in Fig 1. To 

estimate parameters, we use an optimization routine to minimize D , the fold-difference (shaded area) 

between dynamics from a pairwise model (dotted lines) and the mechanistic model (solid lines) averaged 

over T. In all simulations, to ensure that resources not involved in interactions are never limiting, a 

community is diluted back to its inoculation density when total population increases to a high-density 

threshold. Too frequent dilutions will allow only small changes in population dynamics within a dilution 

cycle or T, which is not suitable for estimating pairwise models. Too infrequent and large dilutions will 

cause large fluctuations in dynamics, which can sometimes violate conditions for deriving pairwise 

models (Fig 3-FS6; Fig 3-FS7). Under most cases we have tested, small variations in dilution frequency 

do not affect our conclusions. See Methods-Section 2 for relevant Matlab codes. 
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Fig 3. Interactions mediated via a single reusable or consumable mediator are best represented by 

different forms of pairwise models. 

S1 stimulates the growth of S2 via a reusable (A) or a consumable (B) chemical C1. In mechanistic models 

of the two cases, equations for S1 and S2 are identical but equations for C1 are different. In (A), C1 can be 

solved to yield 
1 1 1 1 1 1 1 11 10 10 10 10 10 10 1 10 10( ) exp( ) ( ) ( ) ( )C S C S C S C SC r S r t r S r S r S        assuming 

zero initial C1. We have approximated C1 by omitting the second term (valid after the initial transient 

response has passed so that C1 has become proportional to S1). This approximation allows an exact match 

between the canonical pairwise model (Fig 1B, right) and the mechanistic model (ii), and thus justifies the 

pairwise model. In (B), depending on the relative growth rates of the two species, and if additional 

requirements are satisfied (Methods-Section 3; Fig 3-FS7; Fig 3-FS8), canonical or alternative pairwise 

model should be used. Thus, depending on whether the mediator is consumed or reused, the most 

appropriate pairwise model (colored) takes different forms.  
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Fig 4. A pairwise model often fails when one species affects another via multiple reusable 

mediators. 

(A) One species can affect another species via two reusable mediators, each with a different potency KCi 

where KCi is 
2 110i iS C C SK r  (Methods-Section 4). A low KCi indicates a strong potency (e.g. high release 

of Ci by S1 or low Ci required to achieve half-maximal influence on S2). (B) Under what conditions can an 

interaction via two reusable mediators be approximated by a pairwise model? (C) Under restricted 

conditions, two reusable mediators can be consolidated into a single mediator. We can directly compute 

the best-fitting pairwise model parameters over a training window of T by minimizing D  (Methods-

Section 4, Eq. S4-2). Here, the difference D  between the two models over T =10 generations is plotted 

over a range of potencies KC1 and KC2. The canonical pairwise model is valid (blue regions indicating 

small difference) when KC1 ≈ KC2 or when one interaction is orders of magnitude stronger than the other 

interaction (Methods-Section 4). (D) A community where the canonical pairwise model is not valid. Here, 

KC1=103 and KC2=106. We estimate the best-fitting pairwise model by minimizing D  (Methods-Section 

4, Eq. S4-2) in three training windows (spanning 10 generations of growth for S1). At various S1, we 

calculate the fitness effect of S1 on S2 using the pairwise model and the mechanistic model (B). In two of 

the three training windows, the two models fail to match. In the training window with the lowest S1, the 

two models match because the effect of C2 is negligible in this range (KC2>>S1, condition iib in Methods-

Section 4). These mismatches mean that a pairwise model cannot consistently capture reference 

dynamics. Simulation parameters are listed in Fig 4-SD1.  
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Fig 5. Interaction chain but not interaction modification may be represented by multispecies 

pairwise model. 

We examine three-species communities engaging in indirect interactions. Each species pair is 

representable by a two-species pairwise model (purple in the right columns of B, D, and F). We then use 

these two-species pairwise models to construct a three-species pairwise model, and test how well it 

predicts the dynamics from mechanistic model. In B, D, and F, left panels show dynamics from the 

mechanistic models (solid lines) and three-species pairwise models (dotted lines). Right panels show the 

difference metric D calculated over population densities after taking dilution into consideration. (A-B) 

Interaction chain: S1 affects S2, and S2 affects S3. The two interactions employ independent mediators C1 

and C2, and both interactions can be represented by the canonical pairwise model. The three-species 

pairwise model matches the mechanistic model in this case. Simulation parameters are provided in Fig 5-

SD1. (C-F) Interaction modification. (C-D) S3 consumes C1, a mediator by which S1 stimulates S2. 

Parameters are listed in Fig 5-SD2. (E-F) S1 and S3 both supply C1 which stimulates S2. Simulation 

parameters are listed in Fig 5-SD3. In both interaction modification cases, the three-species pairwise 

model fails to predict reference dynamics.  
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Fig 6. Different levels of abstraction in mechanistic modeling. 

How one species (S1) may influence another (S2) can be mechanistically modeled at different levels of 

abstraction. For simplicity, here we assume that interaction strength scales in a linear (instead of 

saturable) fashion with respect to mediator concentration or species density. The basal fitness of S2 is 

zero. (A) In the simplest form, S1 stimulates S2 in a pairwise model. (B) In a mechanistic model, we may 

realize that S1 stimulates S2 via a mediator C which is consumed by S2. The corresponding mechanistic 

model is given. (C) Upon probing more deeply, it may become clear that S1 stimulates S2 via an enzyme 

E, where E degrades an abundant precursor (such as cellulose) to generate mediator C (such as glucose). 

In the corresponding mechanistic model, we may assume that E is released by S1 at a rate 
1ES  and 

that E liberates C at a rate 
CE . (D) If instead E is anchored on the cell surface (e.g. in cellulose 

degradation via cellulosome), then E is proportional to S1. If we substitute E into the second equation, 

then (B) and (D) become equivalent. Thus, when enzyme is anchored on cell surface but not when 

enzyme is released, the mechanistic knowledge of enzyme can be neglected.  
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Supplementary figures 

 

 

Fig 1-FS1. A pairwise model successfully predicts oscillations in population dynamics of the hare-

lynx prey-predator community.  

(A) In a pairwise model of prey-predation proposed by Lotka and Volterra, predator reduces the fitness of 

prey, while prey stimulates the fitness of predator. (B) Assuming random encounter between prey and 

predator, the pairwise model predicts oscillations in the prey and predator population sizes. (C) Similar 

oscillations have been qualitatively observed in natural populations of lynx and hare, providing support 

for the usefulness of pairwise modeling. Picture is reproduced from (“BiologyEOC - PopulationChanges” 

2016). 
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Fig 1-FS2. Chemical-mediated interactions commonly found in microbial communities. 

Interactions can be intra- or inter-population. Examples are meant to be illustrative instead of 

comprehensive.  
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Fig 3-FS1. For a reusable mediator, parameter estimation after acclimation time leads to a more 

accurate canonical pairwise model.  

(A) We use the mechanistic model for a reusable mediator to generate reference dynamics of S1, S2, and 

C1 over 150 generations of community growth. The basal fitness of S1 and S2 in pairwise models are 

identical to those in mechanistic models, and here rii or Kii (i = 1, 2) are irrelevant due to the lack of intra-

population interactions. We use every 10 community doublings of reference dynamics as training 

windows to numerically estimate best-matching canonical pairwise model parameters r21 and K21. Dashed 

and solid rectangles represent training windows before and after acclimation, respectively. Note that 

population fractions (instead of population densities) are plotted, which fluctuate less during dilutions 

compared to mediator concentration. (B) Pairwise model parameters estimated after acclimation (solid 

rectangle) match their analytically-derived counterparts (black dotted lines) better than those estimated 

before acclimation (dashed rectangle). (C) A pairwise model generated from population dynamics before 

acclimation (top) predicts future reference dynamics less accurately than that generated after acclimation 

(bottom). (D) Quantification of the difference between pairwise and mechanistic models before (dashed) 

or after (solid) acclimation. All parameters are listed in Fig 3-SD1.  
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Fig 3-FS2. A canonical pairwise model, but not the alternative pairwise model, is suitable for a 

consumable mediator that accumulates without reaching a steady state within each dilution cycle. 

In a commensal community, the consumable mediator C1 accumulates as the consumer S2 gradually goes 

extinct. Pairwise model parameters are estimated from the mechanistic model dynamics in the training 

window (magenta, between 50 and 60 generations). The canonical model (Fig 3A) shows dynamics 

(dotted) that match those of the mechanistic model (solid). As expected, the alternative pairwise model 

(dashed) fails. Thus, accumulating C1 can be regarded as a reusable mediator. Note that population 

fractions (instead of population densities) are plotted, which fluctuate less during dilutions compared to 

mediator concentration. All parameters are listed in Fig 3-SD2. 
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Fig 3-FS3. Interactions mediated by a consumable chemical that reaches a steady state can be 

represented by the alternative but not canonical pairwise model.  

Consider a commensal interaction where the consumable mediator reaches a non-zero steady state (Fig 

3B, Case II). We can directly compute from the mechanistic model the corresponding canonical pairwise 

model (similar to Fig 3B, ii): 2 1 2 12 1
20 2 2 20 2 2

2 1 2 1 1 21( )* ( )*

S C S Cr rdS S
r S S r S S

dt S S S S S K   
   

  
 

where K21 << S1 , and r21=
2 1

2 1( )*

S Cr

S S 
. (A) As expected, when the community starts at the steady 

state, both the canonical and the alternative pairwise models predict steady-state dynamics. (B and C) 

When the community does not start at the steady state, the canonical model falsely predicts the 

maintenance of initial ratios. The alternative model predicts a convergence to the steady state, similar to 

the mechanistic reference model. Note that population fractions (instead of population densities) are 

plotted, which fluctuate less during dilutions compared to mediator concentration. All parameters are 

listed in Fig 3-SD3.  
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Fig 3-FS4. Community trajectory approaching the f-zero-isocline allows us to use the 

alternative pairwise model approximation. 

S1 releases a consumable metabolite C1 which stimulates S2 growth. In all panels, brown circles indicate 

the C1 and RS (=S2/S1) of a community, and are separated by 1/4 of community doubling time. In the 

vicinity of the f-zero-isocline ( 0f  ) (blue line), C1 can be eliminated to yield a pairwise model. (A-D) 

When 
2 1 10 20 0S Cr r r    (Methods-Section 3, Case II), a steady state (green circle) exists. Let us scale 

RS and C1 against their respective steady state values to obtain ˆ
SR  and 1Ĉ . The f-zero-isocline and the 

steady state 1Ĉ =1 (vertical solid line) divide the phase portrait into four regions (  to ) (A). The 

directions of movement are marked by grey arrowheads. In Eq. S3-7, the right-hand side is zero when 1Ĉ

=1. Since    
2 1 2 11 1 1

ˆ ˆ ˆˆ ˆ1 1S C S CC C K K C    is an increasing function of 1Ĉ , when 1Ĉ >1,  

ˆ
SdR dt  > 0 (up arrows), and when 

1Ĉ <1, ˆ
SdR dt <0 (down arrows). From Eq. S3-8, above the f-zero-

isocline, 1
ˆdC dt <0 (left arrows), while below the f-zero-isocline, 1

ˆdC dt >0 (right arrows). Thus, the 

community moves toward the f-zero-isocline, and then moves slowly alongside (but not superimposing) 

the f-zero-isocline before reaching the steady state. A-C respectively describe community dynamics 

trajectories from C1 =0 when 
10

S  is large and when  SR ˆ 0 1  (Case II-2),    S C SR K
1 2

ˆ ˆ0 1 1  

(Case II-1), or    
1 2

ˆ ˆ0 1 1S C SR K  (Case II-3).  SR ˆ 0 1  in D but 
10

S  is much smaller than 

that in A. In this case, instead of approaching the f-zero-isocline quickly as in A, the trajectory plunge 

sharply before moving toward the f-zero-isocline. The black dotted line marks  
1 2

ˆ ˆ1 1S C SR K  , the 

asymptotic value of f-zero-isocline. (E-H) When 
10 20 0r r   (Methods-Section 3, Case III), there is 

no steady state. RS approaches infinity and C1 approaches 0. The black dotted line marks 

1 1 1 2S C S C SR   , the asymptotic value of f-zero-isocline. E, F, and G respectively describe 

community dynamics trajectories from C1 = 0 when 
10

S  is large and when 
S C S C SR  

1 1 1 2
(0) , 

1 1 1 2
(0)S C S C SR    (Case III-1), and 

1 1 1 2
(0)S C S C SR    (Case III-2). In D, 

1 1 1 2
(0)S C S C SR    

but 
10

S  is much smaller than that in F. Note different axis scales in different figure panels. All 

parameters are listed in Fig 3-SD4.  
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Fig 3-FS5. Condition for the alternative pairwise model to converge to mechanistic model. 

Here are the phase portraits of Eq. S3-31. The olive vertical dotted lines correspond to SR    , a 

singularity point when 𝝎 < 0. (A) Case II (
2 1 10 20 0S Cr r r   ), 𝝎 = 0.5, 𝝍 = 0.25. Regardless of 

initial RS, the solution converges to steady state (in agreement with the mechanistic model). (B) Case II, 

𝝎 = −1, 𝝍 = 1. When ( 0)SR t      (to the left of olive line), pairwise model falsely predicts 

extinction of S2. (C) Case III (
10 20r r ), 𝝎 = 0.8, 𝝍 = 0.1. Regardless of initial RS, the model predicts 

extinction of S1 (in agreement with the mechanistic model). (D) Case III (
10 20r r ), 𝝎 = −9, 𝝍 = 5. 

When ( 0)SR t      (to the left of olive line), pairwise model falsely predicts steady state 

coexistence of the two species. All parameters are listed in Fig 3-SD5. 
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Fig 3-FS6. The accuracy of parameter estimation for the alternative pairwise model is influenced by 

time of estimation and dilution schemes.  

We consider commensalism through a consumable mediator, where the producer (blue) and the consumer 

(green) eventually reach a steady state. We compare 1000-fold (A) and 10-fold (B) dilution steps to 

examine how fluctuations caused by dilutions affect parameter estimation. We use every 10 community 

doublings of reference dynamics as training windows to numerically estimate best-matching alternative 

pairwise model parameters. In (A), compared to (B), we see larger errors in estimating the interaction 

strength r21 compared to the true value (calculated from Fig 3B). In both (A) and (B), parameter 

estimations are less accurate if estimated before C1 has stabilized (rigorously speaking, before the 

community dynamics has approached the f-zero-isocline). Note that population fractions (instead of 

population densities) are plotted, which fluctuate less during dilutions compared to mediator 

concentration. All parameters are listed in Fig 3-SD6. 
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Fig 3-FS7. Dilutions may prevent a community from reaching the f-zero-isocline required for the 

alternative pairwise model.  

We consider commensalism through a consumable mediator, where the producer (blue) and the consumer 

(green) could reach a steady state (Methods-Section 3 Case II). We choose a low consumption rate such 

that starting from equal proportions of producers and consumers, consumption can be neglected. (A) If 

the dilution scheme is set in a way that it prevents the community from approaching the blue f-zero-

isocline (brown trajectory in the phase space of 1
Ĉ  and ˆ

S
R , the mediator concentration and population 

ratio normalized to their potential steady state values, respectively), the community may reach an 

alternate sustained cycle. (B) In this case, the population fractions can remain steady (blue and green), 

while the mediator concentration appears to accumulate steadily within each dilution cycle without 

reaching a steady state (black). (C) In fact, C1 appears to accumulate proportional to S1. (D) Since the 

community remains far from the f-zero-isocline, the use of the alternative pairwise model is not justified 

in this case. Instead, since the mediator concentration is proportional to the producer population size (C), 

the canonical pairwise model provides a better approximation. All parameters are listed in Fig 3-SD7. 
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Fig 3-FS8. Additional requirements for deriving a pairwise model from mechanistic model when S1 

affects S2 via a single consumable mediator C1 where 
1
(0) 0C  .   

For details, see Methods-Section 3. Here, 2 1SR S S . 
10

S , 
20

S , 
1

0( )C , and (0)SR  are the initial 

values of the respective variables. (A) The initial condition requirement for a pairwise model to converge 

to the mechanistic model. (B) The time scale required for convergence. Conditions on S10 are sufficient, 

but may not be necessary. 
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Fig 5-FS1. A multispecies pairwise model can work under special conditions. 

(A-B) As a control for Fig 5C, if S3 does not remove the mediator of interaction between S1 and S2, a 

three-species pairwise model accurately matches the mechanistic model. Simulation parameters are 

provided in Fig 5-SD4. (C-D) As a control for Fig 5E, we ensured that fitness effects from multiple 

species are additive. In this case, a three-species pairwise model can represent the mechanistic model. To 

ensure the linearity of fitness effects, we have used a larger value of half saturation concentration (

2 1S CK = 109 instead of 105 in Fig 5E-F). We have adjusted the interaction coefficient accordingly such 

that the overall interaction strength exerted by S1 and S3 on S2 is comparable to that in Fig 5E-F (as 

evident by comparable population compositions). Since the interaction influences under these conditions 

remain in the linear range, the three-species pairwise model accurately predicts the reference dynamics. 

Simulation parameters are provided in Fig 5-SD5. 
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