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Abstract  20 

Toxin-antitoxin (TA) systems are gene modules that appear to be widely 21 

horizontally mobile.  It has been proposed that type I TA systems, with an 22 

antisense RNA-antitoxin, are less mobile than other TAs but no direct 23 

comparisons have been made. We searched for type I, II and III toxin families on 24 

chromosomes, plasmids and phages across bacterial phyla.  The distribution of 25 

type I TA systems were more narrow than most type II and III system families, 26 

though this was less true of more recently discovered families.  We discuss how 27 

the function and phenotypes of type I TA systems as well as biases in our 28 

databases and discovery of these modules may account for differences in their 29 

distribution.   30 

 31 

 32 

 33 
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Introduction                                                                                   35 

Type I toxin-antitoxin (TA) systems are two-gene modules comprised of a toxic 36 

protein and an antisense RNA antitoxin.  They are one of five types of TA 37 

systems, grouped according to the mechanism of the antitoxin and whether it is a 38 

protein or an RNA molecule.  Of the five types of TA systems, the first and best-39 

described are type I and type II, which encode a protein antitoxin that directly 40 

binds the toxin protein.   The more recently described type III TA systems have 41 

an RNA antitoxin that directly binds the protein 1. The type I TA RNA antitoxins 42 

are commonly encoded on the DNA strand opposite to the toxin, generally within 43 

the coding region or untranslated regions though some are divergently 44 

transcribed. The antitoxin binds the toxin mRNA, occluding the binding sites that 45 

are necessary for translation 2-5 or inducing RNase degradation 6. Type I toxins 46 

are mostly small, hydrophobic proteins that destabilize cellular membranes at 47 

high concentrations, though the exact mechanism of toxicity is not always known 48 

5, 7-10. Two exceptions are SymE 3, 11 and RalR 12, both nucleases.  49 

  50 

One of the first TA systems to be identified was Hok-Sok, a type I system 51 

discovered through its ability to stabilize plasmids 13. After transcription, the 52 

stable Hok mRNA is slowly processed at the 3’ end into a translatable isoform 14.  53 

This process is attenuated by the highly expressed RNA Sok, which forms a 54 

duplex with Hok mRNA leading to subsequent degradation of both transcripts.  55 

Should transcription of the TA operon cease, the less stable antitoxin RNA 56 

rapidly degrades, allowing unprocessed hok mRNA in the cytoplasm to mature 57 

and be translated into a toxic protein that destabilizes cellular membranes 13, 15. 58 
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This causes the cell to die or stop replicating upon gene loss, an effect known as 59 

post-segregational killing (PSK).  60 

  61 

Genes that confer the PSK phenotype, which include some restriction-62 

modification systems, abortive-infection systems, and bacteriocins 16-18, are also 63 

able to mediate competition between incompatible plasmids.  Plasmids 64 

segregate to different daughter cells during division and the cells not inheriting 65 

the PSK-containing plasmid dies 19.  Plasmids with PSKs on them are 66 

advantaged over non-PSK plasmids 16, 19-21 accounting for the prevalence of PSK 67 

genes on mobile genetic elements (MGEs). 68 

  69 

While TA systems were discovered for their effects on plasmids, TAs of all types 70 

are also abundant on bacterial chromosomes.  The role of TA systems on 71 

chromosomes is still uncertain 22, 23, with theories ranging from them being 72 

important components in cellular function to being genomic parasites that persist 73 

due to difficulties in displacing them. Proposed cellular functions for the various 74 

types of TA systems are mostly stress related, including bacteriostasis, 75 

programmed cell death and persister cell formation 24-26. Other functions are 76 

related to their ability cause PSK: stabilizing genomic regions 27-29, neutralizing 77 

PSK from plasmid borne TAs 30, and acting in abortive infection of 78 

bacteriophages 31, 32.  Although some functions have been well characterized for 79 

specific loci, such as the ability of type I TA tisB-istR to increase resistance to 80 

antibiotics in E. coli 25, many others have not. 81 

  82 
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These functions generally rely on the activation of the toxin in response to 83 

reductions in transcription or translation of the toxin and antitoxin genes, either 84 

because the cell is stressed or because the genes have been lost.  This is aided 85 

by common characteristics of TA systems, including organization into an operon, 86 

antitoxin-mediated regulation of toxin transcription (type II, type III) or translation 87 

(type I), and high lability of the antitoxin relative to the toxin 1, 13, 33-35.  Despite 88 

shared features, it has been proposed that type I TAs are more likely to be 89 

duplicated on chromosomes in a lineage specific manner 36 and that they are 90 

less mobile than the horizontally promiscuous type II TAs 17, 30, 36-38.  This 91 

hypothesis is primarily due to the tendency for type I TAs to found in only a 92 

narrow range of species and type II TAs to be more widely distributed. 93 

 94 

The mobility of a given gene is affected by certain physical factors, including how 95 

it is transferred and post-transfer stablization (e.g. site-specific integration, 96 

homologous recombination, replication) 39. Yet while any gene may transfer by 97 

the above mechanisms, various selective pressures affect which are maintained 98 

in populations of descendants. Those that are stably maintained are most likely 99 

to be detected during sequencing and subsequent genomic screens.  Thus, 100 

these screens cannot measure mobility of the genes per se, as genes could be 101 

highly mobile but not detected, but can indicated the range of hosts in which the 102 

gene has been retained. 103 

  104 

We analysed the distribution of type I, type II and type III TA systems across 105 

bacterial species and mobile replicons.  Consistent with previous claims, type I 106 
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TAs exhibited a narrow, phyla-specific distribution and were rarer on plasmids 107 

than either type II or type III systems.  Interestingly, though, this pattern was less 108 

consistent on more recently discovered systems.  Reasons for these differences, 109 

including ability to exhibit PSK, toxin function and gene regulation and biases in 110 

the databases and discovery process, are discussed here. 111 

  112 

Type I families occur across a narrow phylogenetic range and are less 113 

likely to be on mobile elements than type II and type III families. 114 

Within each type of TA system are multiple families of toxins.  There is only one 115 

corresponding antitoxin for individual type I and III toxins identified so far, but a 116 

given type II toxins binds multiple independent families of antitoxins 38.  We 117 

investigated a range of type I, II and III toxin families.  Nine type I TA toxin 118 

families were included in the analysis (Table 1).  All are validated TA systems 119 

except for XCV2162 (also known as Plasmid_toxin), which has only been 120 

described computationally 40.   It was included due to its reported distribution, 121 

which is consistent with horizontal gene transfer (HGT).  SymE is a nuclease, 122 

while the remaining are predicted membrane-disrupting proteins.  Eleven type II 123 

TA toxin families were investigated.  Most are part of large, well-described 124 

families except for GinA and GinB, which have been described more recently 38.  125 

Three type III TA families described so far 41 were also included.  126 

  127 

Phage, plasmid, and bacterial chromosome sequence data were downloaded 128 

from the EMBL nucleotide archive (http://www.ebi.ac.uk/ena/, October 2014). 129 

These were translated in six frames to derive all possible amino acid sequences 130 
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from the genomes including the short ORFs that are a characteristic of type I 131 

toxins (and traditionally make them difficult to detect).  This database was 132 

analysed with Profile hidden Markov models (HMMs), derived from the known 133 

amino acid sequences for each toxin family as downloaded from Pfam and 134 

GenBank.  The HMMs for the more recently described families GinA and GinB 38 135 

and CptN and TenpN 41 were derived from loci reported in the literature. 136 

  137 

Despite the number of new, unannotated loci found in the family-based searches, 138 

type I toxin families were found in fewer phyla than type II and type III families 139 

and in fewer species within those phyla (Figure 1).  All type I toxins except for 140 

SymE, a recently discovered toxin that differs in function from other type I toxins, 141 

were found in only one phylum.  Some toxins were especially narrow in their 142 

distribution: toxins Ldr, ShoB, Txp and TisB were found in less than 5% of 143 

species within that phylum (Figure 1) and those species were all in the same 144 

family, either Enterobacteriaceae within Proteobacteria or Bacillaceae within 145 

Firmicutes (Table 1).  None of the most narrowly distributed type I toxin families 146 

were found on elements that could be identified as being mobile.  The three 147 

families found on mobile elements, Fst, Hok, XCV2162, were found in more 148 

taxonomic families (six, four, and eleven, respectively) within their phylum (Table 149 

1).  150 

  151 

Most type II families were found across phyla (Figure 1).  The families Doc, 152 

MazF/PemK, RelE/ParE and VapC were found  in all bacterial phyla analyzed, as 153 

well as in viruses and plasmids.  These TA toxins were prevalent within phyla as 154 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 28, 2016. ; https://doi.org/10.1101/060863doi: bioRxiv preprint 

https://doi.org/10.1101/060863


 8 

well, found on over 70% of species within the phyla Acidobacteria and 155 

Cyanobacteria. The two type II toxin families CccdB and YafO were found  in 156 

only one phylum.  Compared to single-phylum type I toxins, these type II toxins 157 

were observed in a higher percentage of species, across more taxonomic 158 

families within the phylum as well as on mobile elements. Type III families, which 159 

also have an RNA antitoxin, were intermediate between type I and type II TAs.  160 

All three families were found in both Gram-negative and Gram-positive phyla and 161 

on plasmids 41, though none were on greater than 30% of the species in the 162 

database of translated genomes.  As has been reported elsewhere, the 163 

distribution of type I toxin families investigated here is comparatively narrow 164 

across both species and replicon type.  The broader host range of SymE and 165 

type III TA systems would suggest the presence of an RNA antitoxin is not the 166 

cause.  And some type I TAs like Hok and Fst are present on plasmids and 167 

capable of HGT, albeit within a narrow host range.  Different factors may account 168 

for chromosomal-only and narrowly distributed type I families, as discussed 169 

below. 170 

  171 

Presence on mobile elements and ability to exhibit PSK as a factor in TA 172 

family distribution 173 

In our direct comparison of three types of TA systems, we find that type I TAs are 174 

less frequently observed across phyla and on mobile replicons. Generally, we 175 

see a correlation between presence on mobile elements and a larger taxonomic 176 

range (though the low number of sequenced mobile element prevents showing a 177 

strong association) with most type II and III TAs on mobile elements.  Except for 178 
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SymE, those type I TAs found on plasmids are generally in more families than 179 

those that are chromosome only (Table 1), though even mobile type I TAs are 180 

narrowly distributed compared to type II and III TAs. 181 

  182 

Most loci on plasmids, for TAs of all types, are able to mediate PSK 24, 42. This is 183 

not surprisingly, given the advantage of PSK for the horizontal lifestyle 19, 20.  184 

However, chromosomal homologues of plasmid-borne TAs often do not exhibit 185 

PSK themselves 30, 43, 44. A comparison of CcdB family toxins on chromosomes 186 

showed that the chromosomally-encoded toxins are under neutral selection, 187 

unlike their plasmid-borne homologues 30.  188 

 189 

Chromosome-only TAs may not be widely distributed on mobile elements simply 190 

because they are unable to mediate beneficial phenotypes. Most chromosome-191 

specific type I systems have not been tested for their ability to confer a PSK 192 

phenotype (Figure 5), except Ldr-RdlD, which did not confer a PSK phenotype 31, 193 

44. Because chromosome- and plasmid-borne homologues may be under 194 

different selective pressures and have different phenotypes, it is difficult to 195 

determine if inability to confer a PSK phenotype is an inherent feature of these 196 

chromosome-only TA families, or simply that the particular gene pairs analysed 197 

do not show it.  198 

 199 

As noted above, carriage on a mobile element does not guarantee distribution 200 

across a wide range of host backgrounds.  Hok and Fst are on mobile elements, 201 

but remain narrowly distributed across phyla.  While mobile genes can be 202 
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selected to have phenotypes that are not beneficial to the host, they still rely on 203 

the host for expression of those genes.  PSK requires close stoichiometry of toxin 204 

and antitoxin, with the toxin remaining inert when the mobile element is in the 205 

host and becoming active when the activity of the antitoxin falls below a critical 206 

threshold.  In cellular backgrounds where the PSK phenotype is neutralized, the 207 

genes would no longer be selected 20.  Families of TA that exhibit PSK in a wide 208 

range of cellular backgrounds, may, then, be more likely to be mobilized and 209 

more likely to gain entry into new hosts.   Expression of the PSK phenotype, or 210 

many other phenotypes that may cause the genes to be maintained across a 211 

range of hosts, would in turn depend on whether the toxin had a target and 212 

whether the genes were appropriately regulated in the new environment.   213 

 214 

Toxin target and regulation of toxins as a factor in TA family distribution 215 

Both toxin target and toxin gene regulation have been proposed as factors in the 216 

distribution of TA systems.  Type II toxins may be successful across a wide array 217 

of species because they affect highly conserved targets 38. Most type II toxins are 218 

nucleases or gyrase inhibitors 22, 45.  Type III toxins are all nucleases.  Most type I 219 

toxins are predicted to be membrane disrupting proteins. Some of these type I 220 

systems are toxic in non-related species when expressed at high levels, but may 221 

have more specific mechanisms of action when expressed under their native 222 

promoter or in a particular genetic background.  Lack of target would affect both 223 

their ability to express PSK or mediate stress response, and thus could limit their 224 

selection across phyla and replicons. It is interesting to note that SymE, a 225 
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nuclease, is an outlier amongst the type I TAs and is distributed across both 226 

Gram negative and Gram positive phyla (though not seen so far on plasmids).   227 

  228 

PSK, abortive infection and TA-mediated stress response all require that the 229 

toxin is inactive but can be released upon specific stimuli.  Expression of the 230 

toxin and its cognate antitoxin must be tightly regulated within the cell. Small 231 

changes in gene regulation were believed to be why Bacillus subtilis could be 232 

used to amplify clones of only some of the Fst loci from various bacterial species: 233 

others appeared to cause cell death when moved into the new cellular 234 

background 33.   235 

  236 

While type I TAs do differ in their regulation from type II and type III, how this 237 

may affect their distribution is still a matter for speculation.  Regulation of type I 238 

TAs occurs at the RNA level: free mRNA must be translated to produce a toxin 239 

46.   In type II and III systems the antitoxin (protein or RNA) directly binds the 240 

already-translated toxin these systems and pools of toxin remain in the 241 

cytoplasm at all times. This may make type III systems, for example, more suited 242 

to responding to phage infection, where the toxin can be quickly released 46.  243 

Within type I TAs, most toxins are regulated by an RNA encoded on the opposite 244 

strand to the toxin 5, 29. All plasmid-borne type I antitoxins follow this pattern.  245 

Two toxins described here, TisB and ShoB, have RNA antitoxins transcribed 246 

from a different locus (as do other toxins Zor and DinQ 47, 48. They are particularly 247 

narrowly distributed, found in only one taxonomic family.  These RNAs often 248 

have smaller regions of complementarity and some required additional 249 
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components to stabilize the interactions (although Hfq, which fulfils this function, 250 

is not known to be necessary for any type I TA regulation other than RalR 29).  As 251 

more type I TAs are discovered, stronger patterns of regulation and how this 252 

relates to host range may become apparent. 253 

 254 

Biases in databases and discovery of type I TA families may account for 255 

apparent narrowness of type I distribution 256 

It can be difficult to make sweeping statements on the distribution of any gene 257 

across many phyla and mobile elements due to selection of sequenced genomes 258 

and how well bioinformatics tools find different genetic elements within them.  259 

Proteobacteria and Firmicutes are the two most studied phyla of bacteria with the 260 

greatest number of sequenced genomes, and contain a disproportionate number 261 

of TA systems (Figure 1 and S1).  This is particularly true when strain rather than 262 

species is analyzed, or when the number of species within a phylum that has the 263 

toxin is not normalized by total number of species within that phyla (Figure S1).  264 

 265 

Type I TA systems have historically been more difficult to detect in silica, with 266 

sequence-diverse RNA antitoxins and small toxins (under 60 amino acids), 267 

potentially reducing both the number of toxin families we know of and the number 268 

of phyla in which they have been found.  Many type II families reported here are 269 

actually super-families of many described toxins.  Aggregating these can 270 

increase their apparent distribution. CcdB has a narrow distribution in this screen, 271 

but is often combined with MazF and related families, making the super-family 272 

relatively widely distributed.  Type I toxins Ldr and Fst are considered to be 273 
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related 36, 38 and combining them together would result in a broad family.  The 274 

apparent narrowness of type I TA systems, then, may be a result of bioinformatic 275 

limitations. 276 

 277 

The use of sequences and other information derived from known TA systems to 278 

screen for new TA systems also imposes an obvious bias onto the search. Many 279 

of the best-studied and most widely distributed type II systems were discovered 280 

due to a phenotype, usually the ability to stabilise plasmids in monocultures.  It is 281 

not surprising, then, that these families were later found to be widely distributed 282 

on mobile elements.   On the other hand, many of the type I systems discovered 283 

were first described on chromosomes.  Ultimately, methods that go beyond 284 

sequence-based features of known TA systems are more likely to yield families 285 

with novel characteristics.  The narrowly distributed type II families YafO, GinC 286 

and GinD were discovered bioinformatically 38 due to their association with 287 

known antitoxins (guilt by association) rather than sequence features of the toxin.  288 

They exhibited patterns of distribution similar to many type I families (Figure 1).  289 

Another approach which may yield novel types of TA systems is that of Sberro et 290 

al. 49.  This group studied genomes that had been randomly fragmented and 291 

inserted into E. coli plasmids for sequencing.  They identified genes that were 292 

only present on fragments (and thus could be amplified in E. coli) when an 293 

adjacent ORF was present, implying a toxin and antitoxin function.  These were 294 

filtered for genes that appeared as homologues across species, suggesting HGT, 295 

and in regions of the genome associated with phage defence to find novel TA 296 

systems 49.  297 
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 298 

Conclusion 299 

We found that type I toxin families are less often found on known mobile 300 

elements or distributed across large taxonomic ranges when compared to type II 301 

and type III families.  It has frequently been suggested that type I TAs are more 302 

lineage specific than type II TA systems.  Howeverer, the broader phylogenetic 303 

distribution of type I toxin SymE and type III TA systems seen here would 304 

suggest one of the defining features of type I systems, the presence of an RNA 305 

antitoxin, does not account for the difference.  306 

 307 

The factors that select for maintenance of horizontally acquired genes vary. 308 

Genes on both chromosomes and plasmids can be selected by within-host forces 309 

21. All TA systems consist of a tightly regulated antitoxin and toxin capable of 310 

stopping bacterial growth- some systems even have reversible effects, able to be 311 

turned off when conditions change. These make for versatile modules with the 312 

potential to fill a variety of functions, from plasmid competition (eg, PSK) to 313 

cellular stress response to phage-plasmid competition (eg abortive infection).  314 

The function of a given locus will depend in part on its history, though some 315 

families may have features that make them more able to fill certain roles. It could 316 

be that aspects of the toxin target and gene regulation affect the ability of some 317 

type I TAs to stably establish in new species. Many narrowly distributed type I 318 

TAs are membrane proteins, and the most narrowly distributed (along with one 319 

narrowly distributed type II TA) are integrated into host stress networks.  The only 320 
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type I nuclease studied here was also the only type I toxin to be found across 321 

phyla.  All type III and many type II toxins are nucleases.  322 

 323 

Alternatively, as our ability to detect and analyze type I TAs increases, these 324 

patterns may become weaker.  The families found so far may remain 325 

chromosomal and/or narrowly distributed, despite an increase in genome and 326 

mobile element sequencing.  But new types and new families of TAs within those 327 

types are being described at a rapid pace 37, 46, 50, 51, some of which have 328 

alternative distributions. We see this already, with type I TA toxins SymE and 329 

RalR, which are nucleases and type II toxins like YafO, GinB and GinC that are 330 

narrowly distributed.  The potential type I TA XCV2162 is plasmid-borne and has 331 

an erratic phylogenetic distribution consistent with HGT 40.  It may be that the 332 

patterns of lineage dependence so far attributed to type I TAs as a group will turn 333 

out to be a feature of specific families within all types of TAs, and it is only that 334 

we found the narrowly-distributed, membrane associated families of type I TAs 335 

and the broadly distributed central-dogma targeting type II TAs first.  336 

  337 

  338 
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Figure Legends 

 

Figure 1: Percent of species within each phyla or replicon that contain a 

loci from a given type I, type II and type III TA toxin family.  HMMs for 

each TA family were derived from known amino acid sequences and used to 

search a database of phage, plasmid, and bacterial chromosome sequences 

subjected to six-frame translations to derive all possible amino acid 

sequences from that sequence.  This includes short ORFs that are typical of 

type I toxins. For each phyla or replicon, the percent of total species in the 

database (left of figure) that contain at least one locus of that toxin is reported 

(boxes).   
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Tables 

 

Table 1: Characteristics of type I TA families  

Toxin	
  	
   Discovery	
   Phyla:
Family	
  

Target	
  	
   Regulation	
   References	
  

Fst	
   Plasmid	
  

stability	
  

1:6	
   Membrane	
  
damage	
  

Cis	
  

	
  

Weaver	
  et	
  
al.	
  2009	
  

Hok	
   Plasmid	
  
stability	
  

1:4	
   Membrane	
  
damage	
  

Cis	
  

	
  

Gerdes	
  et	
  al.	
  
1986	
  

Ibs	
   Repeats	
  in	
  
sequence	
  
data	
  

1:3	
   Membrane	
  
damage	
  

	
  

Cis,	
   

	
  

Fozo	
  et	
  al.	
  
2008	
  

Ldr	
   Repeats	
  in	
  
sequence	
  
data	
  

1:1	
   Membrane	
  
damage	
  

Cis	
  

	
  

Kawano	
  et	
  
al.	
  2002	
  

ShoB	
   Screening 
for sRNA  

	
  

1:1	
   Membrane	
  
damage 

	
  

Trans	
  

	
  

Kawano	
  et	
  
al.	
  2005	
  

SymE	
   Screening 
for sRNA  

	
  

5:24	
   Ribonuclease	
   Cis	
   Kawano	
  et	
  
al.	
  2005	
  

TisB	
   Screening 
for sRNA  

	
  

1:1	
   Membrane	
  
damage 

Trans.	
  

	
  

Vogel	
  et	
  al.	
  
2004	
  

TxpA	
   Screening 
for sRNA  

	
  

1:1	
   Membrane	
  
damage 

Cis 

	
  

Silvaggi	
  et	
  
al.	
  2005	
  

XCV2162	
   Screening 
for sRNA  

	
  

1:11	
   Predicted	
  
membrane	
  
domain	
  

Cis	
  

	
  

Findeiss	
  et	
  
al.	
  2010	
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Figures 

 

Figure 1 
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Supplementary Information 

 

 

Figure S1: Percent of total toxin loci for type I, type II and type III TA 

toxin families found in a given phyla or replicon   HMMs for each TA 

family were derived from known amino acid sequences and used to search a 

database of phage, plasmid, and bacterial chromosome sequences subjected 

to six-frame translations to derive all possible amino acid sequences from that 

sequence.  This includes short ORFs that are typical of type I toxins. The 

percent of all species bearing that toxin that were found in a given phyla is 

reported (boxes).   
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Table S1: Percent of species within each phyla or replicon that contain a 1 
loci from a given type I, type II and type III TA toxin family 2 

	
  
Type	
  I	
   Type	
  II	
   Type	
  III	
  

Phylum	
   Fst	
   Hok	
   Ibs	
   Ldr	
   ShoB	
   SymE	
   TisB	
   	
  TxpA	
  
XCV	
  
216	
  	
   	
  CcdB	
   Doc	
   	
  GinA	
   GinB	
   	
  HigB	
   	
  HipA	
  

PemK	
  
MazF	
  

RelB	
  
ParD	
  
YafO	
   Txe	
   VapC	
   	
  YafO	
   CptN	
  

Tenp
N	
   	
  ToxN	
  

Acidobacteria	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   75.0	
   0	
   37.5	
   87.5	
   75.0	
   50	
   87.5	
   12.5	
   100	
   0	
   0	
   0	
   0	
  
Deferri-­‐
bacteres	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   100	
   0	
   25.0	
   50	
   50	
   50	
   75.0	
   25.0	
   100	
   0	
   0	
   0	
   0	
  

Fusobacteria	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   60	
   20	
   0	
   20	
   20	
   60	
   40	
   60	
   0	
   0	
   20	
   20	
   20	
  

Spirochaetes	
   0	
   0	
   0	
   0	
   0	
   2.8	
   0	
   0	
   0	
   0	
   27.8	
   0	
   2.8	
   25.0	
   22.2	
   36.1	
   36.1	
   27.8	
   50	
   0	
   0	
   0	
   2.8	
  

Proteo-­‐bacteria	
   0	
   7.0	
   3.7	
   2.8	
   1.2	
   13.3	
   4.2	
   0	
   3.2	
   16.5	
   59.1	
   6.6	
   21.8	
   40.7	
   51.3	
   32.9	
   60.3	
   23.3	
   54.3	
   6.2	
   0	
   2.0	
   0.7	
  

Bacteroidetes	
   0	
   0	
   0	
   0	
   0	
   15.1	
   0	
   0	
   0	
   0	
   53.5	
   2.3	
   29.1	
   25.6	
   46.5	
   22.1	
   54.7	
   30.2	
   36.1	
   0	
   0	
   0	
   0	
  

Chlorobi	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   70	
   0	
   10	
   40	
   80	
   60	
   80	
   50	
   80	
   0	
   0	
   0	
   0	
  

Chlamydiae	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   20	
   0	
   0	
   0	
   0	
   20	
   13.3	
   0	
   0	
   0	
   0	
   0	
   0	
  
Deinococcus-­‐
Thermus	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   100	
   0	
   0	
   12.5	
   0	
   31.3	
   12.5	
   6.3	
   100	
   0	
   0	
   0	
   0	
  

Nitrospirae	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   50	
   0	
   25.0	
   50	
   50	
   50	
   50	
   25.0	
   100	
   0	
   0	
   0	
   0	
  

Actino-­‐bacteria	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   67.8	
   0	
   0	
   20.6	
   29.4	
   77.2	
   39.4	
   25.0	
   62.8	
   0	
   0	
   0	
   0	
  

Chloroflexi	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   85.7	
   0	
   7.1	
   7.1	
   0	
   35.7	
   57.1	
   14.3	
   78.6	
   0	
   0	
   0	
   0	
  

Firmicutes	
   8.9	
   0	
   0	
   0	
   0	
   2.2	
   0	
   0.4	
   0	
   0	
   62.7	
   17.7	
   0	
   11.1	
   9.2	
   88.6	
   39.5	
   21.8	
   72.3	
   0	
   3.7	
   2.2	
   3.7	
  

Cyano-­‐bacteria	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   87.5	
   7.5	
   47.5	
   55.0	
   5.0	
   80	
   82.5	
   72.5	
   97.5	
   0	
   0	
   0	
   0	
  

Aquificae	
   0	
   0	
   0	
   0	
   0	
   10	
   0	
   0	
   0	
   0	
   80	
   0	
   0	
   10	
   10	
   10	
   20	
   10	
   70	
   0	
   0	
   0	
   0	
  

Thermotogae	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   47.1	
   0	
   0	
   11.8	
   0	
   17.7	
   17.7	
   5.9	
   17.7	
   0	
   0	
   0	
   0	
  

Other	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   23.2	
   0	
   3.7	
   7.3	
   8.5	
   7.3	
   15.9	
   3.7	
   0	
   0	
   2.4	
   0	
   29.3	
  

Virus	
   3.3	
   4.6	
   2.0	
   1.3	
   0	
   2.6	
   1.3	
   0.7	
   0	
   0	
   7.8	
   11.1	
   0.7	
   2.0	
   2.6	
   7.2	
   9.2	
   2.6	
   6.5	
   2.0	
   0	
   0.7	
   0.7	
  

Plasmid	
   1.5	
   2.3	
   0	
   0	
   0	
   0	
   0	
   0	
   0.2	
   2.3	
   6.2	
   1.2	
   2.3	
   5.2	
   7.6	
   11.3	
   18.7	
   4.6	
   16.6	
   0.3	
   0.2	
   1.2	
   0.9	
  

 3 

 4 

Table S2: Percent of total toxin loci for type I, type II and type III TA toxin 5 

families found in a given phyla or replicon 6 

	
  
Type	
  I	
   Type	
  II	
   Type	
  III	
  

Phylum	
   Fst	
   Hok	
   Ibs	
   Ldr	
   ShoB	
   SymE	
   TisB	
   	
  TxpA	
  
XCV	
  
216	
  	
   	
  CcdB	
   Doc	
   	
  GinA	
   GinB	
   	
  HigB	
   	
  HipA	
  

PemK	
  
MazF	
  

RelB	
  
ParD	
  
YafO	
   Txe	
   VapC	
   	
  YafO	
   CptN	
  

Tenp
N	
   	
  ToxN	
  

Acidobacteria	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0.7	
   0	
   1.5	
   1.6	
   1.2	
   0.5	
   0.9	
   0.3	
   0.9	
   0	
   0	
   0	
   0	
  
Deferri-­‐
bacteres	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0.5	
   0	
   0.5	
   0.5	
   0.4	
   0.3	
   0.4	
   0.3	
   0.4	
   0	
   0	
   0	
   0	
  

Fusobacteria	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0.3	
   0.8	
   0	
   0.2	
   0.2	
   0.4	
   0.2	
   0.8	
   0	
   0	
   8.3	
   3.3	
   4.3	
  

Spirochaetes	
   0	
   0	
   0	
   0	
   0	
   1.0	
   0	
   0	
   0	
   0	
   1.1	
   0	
   0.5	
   2.1	
   1.5	
   1.7	
   1.6	
   2.8	
   1.9	
   0	
   0	
   0	
   4.3	
  

Proteo-­‐bacteria	
   0	
   65.6	
   88.0	
   89.5	
   100	
   76.2	
   92.6	
   0	
   95.0	
   86.8	
   40.5	
   33.6	
   64.9	
   57.0	
   59.7	
   25.8	
   44.1	
   38.7	
   35.2	
   88.1	
   0	
   40	
   17.4	
  

Bacteroidetes	
   0	
   0	
   0	
   0	
   0	
   12.4	
   0	
   0	
   0	
   0	
   5.2	
   1.7	
   12.4	
   5.1	
   7.7	
   2.5	
   5.7	
   7.2	
   3.3	
   0	
   0	
   0	
   0	
  

Chlorobi	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0.8	
   0	
   0.5	
   0.9	
   1.5	
   0.8	
   1.0	
   1.4	
   0.9	
   0	
   0	
   0	
   0	
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Chlamydiae	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0.3	
   0	
   0	
   0	
   0	
   0.4	
   0.2	
   0	
   0	
   0	
   0	
   0	
   0	
  
Deinococcus-­‐
Thermus	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   1.8	
   0	
   0	
   0.5	
   0	
   0.7	
   0.2	
   0.3	
   1.7	
   0	
   0	
   0	
   0	
  

Nitrospirae	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0.2	
   0	
   0.5	
   0.5	
   0.4	
   0.3	
   0.2	
   0.3	
   0.4	
   0	
   0	
   0	
   0	
  

Actino-­‐bacteria	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   13.9	
   0	
   0	
   8.6	
   10.2	
   18.1	
   8.6	
   12.4	
   12.2	
   0	
   0	
   0	
   0	
  

Chloroflexi	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   1.4	
   0	
   0.5	
   0.2	
   0	
   0.7	
   1.0	
   0.6	
   1.2	
   0	
   0	
   0	
   0	
  

Firmicutes	
   61.5	
   0	
   0	
   0	
   0	
   5.7	
   0	
   50	
   0	
   0	
   19.3	
   40.3	
   0	
   7.0	
   4.8	
   31.3	
   13.0	
   16.3	
   21.1	
   0	
   83.3	
   20	
   43.5	
  

Cyano-­‐bacteria	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   4.0	
   2.5	
   9.4	
   5.1	
   0.4	
   4.2	
   4.0	
   8.0	
   4.2	
   0	
   0	
   0	
   0	
  

Aquificae	
   0	
   0	
   0	
   0	
   0	
   1.0	
   0	
   0	
   0	
   0	
   0.9	
   0	
   0	
   0.2	
   0.2	
   0.1	
   0.2	
   0.3	
   0.8	
   0	
   0	
   0	
   0	
  

Thermotogae	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0.9	
   0	
   0	
   0.5	
   0	
   0.4	
   0.4	
   0.3	
   0.3	
   0	
   0	
   0	
   0	
  

Other	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   2.2	
   0	
   1.5	
   1.4	
   1.4	
   0.8	
   1.6	
   0.8	
   2.6	
   0	
   0	
   6.7	
   0	
  

Virus	
   12.8	
   10.9	
   12.0	
   10.5	
   0	
   3.8	
   7.4	
   50	
   0	
   0	
   1.4	
   14.3	
   0.5	
   0.7	
   0.8	
   1.4	
   1.7	
   1.1	
   1.1	
   7.1	
   0	
   3.3	
   4.3	
  

Plasmid	
   25.6	
   23.4	
   0	
   0	
   0	
   0	
   0	
   0	
   5.0	
   13.2	
   4.7	
   6.7	
   7.4	
   7.9	
   9.7	
   9.7	
   14.9	
   8.3	
   11.7	
   4.8	
   8.3	
   26.7	
   26.1	
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Figures 11 
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Figure S1 13 
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