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Abstract 

Pairwise models are commonly used to describe many-species communities. In these models, the 

fitness of a species is additively affected by its pairwise interactions with every other species 

(“pairwise additivity assumption”), and all pairwise interactions are represented by a single 

canonical equation form (“universality assumption”). Here, we analyze the validity of pairwise 

modeling. We build mechanistic reference models for chemical-mediated interactions in microbial 

communities, and attempt to derive corresponding pairwise models. Even when one species affects 

another via a single chemical mediator, different forms of pairwise models are appropriate for 

consumable versus reusable mediators, with the wrong model producing qualitatively wrong 

predictions. For multi-mediator interactions, a canonical model becomes even less tenable. These 

results, combined with potential violation of the pairwise additivity assumption in communities of 

more than two species, suggest that although pairwise modeling can be useful, we should examine 

its validity before employing it. 

Introduction 

Multispecies microbial communities are ubiquitous. Microbial communities are important for 

industrial applications such as cheese and wine fermentation (van Hijum, Vaughan, and Vogel 

2013) and municipal waste treatment (Seghezzo et al. 1998). Microbial communities are also 

important for human health: they can modulate immune responses and food digestion (Round and 

Mazmanian 2009; Kau et al. 2011) or cause diseases (Kelly 1980).  

 

Community-level properties (e.g. species composition and biochemical activities) cannot be 

achieved, or achieved to the same extent, by individual members. Community-level properties are 

influenced by interactions wherein individuals alter the physiology of other individuals. To 

understand and predict properties of communities, choosing the appropriate mathematical model 

to describe species interactions is critical. 

 

Two commonly-used modeling approaches are mechanistic modeling and pairwise modeling, each 

with its pros and cons. In mechanistic modeling, interaction mechanisms are explicitly modeled 

(Fig 1A and B, left panels). Thus, a mechanistic model requires discovering and quantifying 

interaction mechanisms (Fig 1 Table, “parameter” rows under “Mech.” column). Such a 

mechanistic model can in principle quantitatively predict community dynamics when species 
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evolution is negligible. However, the complexity of microbial interactions and the difficulty in 

identifying and quantifying interactions have made it challenging to construct mechanistic models.  

 

In contrast to mechanistic modeling, pairwise modeling considers only the fitness effects of 

pairwise species interactions (Figs 1A and B, right panels). Pairwise models have two central 

assumptions. First, the “universality” assumption: how one species affects another can be 

abstracted into a single canonical equation form regardless of interaction mechanisms. Second, the 

“pairwise additivity” assumption: a focal individual receives additive fitness effects from pairwise 

interactions with other community members. Even though pairwise models do not capture the 

dynamics of chemical mediators, predicting species dynamics is still highly desirable in, for 

example, forecasting species diversity and compositional stability. 

 

Pairwise models are easy to construct because they do not require knowledge of interaction 

mechanisms and need fewer parameters than mechanistic models (Fig 1 table). Parameters are 

relatively easy to estimate using community dynamics (Stein et al. 2013), or more systematically, 

using dynamics of monocultures and pairwise cocultures (Fig 2C).  

 

Not surprisingly, pairwise modeling has been commonly applied to communities (Wootton and 

Emmerson 2005). Pairwise models are often justified by their success in predicting ecological 

dynamics of two-species communities of prey-predation (Fig 1-FS1) (Volterra 1926; Wangersky 

1978; “BiologyEOC - PopulationChanges” 2016) and competition (Gause 1934a; Gause 1934b). 

Pairwise modeling has been expanded to model communities of more than two species (defined as 

multispecies communities), with empirical support from, for example, an artificial community of 

four competing protozoa species (Vandermeer 1969). Multispecies pairwise models have been 

extensively used to predict how perturbations to steady-state species composition increase or 

decrease over time (May 1972; Cohen and Newman 1984; Pimm 1982; Thébault and Fontaine 

2010; Mougi and Kondoh 2012; Allesina and Tang 2012; Suweis et al. 2013; Coyte, Schluter, and 

Foster 2015). 

 

However, pairwise modeling has known limitations. For instance, in a multispecies community, 

an interaction between two species can be altered by a third species (Levine 1976; Tilman 1987; 

Wootton 2002; Werner and Peacor 2003; Stanton 2003). Indirect interactions via a third species 

fall under two categories (Wootton 1993). In an “interaction chain” (also known as “density-

mediated indirect interactions”), for example a carnivore affects the density of a herbivore which 

in turn affects the density of plants. In “interaction modification” (also known as “trait-mediated 

indirect interactions” or “higher order interactions” (Vandermeer 1969; Wootton 1994; Billick and 

Case 1994; Wootton 2002)), for example a carnivore affects how often a herbivore forages plants. 

Interaction modification (but not interaction chain) violates the pairwise additivity assumption (Fig 

1-Supplementary Text). Interaction modification is thought to be common in ecological 

communities (Werner and Peacor 2003; Schmitz, Krivan, and Ovadia 2004). Limitation of 
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pairwise modeling has also been studied experimentally (Dormann and Roxburgh 2005). However, 

empirically-observed failure of multispecies pairwise models could be due to limitations in data 

collection and analysis (Case and Bender 1981; Billick and Case 1994).  

 

Given the benefits and limitations and intellectual influences of pairwise modeling, we examine 

conditions under which pairwise models produce realistic predictions. Instead of investigating 

natural communities where interaction mechanisms can be difficult to identify, we start with in 

silico communities where species engage in predefined chemical interactions of the types 

commonly-encountered in microbial communities. Based on these interactions, we construct 

mechanistic models, and attempt to derive from them pairwise models. A mechanistic reference 

model offers several advantages: community dynamics is deterministically known; deriving a 

pairwise model is not limited by inaccuracy of experimental tools; and the flexibility in creating 

different reference models allows us to explore a variety of conditions. This has allowed us to 

examine the domain of validity for pairwise modeling. 

Results 

Establishing a mechanistic reference model 

In our mechanistic models (Fig 1A left), we focus on chemical interactions which are widespread 

in microbial communities (Fig1-FS2) (Stams 1994; Czárán, Hoekstra, and Pagie 2002; Duan et al. 

2009). A mechanistic model includes a set of species as well as chemicals that mediate interactions 

among species. A species Si could release or consume a chemical Cj, and chemical Cj could 

increase or decrease the growth rate of species Sk.  

 

We assume that fitness effects from different chemical mediators on a focal species are additive. 

Not making this assumption will likely violate the additivity assumption essential to pairwise 

modeling. Additive fitness effects have been observed for certain “homologous” metabolites. For 

example, in multi-substrate carbon-limited chemostats of E. coli, the fitness effects from glucose 

and galactose were additive (Lendenmann and Egli 1998). “Heterologous” metabolites (e.g. 

carbon and nitrogen sources) likely affect cell fitness in a multiplicative fashion. However, if 

released mediators cause small changes to the concentrations already in the environment, then 

additivity approximation may still be acceptable. For example, suppose that the fitness influences 

of released carbon and nitrogen with respect to those already in the environment are wc and wn, 

respectively. If wc, wn<<1, the additional relative fitness influence will be (1+wc)(1+wn)-1 ≈ wc+wn. 

“Sequential” metabolites (e.g. diauxic shift) affect cell fitness in a non-additive fashion. Even 

among homologous metabolites, fitness effects may be non-additive (Hermsen et al. 2015).  

 

We also assume that resources not involved in interactions are never limiting. We thus simulate 

continuous community growth similar to that in a turbidostat, diluting the total population to a low 
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density once it has reached a high-density threshold. Within a dilution cycle, a mechanistic model 

can be represented by a set of first-order differential equations, as 
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         (Eq 1).   

Si and Ci are state variables representing the concentrations of species Si and chemical Ci, 

respectively. ri0 is the basal fitness of an individual of species Si (the net growth rate of a single 

individual in the absence of any intra-species or inter-species interactions). 
i j

S C
r

 
reflects the 

maximal influence of chemical Cj on the growth rate of Si, while 
i j

S C
K  is the concentration of 

Cj achieving half maximal influence on the growth rate of Si. 
i j

C S
  and 

i j
C S

  are respectively 

the release rate and the maximum consumption rate of Ci by species Sj. 
i j

C S
K  is the Ci at which 

half maximal rate of consumption by Sj is achieved. All parameter definitions are summarized in 

Fig 1 table.  

Deriving a pairwise model 

Ideally we would want a canonical pairwise model to represent the fitness effect of one species on 

another regardless of interaction mechanisms. Specifically, the fitness of a focal species Si is the 

sum of its basal fitness ri0 and the additive fitness effects exerted by pairwise interactions with 

other members of the community. Mathematically, an N-species pairwise model is: 
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Here, ( )ij jf S  describes how Sj, the density of species Sj, positively or negatively affects the 

fitness of Si. The pairwise additivity assumption means that ( )ij jf S  is a linear or nonlinear 

function of only Sj and not of a third species. When j=i, ( )ii if S  represents intra-population 

density-dependent fitness effect on Si.  

 

( )ij jf S  can have several variations (Wangersky 1978): basic Lotka-Volterra, where the fitness 

influence of Sj on Si linearly increases with the abundance of Sj (Solé and Bascompte 2006); 

logistic Lotka-Volterra, which considers resource limitation by specifying a carrying capacity for 

each species (Thébault and Fontaine 2010; Mougi and Kondoh 2012); Lotka-Volterra with delayed 

influence, where the fitness influence of one species on another may lag in time (Gopalsamy 1992), 

and saturable Lotka-Volterra, where the fitness effect of Sj on Si saturates at high density of Sj 

(Thébault and Fontaine 2010). Since we model continuous growth which does not impose carrying 
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capacity and since chemical influence from one species to another is likely saturable, we have 

adopted the saturable Lotka-Volterra as our canonical pairwise model: 

0

ji
i ij i

j j ij

SdS
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dt S K
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Here, rij is the maximal positive or negative fitness effect of Sj on Si, and Kij is the Sj exerting half 

maximal fitness influence on Si (parameter definition in Fig 1 table). When j=i, nonzero rii and Kii 

reflect density-dependent growth effect in Si (e.g. inhibition or stimulation of g rowth at high cell 

densities). 

 

From a mechanistic model, we derive a pairwise model either analytically or numerically (Fig 2A). 

In the latter case (Fig 2B-C), we should already have a pre-specified pairwise model (e.g. the 

canonical pairwise model) in mind. We then use the mechanistic model dynamics of monocultures 

and pairwise cocultures to find parameters that minimize the difference between the two models 

in a training time window T. Specifically, we define a distance measure D  as the fold-difference 

between the dynamics from the two models, averaged over a time interval  and species number 

N (Fig 2C): 
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where Si,pair and Si,mech are Si calculated using pairwise and mechanistic models, respectively. Since 

species with densities below a set extinction limit, Sext, are assumed to have gone extinct in the 

model, we set all densities below the extinction limit to Sext in calculating D  to avoid 

singularities. Within the training window T, minimizing D  using a nonlinear least square routine 

yields parameters of the best-matching pairwise model. We then use D  outside the training 

window to quantify how well the best-matching pairwise model predicts the mechanistic model. 

Reusable and consumable mediators are best represented by different forms of pairwise 

models 

To build a pairwise model, we must accurately represent the fitness influence of one species on 

another (rij and Kij). Even though this basic process seems straightforward as outlined in Fig 2, in 

practice, challenges may arise. For example, identifying the set of best-matching parameters for 

nonlinear functions may not be straightforward, and measurement errors further hamper parameter 

estimation. Partly due to these challenges, studies on deriving pairwise model parameters for a 

given community are scarce (Pascual and Kareiva 1996; Stein et al. 2013), despite the popularity 

of pairwise models. In this section, we analytically derive pairwise models from mechanistic 

models of two-species communities where one species affects the other species through a single 

mediator. The mediator is either reusable such as signaling molecules in quorum sensing (Duan et 

al. 2009; N.S. Jakubovics 2010) or consumable such as metabolites (Stams 1994; Freilich et al. 

2011). We show that a single canonical pairwise model may not encompass these different 

interaction mechanisms. 
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Consider a commensal community where species S1 stimulates the growth of species S2 by 

producing a reusable (Fig 3A) or a consumable chemical C1 (Fig 3B). When C1 is reusable, the 

mechanistic model can be transformed into a pairwise model (Fig 3A), provided that the 

concentration of the mediator (which is initially zero) has acclimated to be proportional to the 

producer population size (Fig 3A; Fig3-FS1). This pairwise model takes the canonical form 

(compare with Fig 1B right). Thus, the canonical pairwise model is appropriate, regardless of 

whether the producer coexists with the consumer, outcompetes the consumer, or is outcompeted 

by the consumer. 

 

If C1 is consumable, different scenarios are possible: when C1 is consumed slowly compared to 

production, it will accumulate within each dilution cycle without plateauing to a steady state (Fig 

3-FS2 left panel, similar to a reusable mediator in Fig3-FS1A). In this case, C1 may be 

approximated as a reusable mediator and can be predicted by the canonical pairwise model (Fig 3-

FS2 right panel, compare dotted and solid lines). We will henceforward classify these 

accumulating consumable mediators also as reusable.  

 

If within each dilution cycle after an initial period of time, C1 approximately reaches a steady state 

(i.e., dC1/dt ~ 0; Fig3-FS3), we can mathematically eliminate C1. The resultant equation below 

differs from the canonical pairwise model:  

2 1
20 2 2

1 2

dS S
r S S

dt S S 
 


      (Eq 5) 

where ω and ψ are constants (Fig 3B-ii; Fig 3-Supplementary Text (a)). This alternative pairwise 

model computed from the mechanistic model predicts community dynamics reasonably well, even 

if the initial species composition is not at steady state (Fig 3-FS3, compare dashed and solid lines). 

To estimate parameters of the alternative pairwise model, acclimation time to reach steady state is 

required (Fig 3-FS4 bottom panels, less accurate estimation of r21 compared to analytically 

calculated ranalyt before reaching steady state). Moreover, a gentler dilution scheme better fulfills 

the steady state approximation, and therefore leads to a closer match between the estimated and 

analytically calculated parameter values (Fig 3-FS4). The alternative pairwise model, suitable for 

steady state C1, is not predictive of community dynamics where C1 accumulates without reaching 

a steady state (Fig 3-FS2, compare dashed and solid lines). 

 

An interaction mediated by a consumable mediator that reaches steady state usually cannot be 

described by a canonical model (Fig 3-Supplementary Text (b)). This is because parameters 

estimated at the steady state can predict steady state (Fig 3-FS3A), but not when initial species 

ratios differ from the steady state ratio (Fig 3-FS3B and C, compare dotted with solid lines). In 

contrast, the alternative model (Fig 3-FS3, dashed lines) provides a much better approximation. 
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The alternative model can be further simplified if additionally, the half-saturation constant K for 

C1 consumption (
1 2C SK ) is identical to that for C1’s influence on the growth of consumer (

2 1S CK ) 

(the “K assumption”), so long as S2>0 (Fig 3B-iii). This equation form has precedence in the 

literature (e.g. (Mougi and Kondoh 2012)), where the interaction strength r21 reflects the fact that 

the consumable mediator from S1 is divided among consumer S2.  

 

If C1 is consumable but eventually declines to zero concentration (e.g. when consumer 

outcompetes producer), then estimating the interaction coefficient r21 for the canonical or the 

alternative pairwise model can be difficult (Fig 3-FS5). 

 

We have shown here that even when one species affects another species via a single mediator, 

depending on whether the mediator is reusable or consumable and whether it accumulates or 

reaches a steady state, a canonical or an alternative form of pairwise model is appropriate. Neither 

model is effective when the consumable mediator concentration declines to zero, although this 

problem could be mitigated by setting up the measurements properly. Considering that reusable 

and consumable mediators are both common, our results call for revisiting the universality 

assumption of pairwise modeling. 

Multi-mediator interactions require pairwise models different from single-mediator 

interactions  

A species often affects another species via multiple mediators (Kato et al. 2008; Traxler et al. 2013; 

Kim, Lee, and Ryu 2013). For example, a subpopulation from one species might die and release 

numerous chemicals that can affect another species in different ways. Here we examine cases 

where S1 releases two chemicals C1 and C2 which additively affect the growth of S2 (Fig 4). We 

ask when two mediators can mathematically be regarded as one mediator (to facilitate further 

abstraction into a pairwise model) and how multi-mediator interactions affect pairwise modeling. 

 

When both mediators are reusable (Fig 4-Supplementary Text), their combined effect (

2 1 2 2

2 1 1 1 2 2 2 1

1 1

1 10 1 10/ /

S C S C

S C C S S C C S

r S r S

S K r S K r 


 
) generally cannot be modeled as a single mediator 

except under special conditions (Fig 4). These special conditions include: (1) mediators share 

similar “potency” (Fig 4C, diagonal), or (2) one mediator has much stronger “potency” than the 

other (i.e. one mediator dominates the interaction; note the log scale in Fig 4C).  

 

When both mediators are consumable and eventually reach steady state, the interaction term 

becomes 

1 1 2 2

1 1

1 2 1 2C C C C

S S

S S S S   


 
. Except under special conditions (e.g. when both 

mediators satisfy the K assumption in Fig 3B-iii, or when 
1 2 1 2C C C C    , or when one 

mediator dominates the interaction), the two mediators may not be regarded as one. Similarly, 
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when one mediator is a steady-state consumable and the other is reusable, they generally may not 

be regarded as a single mediator and would require yet a different pairwise model with more 

degrees of freedom (with the interaction term 2 2

1 1 2 2 2 1

11

1 2 1 10 /

S C

C C S C C S

r SS

S S S K r  


 
). All these 

forms deviate from the canonical form.  

  

In summary, when S1 influences S2 through multiple mediators, rarely can we approximate them 

as a single mediator. Multiple mediators generally make equations of pairwise modeling more 

complex than single mediators, casting further doubt on the usefulness of a universal form for all 

community interactions. 

A multispecies pairwise model can work for interaction chains but generally not for 

interaction modifications  

For a community with more than two species, can we construct a multispecies pairwise model 

from two-species pairwise models? The answer is yes for an interaction chain mediated by 

chemicals (Fig 5A), so long as mediators between different species pairs are independent and each 

species pair can be represented by a pairwise model. The equation form of the multispecies 

pairwise model can vary, depending on whether the mediator is consumable or reusable (Fig 5-

Supplementary Text).  

 

As known from previous work (Fig 1-Supplementary Text), interaction modification can cause a 

multispecies pairwise model to fail. For example, S1 releases C1 which stimulates S2 growth; C1 

is consumed by S3 and stimulates S3 growth (Fig 5C). Here, the presence of S3 changes the strength 

of interaction between S1 and S2, an example of interaction modification. Viewing this differently, 

S1 changes the nature of interactions between S2 and S3: S2 and S3 do not interact in the absence 

of S1, but S3 inhibits S2 in the presence of S1. This causes pairwise modeling to make qualitatively 

wrong conclusions about species persistence (Fig 5D). As expected, if S3 does not remove C1, the 

three-species pairwise model works (Fig 5-FS1, A-B). 

 

Interaction modification can occur even in communities where no species changes “the nature of 

interactions” between any other two species (Fig 5E). Here, both S1 and S3 contribute reusable C1 

to stimulate S2. S1 promotes S2 regardless of S3; S3 promotes S2 regardless of S1; S1 and S3 do not 

interact regardless of S2. However, a multispecies pairwise model assumes that the fitness effects 

from the two producers on S2 will be additive, whereas in reality, the fitness effect on S2 saturates 

at high C1. As a result, even though the dynamics of each species pair can be represented by a 

pairwise model (Fig 5F right, purple), the three-species pairwise model fails to capture community 

dynamics (Fig 5F). Thus, the nonlinearity in how a mediator affects a species can also violate the 

additivity assumption of a pairwise model. As expected, if C1 affects S2 in a linear fashion, the 

community dynamics is accurately captured in the multispecies pairwise model (Fig 5-FS1, C-D).  
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In summary, for chemical-mediated indirect interactions, a multispecies pairwise model can work 

for the interaction chain category but generally not the mediator modification category.  

Discussion 
Multispecies pairwise models are widely used in theoretical research due to their simplicity. In 

two-species interactions such as prey-predation based on contact-dependent inhibition (instead of 

diffusible chemical mediators), Lotka-Volterra pairwise models can in fact be the mechanistic 

representation of interactions and thus predictive of community dynamics (Fig 1-FS1). The 

inadequacy of multispecies pairwise models has been discussed theoretically (Wootton 2002; 

Wootton and Emmerson 2005) and empirically (Case and Bender 1981; Dormann and Roxburgh 

2005; Aschehoug and Callaway 2015), although the reasons for model failures in explaining 

experimental results are often unclear (Billick and Case 1994).  

 

Here, we have considered the validity of pairwise models in well-mixed two- and three-species 

communities where all species interactions in a community are known and thus community 

dynamics can be described by a mechanistic reference model. We have focused on chemical-

mediated interactions commonly encountered in microbial communities (Fig 1-FS2) (Kato et al. 

2005; Gause 1934a; Ghuysen 1991; Nicholas S Jakubovics et al. 2008; Chen et al. 2004; D’Onofrio 

et al. 2010; Johnson et al. 1982; Hamilton and Ng 1983). To favor the odds of successful pairwise 

modeling, we have also assumed that different chemical mediators exert additive fitness effects on 

a target species. 

 

What are the conditions under which the influence of one species on another can be represented 

by a canonical two-species pairwise model (the universality assumption)? When an interaction 

employs a single mediator, then a canonical saturable pairwise model (Fig 1B) will work for a 

reusable mediator (Fig 3A) but generally not for a consumable mediator that fails to accumulate 

throughout each dilution cycle (Fig 3 Supplement Text (b); Fig 3-FS5). Instead, an alternative 

pairwise model is suited for a consumable mediator that reaches steady state (Fig 3B, Fig                                                                                         

3-FS3). If one species influences another through multiple mediators, then in general, these 

mediators may not be regarded as a single mediator and conditions for a working canonical 

pairwise model become even more restrictive (Fig 4 and Fig 4-Supplementary Text).  

 

In communities of more than two species, indirect interactions via a third species can occur. For 

indirect interactions via interaction chain, as long as each two-species segment of the chain 

engages in independent interactions and can be represented by a pairwise model, then multispecies 

pairwise models will generally work (Figs 5A-B, Fig 5-Supplementary Text). However, depending 

on whether each mediator is reusable or not, equation forms will vary. For indirect interactions via 

interaction modification (higher-order interactions), even if each species pair can be accurately 

represented by a pairwise model, a multispecies pairwise model may fail (Fig 5, C-F). Interaction 

modification includes trait modification (Wootton 2002; Werner and Peacor 2003; Schmitz, 
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Krivan, and Ovadia 2004), or, in our cases, mediator modification. Mediator modification is very 

common in microbial communities. For example, antibiotic released by one species to inhibit 

another species may be inactivated by a third species, and this type of indirect interactions can 

stabilize microbial communities (Kelsic et al. 2015). Moreover, interaction mediators are often 

shared among multiple species. For example in oral biofilms, organic acids such as lactic acid are 

generated from carbohydrate fermentation by many species (Bradshaw et al. 1994; Marsh and 

Bradshaw 1997; Kuramitsu et al. 2007). Such by-products are also consumed by multiple species 

(Kolenbrander 2000).  

 

Pairwise modeling (or variations of it) still has its uses when simulating a particular community 

phenomenologically. One can even imagine that an extended pairwise model (e.g. 

2 1
20 2 2

1 2

dS S
r S S

dt S S  
 

 
) embodying both the canonical form and the alternative form 

(Fig 3) can serve as a general-purpose model for pairwise interactions via a single mediator. Even 

the effects of indirect interactions may be quantified and included in the model by incorporating 

higher-order interaction terms (Case and Bender 1981; Worthen and Moore 1991), although many 

challenges will need to be overcome (Wootton 2002). In the end, although these strategies may 

lead to a sufficiently accurate phenomenological model for specific cases, “one-form-fitting-all” 

may generate erroneous predictions when modeling different communities. 

 

How much information about interaction mechanisms do we need to construct a mechanistic 

model? That is, what is the proper level of abstraction which captures the phenomena of interest, 

yet avoids unnecessary details (Levins 1966; Durrett and Levin 1994; Damore and Gore 2012)? 

Tilman argued that if a small number of mechanisms (e.g. the “axes of trade-offs” in species’ 

physiological, morphological, or behavioral traits) could explain much of the observed pattern (e.g. 

species coexistence), then this abstraction would be highly revealing (Tilman 1987). However, the 

choice of abstraction is often not obvious. Consider for example a commensal community where 

S1 grows exponentially (not explicitly depicted in equations in Fig 6) and the growth rate of S2, 

which is normally zero, is promoted by mediator C from S1 in a linear fashion (Fig 6). If we do 

not know how S1 stimulates S2, we can still construct a pairwise model (Fig 6A). If we know the 

identity of mediator C and realize that C is consumable, then we can instead construct a 

mechanistic model incorporating C (Fig 6B). However, if C is produced from a precursor via an 

enzyme E released by S1, then we get a different form of mechanistic model (Fig 6C). If, on the 

other hand, E is anchored on the membrane of S1 and each cell expresses a similar amount of E, 

then equations in Fig 6D are mathematically equivalent to Fig 6B. This simple example, inspired 

by extracellular breakdown of cellulose into a consumable sugar C (Bayer and Lamed 1986; Felix 

and Ljungdahl 1993; Schwarz 2001)), illustrates how knowledge of mechanisms may eventually 

help us determine the right level of abstraction. 
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In summary, under certain circumstances, we may already know that interaction mechanisms fall 

within the domain of validity for a pairwise model. In these cases, pairwise modeling provides the 

appropriate level of abstraction, and constructing a pairwise model can be far easier than measuring 

the many parameters required by a mechanistic model. However, if we do not know whether 

pairwise modeling is valid, we will need to be cautious about indiscriminative use of pairwise 

models since they can fail to even qualitatively capture community dynamics (e.g. Fig3-FS2, Fig3-

FS3, Fig 5C-F). We will need to be equally careful in extrapolating and generalizing conclusions 

obtained from pairwise models. Considering recent advances in identifying and quantifying 

interactions, we advocate a transition to models that incorporate interaction mechanisms at the 

appropriate level of abstraction.  

Methods 
Simulations are based on Matlab® and executed on an ordinary PC. The following list describes 

the m-files used for different steps of the analysis: 

File name Function 

FitCost_BasalFitness 

 
Calculates the cost function for monocultures (i.e. the 

difference between the target dynamics and the dynamics 

obtained from the pairwise model) 

Fitcost_BFSatLV.m Calculates the cost function for communities (i.e. the 

difference between the target dynamics and the dynamics 

obtained from the pairwise model) 

DynamicsMM_WM_MonocultureDpMM.m Returns the dynamics of growth for monocultures, based on 

the mechanistic model 
DynamicsMM_WM_NetworkDpMM.m Returns the dynamics of growth for communities of 

multiple species, based on the mechanistic model 
DynamicsWM_NetworkBFSatLV.m Returns the dynamics of growth for communities of 

multiple species, based on the canonical pairwise model 
DynamicsWM_NetworkBFSatLV_Dp.m Returns the dynamics of growth for communities of 

multiple species, based on the alternative pairwise model 
DeriveBasalFitnessMM_WM_DpMM.m Estimates the basal fitness of species by finding the model 

parameters of monocultures that best fit the dynamics 

obtained from the mechanistic model  

DeriveBFSatLVMM_WM_DpMM.m Estimates the interaction strengths by finding the canonical 

pairwise model parameters of communities that best fit the 

dynamics obtained from the mechanistic model 
DeriveBFSatLVMM_WM_DpMM_Dp.m Estimates the interaction strengths by finding the alternative 

pairwise model parameters of communities that best fit the 

dynamics obtained from the mechanistic model 
DeriveBFSatLVMM_WM_DpMM_r21.m Estimates r21 and K21 of a canonical pairwise model to best 

fit the dynamics obtained from the mechanistic model (used 

in cases where we know only S2 is affected by S1 to 

accelerate the optimization) 
DeriveBFSatLVMM_WM_DpMM_Dp_r21.m Estimates r21 of an alternative pairwise model to best fit the 

dynamics obtained from the mechanistic model (used in 
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cases where we know only S2 is affected by S1 to accelerate 

the optimization) 

 

Fitting is performed using nonlinear least square (lsqnonlin routine) with default optimization 

parameters. 

Steps: 

1. Fit monoculture data to find ri0, rii, and Kii  

2. Fit coculture data with pairs to find rij, rji, and Kij and Kji 

3. Calculate distance between population dynamics of the reference mechanistic model and 

the approximate pairwise model over several generations outside of the training window 

to assess if the pairwise model is predictive 
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Figures 
 

 

Fig 1. The abstraction of interaction mechanisms in a pairwise model compared to a mechanistic 

model. 

(A) The mechanistic model (left) considers a bipartite network of species and chemical interaction 

mediators. A species can produce or consume chemicals (open arrowheads pointing towards and away from 

the chemical, respectively). A chemical mediator can positively or negatively influence the fitness of its 

target species (filled arrowhead and bar, respectively). The corresponding pairwise model (right) includes 

only the fitness effects of species on themselves and other species, which can be positive (filled arrowhead), 

negative (bar), or zero (line terminus). (B) In the example here, species S1 releases chemical C1, and C1 is 

consumed by species S2 and promotes S2’s fitness. In the mechanistic model, the three equations 

respectively state that 1) S1 grows exponentially at a rate r10, 2) C1 is released by S1 at a rate 
1 1C S  and 
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consumed by S2 with saturable kinetics, and 3) S2’s growth (basal fitness r20) is influenced by C1 in a 

saturable fashion. In the pairwise model here, the first equation is identical to that of the mechanistic model. 

The second equation is similar to the last equation of the mechanistic model except that r21 and K21 together 

reflect how the density of S1 (S1) affects the fitness of S2 in a saturable fashion. For all parameters with 

double subscripts, the first subscript denotes the focal species or chemical, and the second subscript denotes 

the influencer. Note that unlike in mechanistic models, we have omitted “S” from subscripts in pairwise 

models (e.g. r21 instead of 
2 1S Sr ) for simplicity.   
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Fig 2. Deriving a pairwise model. 

(A) Analytically deriving a pairwise model from a mechanistic model allows us to uncover approximations 

required for such a transformation (top). Alternatively (bottom), through a “training window” of the 

mechanistic model population dynamics, we can numerically derive parameters for a pre-selected pairwise 

model that best fits the mechanistic model. We then quantify how well such a pairwise model matches the 

mechanistic model under conditions different from those of the training window. (B) A mechanistic model 

of three species interacting via two chemicals (left) can be translated into a pairwise model of three 

interacting species (center). S1 inhibits S1 and promotes S2 (via C1). S2 promotes S2 and S3 (via C2) as well 

as S1 (via removal of C1). S3 promotes S1 and inhibits S2 (via removal of C1 and C2, respectively). Take 

interactions between S2 and S3 for example: the saturable Lotka-Volterra pairwise model will require 

estimating ten parameters (colored, right), some of which (e.g. r33 in this case) may be zero. (C) In the 

numerical method, the six monoculture parameters (ri0, rii, and Kii, i=2, 3; green and red) are first estimated 

from training window T (within a dilution cycle) of monoculture mechanistic models. Subsequently, the 

four parameters representing interspecies interactions (rij and Kij, i j, olive) can be estimated from the 
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training window T of the S2 + S3 coculture mechanistic model. Parameter definitions are described in Fig 

1. In all simulations, to ensure that resources not involved in interactions are never limiting, a community 

is diluted back to its inoculation density when total population increases to a high-density threshold. To 

estimate parameters, we use an optimization routine to minimize D , the fold-difference (shaded area) 

between dynamics from a pairwise model (dotted lines) and the mechanistic model (solid lines) averaged 

over T. Too frequent dilutions will allow only small changes in population dynamics within a dilution cycle 

or T, which is not suitable for estimating pairwise models. Too infrequent dilutions will cause large 

fluctuations in dynamics, which is not ideal for pairwise models based on steady-state assumptions (Fig 3-

FS4). Under most cases, dilution frequency does not affect our conclusions.   
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Fig 3. Interactions mediated via a single reusable or consumable mediator are best represented by 

different forms of pairwise models. 

S1 stimulates the growth of S2 via a reusable (A) or a consumable (B) chemical C1. In mechanistic models 

of the two cases, equations for S1 and S2 are identical but equations for C1 are different. In (A), C1 can be 

solved to yield 
1 1 1 1 1 1 1 11 10 10 10 10 10 10 1 10 10( ) exp( ) ( ) ( ) ( )C S C S C S C SC r S r t r S r S r S        

assuming zero initial C1. We have approximated C1 by omitting the second term (valid after the initial 

transient response has passed so that C1 has become proportional to S1). This approximation allows an exact 

match between the canonical pairwise model (Fig 1B right) and the mechanistic model (ii), and thus justifies 

the pairwise model. In (B), assuming quasi-steady state C1 (negligible 
1

dC dt ), we can solve and 

eliminate C1 (ii). Assuming that 
1 2C S

K  (C1 for half maximal consumption rate by S2) is identical to 

2 1S C
K  (C1 for half maximal stimulation of S2 growth) and S2>0, we can further simplify the pairwise 

model (iii). Thus, depending on whether the mediator is consumed or reused, the most appropriate pairwise 

model (colored) takes different forms. Pairwise model parameters (r21 and K21) are marked within grey 

boxes. 
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Fig 4. A pairwise model often fails when one species affects another via multiple reusable 

mediators. 

(A) One species can affect another species via two reusable mediators, each with a different potency KCi 

where KCi is 
2 110i iS C C SK r  (Fig 4-Supplementary Text). A low KCi indicates a strong potency (e.g. high 

release of Ci by S1 or low Ci required to achieve half-maximal influence on S2). (B) Under what conditions 

can an interaction via two reusable mediators be approximated by a pairwise model? (C) Under restricted 

conditions, two reusable mediators can be consolidated into a single mediator. We can directly compute the 

best-fitting pairwise model parameters over a training window of T by minimizing D  (Fig 4-

Supplementary Text, Eq 4S-2). Here, the difference D  between the two models over T =10 generations 

is plotted over a range of potencies KC1 and KC2. Using the canonical pairwise model is valid (blue regions 

indicating small difference) when KC1 ≈ KC2 or when one interaction is orders of magnitude stronger than 

the other interaction (Fig 4-Supplementary Text). (D) A community where the canonical pairwise model is 

not valid. Here, KC1=103 and KC2=106. We estimate the best-fitting pairwise model by minimizing D  (Fig 

4-Supplementary Text, Eq 4S-2) in three training windows (spanning 10 generations of growth for S1). At 

various S1, we calculate the fitness effect of S1 on S2 using the pairwise model and the mechanistic model 

(B). In two of the three training windows, the two models fail to match. In the training window with the 

lowest S1, the two models match because the effect of C2 is negligible in this range (KC2>>S1, condition iib 

in Fig 4-Supplementary Text). These mismatches mean that a pairwise model cannot consistently capture 

reference dynamics. Simulation parameters are listed in Fig 4-SD1.  
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Fig 5. Interaction chain but not interaction modification may be represented by a pairwise model. 

We examine three-species communities engaging in indirect interactions. Each species pair is representable 

by a two-species pairwise model (purple in the right columns of B, D, and F). We then use these two-species 

pairwise models to construct a three-species pairwise model, and test how well it predicts the dynamics 

from mechanistic model. In B, D, and F, left panels show dynamics from the mechanistic models (solid 

lines) and three-species pairwise models (dotted lines). Right panels show the difference metric D

calculated over population densities after taking dilution into consideration. (A-B) Interaction chain: S1 

affects S2, and S2 affects S3. The two interactions employ independent mediators C1 and C2, and both 

interactions can be represented by the canonical pairwise model. The three-species pairwise model matches 

the mechanistic model in this case. Simulation parameters are provided in Fig 5-SD1. (C-F) Interaction 

modification. (C-D) S3 consumes C1, a mediator of interaction exerted on S2 by S1. Parameters are listed in 

Fig 5-SD2. (E-F) S1 and S3 both supply C1 which stimulates S2. Simulation parameters are listed in Fig 5-

SD3. In both interaction modification cases, the three-species pairwise model fails to predict reference 

dynamics.  
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Fig 6. Different levels of abstraction in mechanistic modeling. 

How one species (S1) may influence another (S2) can be mechanistically modeled at different levels of 

abstraction. For simplicity, here we assume that interaction strength scales in a linear (instead of saturable) 

fashion with respect to mediator concentration or species density. The basal fitness of S2 is zero. (A) In the 

simplest form, S1 stimulates S2 in a pairwise model. (B) In a mechanistic model, we may realize that S1 

stimulates S2 via a mediator C which is consumed by S2. The corresponding mechanistic model is given. 

(C) Upon probing more deeply, it may become clear that S1 stimulates S2 via an enzyme E, where E 

degrades an abundant precursor (such as cellulose) to generate mediator C (such as glucose). In the 

corresponding mechanistic model, we may assume that E is released by S1 at a rate 
1ES  and that E 

liberates C at a rate CE . (D) If instead E is anchored on the cell surface (e.g. in cellulose degradation via 

cellulosome), then E is proportional to S1. If we substitute E into the second equation, then (B) and (D) 

become equivalent. Thus, when enzyme is anchored on cell surface but not when enzyme is released, the 

mechanistic knowledge of enzyme can be neglected.  
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Supplementary figures 

 

 

Fig 1-FS1. A pairwise model successfully predicts oscillations in population dynamics of the hare-

lynx prey-predator community.  

(A) In a pairwise model of prey-predation proposed by Lotka and Volterra, predator reduces the fitness of 

prey, while prey stimulates the fitness of predator. (B) Assuming random encounter between prey and 

predator, the pairwise model predicts oscillations in the prey and predator population sizes. (C) Similar 

oscillations have been qualitatively observed in natural populations of lynx and hare, providing support for 

the usefulness of pairwise modeling. Picture is reproduced from (“BiologyEOC - PopulationChanges” 

2016). 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 27, 2016. ; https://doi.org/10.1101/060988doi: bioRxiv preprint 

https://doi.org/10.1101/060988


26 

 

Fig 1-Supplementary Text. Interaction modification but not interaction chain violates the 

pairwise additivity assumption  

In a pairwise model, the fitness of a focal species Si is the sum of its “basal fitness” (ri0, the net 

growth rate of a single individual in the absence of any intra-species or inter-species interactions) 

and the additive fitness effects exerted by pairwise interactions with other members of the 

community. Mathematically, an N-species pairwise model is often formulated as 

0
1

( )
N

i
i ij j i

j

dS
r f S S

dt


 
  
 
 

      (Eq S1-1; Eq 2 in the main text). 

Here, ( )ij jf S  describes how Sj, the density of species Sj, positively or negatively affects the 

fitness of Si, and is a linear or nonlinear function of only Sj and not of a third species.  

 

Indirect interactions via a third species fall under two categories (Wootton 1993). The first type is 

known as “interaction chain” or “density-mediated indirect interactions”. For example, the 

consumption of plant S1 by herbivore S2 is reduced when the density of herbivore is reduced by 

carnivore S3. In this case, the three-species pairwise model 
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      (Eq S1-2) 

does not violate the pairwise additivity assumption (Case and Bender 1981; Wootton 1994) 

(compare with Eq S1-1).  

 

The second type of indirect interactions is known as “interaction modification” or “trait-mediated 

indirect interactions” or “higher order interactions” (Vandermeer 1969; Wootton 1994; Billick and 

Case 1994; Wootton 2002), where a third species modifies the “nature of interaction” from one 

species to another (Wootton 2002; Werner and Peacor 2003; Schmitz, Krivan, and Ovadia 2004). 

For example, when carnivore is present, herbivore will spend less time foraging and consequently 

plant density increases. In this case, f12 in Eq S1-2 is a function of both S2 and S3, violating the 

pairwise additivity assumption.  
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Fig 1-FS2. Chemical-mediated interactions commonly found in microbial communities. 

Interactions can be intra- or inter-population. Examples are meant to be illustrative instead of 

comprehensive.  
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Fig 3-FS1. For a reusable mediator, parameter estimation after acclimation time leads to a more 

accurate canonical pairwise model.  

(A) We use the mechanistic model for a reusable mediator to generate reference dynamics of S1, S2, and C1 

over 150 generations of community growth. The basal fitness of S1 and S2 in pairwise models are identical 

to those in mechanistic models, and here rii or Kii (i = 1, 2) are irrelevant due to the lack of intra-population 

interactions. We use every 10 community doublings of reference dynamics as training windows to 

numerically estimate best-matching canonical pairwise model parameters r21 and K21. Dashed and solid 

rectangles represent training windows before and after acclimation, respectively. Note that population 

fractions (instead of population densities) are plotted, which fluctuate less during dilutions compared to 

mediator concentration. (B) Pairwise model parameters estimated after acclimation (solid rectangle) match 

their analytically-derived counterparts (black dotted lines) better than those estimated before acclimation 

(dashed rectangle). (C) A pairwise model generated from population dynamics before acclimation (top) 

predicts future reference dynamics less accurately than that generated after acclimation (bottom). (D) 

Quantification of the difference between pairwise and mechanistic models before (dashed) or after (solid) 

acclimation. All parameters are listed in Fig 3-SD1.  
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Fig 3-FS2. A canonical pairwise model, but not the alternative pairwise model, is suitable for a 

consumable mediator that accumulates without reaching a steady state within each dilution cycle. 

In a commensal community, the consumable mediator C1 accumulates as the consumer S2 gradually goes 

extinct. Pairwise model parameters are estimated from the mechanistic model dynamics in the training 

window (magenta, between 50 and 60 generations). The canonical model (Fig 3A) shows dynamics 

(dotted) that match those of the mechanistic model (solid). As expected, the alternative pairwise model 

(Fig 3B), which assumes steady state C1, fails (dashed). Thus, accumulating C1 can be regarded as a 

reusable mediator. Note that population fractions (instead of population densities) are plotted, which 

fluctuate less during dilutions compared to mediator concentration. All parameters are listed in Fig 3-SD4. 
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Fig 3-Supplementary Text. An alternative form of pairwise model best represents interactions 

mediated by a single consumable mediator that reaches a non-zero steady-state.  

(a) Deriving an alternative pairwise model 

From Fig 3B, the mechanistic model is 
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Under the quasi-steady state assumption ( 1
dC dt 0 ), we obtain 
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where C1,ss is the steady state level of C1. 

 

From Eq 3S-1, 1 2

1 1 1 2

1,
1 2

1,

C S ss

C S ss C S

C
S S

C K







 is a constant, which means that the two species should grow 

at the same rate (in this case, r10). 

 

If C1 has not yet reached steady state, assuming steady state C1 and accepting its consequence of constant 

1 2S S would falsely predict 1 2S S remaining at the initial value (Fig3-FS3, dotted lines). However, if 

we do not insist 1 2S S  being a constant, we obtain an alternative pairwise model:  
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   (Eq 3S-3a) 

or 

2 1
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1 2

dS S
r S S

dt S S 
 


        (Eq 3S-3b) 

where ω and ψ are constants.  

 

This alternative model makes reasonable predictions of community dynamics even before the community 

reaches the steady state (Fig 3-FS3, compare dashed and solid lines). This is because the alternative 

model allows the community dynamics to always change towards the steady-state. To see this, 

we note that at steady-state, the two species grow at the same rate, i.e. 
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To compare whether S2 is growing faster or slower than S1, we can calculate 
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 . 

This means that S2 grows faster (slower) than S1 when S1/S2 is greater (smaller) than the steady 

state value. 

 

(b) Failure of canonical pairwise model 

If we were to estimate parameters of a canonical pairwise model for such a community at steady state C1,ss 

and (S1/S2)ss, we would change Eq 3S-3b to: 
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This leads to erroneous predictions when initial ratios are not at steady-state (Fig 3-FS3 B, C). 
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Fig 3-FS3. Interactions mediated through a consumable chemical that reaches a pseudo- 

steady state can be represented by the alternative but not canonical pairwise model.  

Consider a commensal interaction where the consumable mediator reaches a non-zero steady state. We 

directly compute from the mechanistic model the corresponding canonical pairwise model (Fig 3-

Supplementary Text (b), Eq 3S-4 with the assumption of steady state S1/S2) or alternative pairwise model 

(Fig 3B). (A) As expected, when the community starts at the steady state, both the canonical and the 

alternative pairwise models predict steady-state dynamics. (B and C) When the community does not start 

at the steady state, the canonical model falsely predicts the maintenance of initial ratios. The alternative 

model predicts a convergence to the steady state, similar to the mechanistic reference model. Note that 

population fractions (instead of population densities) are plotted, which fluctuate less during dilutions 

compared to mediator concentration. All parameters are listed in Fig 3-SD3.   
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Fig 3-FS4. The degree of validity of the quasi-steady state assumption influences the accuracy of 

parameter estimation for the alternative pairwise model.  

We consider commensalism through a consumable mediator, where the producer (blue) and the consumer 

(green) eventually reach a steady state. We compare 1000-fold (A) and 10-fold (B) dilution steps to examine 

how fluctuations caused by dilutions affect parameter estimation. We use every 10 community doublings 

of reference dynamics as training windows to numerically estimate best-matching alternative pairwise 

model parameters. In (A), compared to (B), we see larger errors in estimating the interaction strength r21 

compared to the true value (calculated from Fig 3B). In both (A) and (B), parameter estimations are less 

accurate if estimated before (instead of after) the steady state has been reached. Note that population 

fractions (instead of population densities) are plotted, which fluctuate less during dilutions compared to 

mediator concentration. All parameters are listed in Fig 3-SD5. 
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Fig 3-FS5. Inconsistent pairwise model parameters if a consumable mediator declines to zero.  

Consider a community where S1 (blue) produces a mediator that is consumed by S2 (green) and that 

stimulates the growth of S2. Suppose that the basal fitness of S1 is lower than that of S2, then S1 will go 

extinct. Community dynamics at two different initial species ratios are shown (A). Note that population 

fractions (instead of population densities) are plotted, which fluctuate less during dilutions compared to 

mediator concentration. (B) and (C) respectively show parameter estimates for the canonical (Fig 3A) 

versus the alternative (Fig 3B) pairwise model, using training windows of ten generations. When initial 

S1/S2 is 20, the mediator initially accumulates due to the scarcity of consumers (A, left panel). Interaction 

coefficient r21 estimated from the canonical model is initially strong, but rapidly approaches zero (B, left 

panel). The alternative model is not suitable for the first ten generations due to mediator accumulation. 

After the first ten generations, the alternative model predicts a relatively consistent interaction coefficient 

due to the slowly-declining mediator concentration which can be approximated as a non-zero steady state. 

However, r21 approaches zero as the ratio of producer to consumer drops to very low values (C, left panel). 

(B-C, right panels) Similar failure at an initial S1/S2 of 1/20. All parameters are listed in Fig 3-SD6. 
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Fig 4-Supplementary Text. Conditions under which a pairwise model can represent one species 

influencing another via two reusable mediators.  

Here, we examine a simple case where S1 releases reusable C1 and C2, and C1 and C2 additively affect the 

growth of S2 (see example in Fig 4).    

The mechanistic model is: 
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  (Eq 4S-1). 

Now the question is whether the canonical pairwise model  
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can be a good approximation.  

For simplicity, let’s define 
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  (Eq 4S-2). 
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C2 on S2) differ dramatically in magnitude. For (ii), without loss of generality, suppose that the effect of C2 

on S2 can be neglected. This can be achieved if (iia) S Cr
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Fig 5-Supplementary Text. A multi-species pairwise model can represent an interaction 

chain if each interaction can be represented by an independent pairwise model.  

Without loss of generality, we show this point through an example where each step of an interaction chain 

is best represented by a different form of pairwise model. Suppose that S1 releases a reusable mediator C1 

that promotes S2 and that S2 releases a consumable mediator C2 that promotes S3. C2 reaches pseudo steady-

state. The corresponding community-pairwise model will be: 
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       (Eq 5S-1). 

To see this, note that after a transient period of time, the mechanistic model of the three-species 

community is:  

 /

/

1 1

2 1 2 1

2 1 2 1 1 1

2 2 2 3

2 3

3 2

3 2

1
10 1

1 10 1

1 12
20 2 20 2

1 1 10

2 2
2 3

2

3 2 2
30 3 30 3

2 2 3

0

C S

S C S C

S C S C C S

C S C S
C S

S C
S C

dS
r S

dt

C r S

r C r SdS
r S r S

dt C K S K r

dC C
S S

dt C K

dS C S
r r S r S

dt C K S S





 

 







 

    

      
    
   

  


   
         










  (Eq 5S-2). 

Eq 5S-2 and Eq 5S-1 are equivalent.  
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Fig 5-FS1. A multispecies pairwise model can work under special conditions. 

(A-B) As a control for Fig 5C, if S3 does not remove the mediator of interaction between S1 and S2, a three-

species pairwise model accurately matches the mechanistic model. Simulation parameters are provided in 

Fig 5-SD4. (C-D) As a control for Fig 5E, we ensured that fitness effects from multiple species are additive. 

In this case, a three-species pairwise model can represent the mechanistic model. To ensure the linearity of 

fitness effects, we have used a larger value of half saturation concentration (
2 1S CK = 109 instead of 105 in 

Fig 5E-F). We have adjusted the interaction coefficient accordingly such that the overall interaction strength 

exerted by S1 and S3 on S2 is comparable to that in Fig 5E-F (as evident by comparable population 

compositions). Since the interaction influences under these conditions remain in the linear range, the three-

species pairwise model accurately predicts the reference dynamics. Simulation parameters are provided in 

Fig 5-SD5. 
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