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We have developed a computational method that counts the frequencies of unique k-mers in 11	
FASTQ-formatted genome data and uses this information to infer the genotypes of known 12	
variants. FastGT can detect the variants in a 30x genome in less than 1 hour using ordinary low-13	
cost server hardware. The overall concordance with the genotypes of two Illumina “Platinum” 14	
genomes is 99.96%, and the concordance with the genotypes of the Illumina HumanOmniExpress 15	
is 99.82%. Our method provides k-mer database that can be used for the simultaneous 16	
genotyping of approximately 30 million single nucleotide variants (SNVs), including >23,000 17	
SNVs from Y chromosome. 18	
 19	
Next-generation sequencing (NGS) technologies are widely used for studying genome variation. 20	
Variants in the human genome are typically detected by mapping sequenced reads and then performing 21	
genotype calling1–4. A standard pipeline requires 40-50 h to process a human genome with 30x 22	
coverage from raw sequence data to variant calls on a multi-thread server. Mapping and calling are 23	
state-of-the-art processes that require expert users familiar with numerous available software options.It 24	
is not surprising that different pipelines generate slightly different genotype calls5–9. Fortunately, 25	
inconsistent genotype calls are associated with certain genomic regions only10–12, whereas genotyping 26	
in the remaining 80-90% of the genome is robust and reliable. 27	
 28	
The use of k-mers (substrings of length k) in genome analyses has increased because computers can 29	
handle large volumes of sequencing data more efficiently. For example, phylogenetic trees of all 30	
known bacteria can be easily built using k-mers from their genomic DNA13–15. Bacterial strains can be 31	
quickly identified from metagenomic data by searching for strain-specific k-mers16–18. K-mers have also 32	
been used to correct sequencing errors in raw reads19–22. One recent publication has described a method 33	
that calls variants from raw sequencing reads by using only a unique substring surrounding the 34	
variant23. 35	
 36	
We developed a new method that offers the possibility of directly genotyping known variants from 37	
NGS data by counting unique k-mers. The method only uses reliable regions of the genome and is 38	
approximately 1-2 orders of magnitude faster than traditional mapping-based genotype detection. Thus, 39	
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it is ideally suited for a fast preliminary analysis of a subset of markers before the full-scale analysis is 40	
finished. 41	
 42	
The method is implemented in the C programming language and is available as the FastGT software 43	
package. FastGT is currently limited to the calling of previously known genomic variants because 44	
specific k-mers must be pre-selected for all known alleles. Therefore, it is not a substitute for traditional 45	
mapping and variant calling but a complementary method that facilitates certain aspects of NGS-based 46	
genome analyses. In fact, FastGT is comparable to a large digital microarray that uses NGS data as an 47	
input.Our method is based on three original components: 1) the procedure for the selection of unique k-48	
mers, 2) the customized data structure for storing and counting k-mers directly from a FASTQ file, and 49	
3) a maximum likelihood method designed specifically for estimating genotypes from k-mer counts. 50	
 51	
 52	
RESULTS 53	
 54	
Compilation of the database of unique k-mer pairs 55	
 56	
The crucial component of FastGT is a pre-compiled flat-file database of genomic variants and 57	
corresponding k-mer pairs that overlap with each variant. Every bi-allelic single nucleotide variant 58	
(SNV) position in the genome is covered by k k-mer pairs. FastGT relies on the assumption that at least 59	
a number of these k-mer pairs are unique and appear exclusively in this location of the genome; 60	
therefore, the occurrence counts of these unique k-mer pairs in sequencing data can be used to identify 61	
the genotype of this variant in a specific individual (Figure S1). 62	
 63	
The database of variants and unique k-mers is assembled by identifying all possible k-mer pairs for 64	
each genomic variant and subjecting them to several steps of filtering. The filtering steps remove 65	
variants for which unique k-mers are not observed and variants that produce non-canonical genotypes 66	
(non-diploid in autosomes and non-haploid in male X and Y chromosomes) in a sequenced test-set of 67	
individuals. A detailed description of the filtering steps used in this article is shown in Figure S2 and 68	
the Supplementary Data. Although one k-mer pair is theoretically sufficient for genotyping, mutations 69	
occasionally change the genome sequence in the neighborhood of an SNV, effectively preventing the 70	
detection of the SNV by a chosen k-mer. If the mutation is allele-specific, then the wrong genotype 71	
could be easily inferred. Therefore, we use three k-mer pairs per variant to prevent erroneous calls 72	
caused by the occasional loss of k-mers because of rare mutations (Figure S3). The number of pairs per 73	
variant is a compromise between the error rate and efficiency because using less than three k-mer pairs 74	
would increase the error rate, whereas using more k-mer pairs would consume more computer memory 75	
and prolong the genotyping.	76	
 77	
In the current study, we compiled a database of all bi-allelic SNVs from dbSNP and tested the ability of 78	
FastGT to detect these SNVs with 25-mers. After the filtering steps, 30,238,283 (64%) validated and 79	
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bi-allelic SNVs remained usable by FastGT. We also used a subset of autosomal SNV markers present 80	
on the Illumina HumanOmniExpress microarray for a concordance analysis. In this set, 78% of the 81	
autosomal markers from this microarray were usable by FastGT. The number of SNV markers that 82	
passed each filtering step is shown in Table S1.  83	
 84	
 85	
Algorithm and software for k-mer-based genotyping 86	
 87	
The genotyping of individuals is executed by reading the raw sequencing reads and counting the 88	
frequencies of k-mer pairs described in the pre-compiled database of variants using the custom-made 89	
software gmer_counter and gmer_caller (Figure 1). 90	
 91	
The database of genomic variants and corresponding k-mers is stored as a text file. The frequencies of 92	
k-mers listed in the database are counted by gmer_counter. It uses a binary data structure, which 93	
stores both k-mer sequences and their frequencies in computer memory during the counting process. A 94	
good compromise between memory consumption and lookup speed is achieved by combining a sorted 95	
table with a suffix tree. The sorted table is used for storing the sequence of the first 14 nucleotides, and 96	
the sparse bitwise suffix tree is used for storing the remaining sequence of the k-mers. Two bytes per k-97	
mer are allocated for storing frequencies. The current implementation of gmer_counter accepts k-98	
mers with lengths between 14 and 32 letters. The frequencies of up to three k-mer pairs from 99	
gmer_counter are saved in a text file that is passed to gmer_caller, which infers the genotypes 100	
based on k-mer frequencies and prints the results to a text file. 	101	
	102	
	103	
Empirical Bayes’ method for inferring genotypes from k-mer counts 104	
 105	
Gmer_caller uses the Empirical Bayes classifier for calling genotypes from k-mer frequency data, 106	
which assigns the most likely genotype to each variant. Allele frequency distributions are modeled by 107	
negative binomial distribution, described by seven parameters (see Supplementary Material). The 108	
model parameters are estimated separately for each analyzed individual using k-mer counts of 100,000 109	
autosomal markers. The model allows us to estimate the most likely copy number for both alleles 110	
independently. Thus, in addition to calling bi-allelic (diploid) genotypes, we can also call mono-, tri-, 111	
or tetra-allelic genotypes, which might correspond to deletions and duplications of one allele (Figure 112	
2). The model parameters can be saved and re-used in subsequent analyses of the same dataset. 113	
 114	
The gender of the individual is determined automatically from the sequencing data using the median 115	
frequency of markers from the X chromosome (chrX). If the individual is female, only the autosomal 116	
model is used in the calling process and Y chromosome (chrY) markers are not called. For men, an 117	
additional haploid model of Bayes’ classifier is trained for calling genotypes from sex chromosomes. 118	
Parameters for the haploid model are estimated using 100,000 markers from chrX. 119	
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 120	
 121	
Assessment of genotype calling accuracy 122	
 123	
The accuracy of FastGT genotype calls was analyzed by comparing the results to genotypes reported in 124	
two Illumina Platinum individuals, NA12877 and NA12878, which were sequenced to 50x coverage. 125	
These are high-confidence variant calls derived by considering the inheritance constraints in the 126	
pedigree and the concordance of variant calls across different methods 127	
(http://www.illumina.com/platinumgenomes/). 128	
 129	
The overall concordance of bi-allelic FastGT genotypes with genotypes from two Platinum genomes is 130	
99.96%. The concordance of the non-reference (AB or BB) calls was 99.93%. The distribution of 131	
differences between the two sets for different genotypes is shown in Table 1. All of the genotypes 132	
reported in the Platinum datasets were bi-allelic; thus, we included only bi-allelic FastGT genotypes in 133	
this comparison. The fraction of uncertain (no-call) genotypes in the FastGT output was 0.24%. The 134	
uncertain genotypes are primarily mono-allelic (A) and tri-allelic (AAA) genotypes that might 135	
correspond to deletions or insertions in a given region. However, non-canonical genotypes in the 136	
default output are not reported, and they are replaced by NC (“no call”). All of the genotypes and/or 137	
their likelihoods can be shown in gmer_caller optional output. 138	
 139	
We also compared the genotypes obtained by the FastGT method with the data from the Illumina 140	
HumanOmniExpress microarray. We used 504,173 autosomal markers that overlap our whole-genome 141	
dataset (Table S1), and the comparison included ten individuals from the Estonian Genome Center for 142	
whom both microarray data and Illumina NGS data were available.  143	
 144	
In these 10 individuals, the concordance between the genotypes from the FastGT method and 145	
microarray genotypes was 99.82% (Table 2), and the concordance of non-reference alleles was 146	
99.69%. The fraction of mono-allelic and tri-allelic genotypes (no-call genotypes) in 10 test individuals 147	
is rather low (<0.01% of all markers), indicating that our conservative filtering procedure is able to 148	
remove most of the error-prone SNVs. 149	
 150	
 151	
Markers from Y chromosome 152	
 153	
FastGT is able to call genotypes from the Y chromosome (chrY) for 23,832 markers that remain in the 154	
whole-genome dataset after all filtering steps. The genotypes on chrY cannot be directly compared with 155	
the Platinum genotypes because chrY calls were not provided in the VCF file of the Platinum 156	
individuals. To assess the performance of chrY genotyping, we compared our results to the genotypes 157	
of 11 men from the HGDP panel24 (http://cdna.eva.mpg.de/denisova/). The overall concordance of the 158	
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haploid genotype calls of FastGT and the genotype calls in these VCF files was 99.97%.The fraction of 159	
non-canonical genotypes (no-calls) in the FastGT output was 1.27% (Table S2). 160	
 161	
We also tested the concordance of chrY genotypes in seven father-son pairs in CEPH pedigree 1463 162	
(http://www.ebi.ac.uk/ena/data/view/ERP001960). We assume that changes in chrY genotypes should 163	
not occur within one generation. Only one marker (rs199503278) showed conflicting genotypes in any 164	
of these father-son pairs. A visual inspection revealed problems with the reference genome assembly in 165	
this region, which resulted in conflicting k-mer counts and conflicting genotypes from different k-mer 166	
pairs of the same SNV. This marker was removed from the dataset because it had a high likelihood of 167	
causing similar problems in other individuals. 168	
 169	
 170	
Effect of genome coverage on FastGT performance 171	
 172	
We also studied how the genome sequencing depth affects the performance of FastGT. The Platinum 173	
genomes have a coverage depth of approximately 50x, but in most study scenarios, sequencing to a 174	
lower coverage is preferred because it optimizes costs. For this analysis, we compiled different-sized 175	
subsets of FASTQ sequences from the Platinum individual NA12878 and measured the concordance 176	
between called genotypes and genotypes from the Platinum dataset. We observed that the concordance 177	
rate of non-reference genotypes (AB and BB) declines significantly as the coverage drops below 20x 178	
(Figure 3).  179	
 180	
 181	
Time and memory usage 182	
 183	
The entire process of detecting 30 million SNV genotypes from the sequencing data of a single 184	
individual (30x coverage, 2 FASTQ files, 115GB each) takes approximately 40 minutes on a server 185	
with 32 CPU cores. Most of this time is allocated to counting k-mer frequencies by gmer_counter. 186	
The running time of gmer_counter is proportional to the size of the FASTQ files because the 187	
speed-limiting step of gmer_counter is reading the sequence data from a FASTQ file. However, the 188	
running time is also dependent on the number of FASTQ files (Figure 4) because simultaneously 189	
reading from multiple files is faster than processing a single file. Genotype calling with 190	
gmer_caller takes approximately 2-3minutes with 16 CPU cores. 191	
 192	
The minimum amount of required RAM is determined by the size of the data structure stored in 193	
memory by gmer_counter. We have tested gmer_counter on Linux computer with 8 GB of 194	
RAM. However, server-grade hardware (multiple CPU cores and multiple fast hard drives in RAID) is 195	
required to achieve the full speed of gmer_counter and gmer_caller. 196	
 197	
 198	
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METHODS 199	
 200	
The methods used for compiling k-mer databases, statistical inference and testing the concordance of 201	
FastGT genotypes are described in the Supplementary Data. 202	
 203	
Code availability 204	
 205	
The binaries of FastGT package and k-mer databases described in the current paper are available on our 206	
website, http://bioinfo.ut.ee/FastGT/. The source code is available at GitHub 207	
(https://github.com/bioinfo-ut/GenomeTester4/). Gmer_counter and gmer_caller are 208	
distributed under the terms of GNU GPL v3, and the k-mer databases are distributed under the Creative 209	
Commons CC BY-NC-SA license. 210	
 211	
 212	
DISCUSSION 213	
 214	
FastGT is a flexible software package that performs rapid genotyping of a subset of previously known 215	
variants without a loss of accuracy. FastGT can be compared with a large digital microarray with 216	
millions of probes. One of the main strengths of FastGT is the selection of k-mers that are truly unique 217	
in the human genome. Because evaluating uniqueness in the reference genome alone is insufficient to 218	
identify k-mers that produce inconsistent results, we considered the use of short variants (SNVs and 219	
indels) from dbSNP databases and tested the uniqueness of the k-mers against all possible 220	
combinations of these variants. Additionally, we tested the expected behavior of the k-mers in a set 221	
of50 sequenced individual genomes. These procedures were used to compile a database of k-mers that 222	
directly yields reliable genotypes from sequencing data without the time-consuming mapping of reads. 223	
Our filtering procedure is rather conservative because we believe that the reliability of genotypes is 224	
more important than the sheer number of markers that can be genotyped. 225	
 226	
The other advantage of FastGT is its efficient hybrid data structure for storing k-mer sequences and 227	
counts in binary format, which allows us to store data for only the k-mers of interest instead of for all k-228	
mers from the data. This approach is particularly useful for genotyping only a small number of variants 229	
from each individual. An alternative method of k-mer-based genotyping can be based on full-genome 230	
k-mer lists. Numerous software packages can organize the raw sequencing data of each individual into 231	
comprehensive k-mer lists25–29. Using pre-compiled lists for each individual might have an advantage in 232	
certain situations, such as when the same lists are used repeatedly for different applications. However, 233	
the compilation of full-genome lists is somewhat inefficient if the lists are only used once and then 234	
immediately deleted. Most of the k-mers in the list will not be required for genotyping. For example, 235	
our database of 30 million SNVs contains 172 million k-mers, which is less than 5% of the k-mers 236	
present in the typical raw sequence data of an individual genome. Thus, if the lists are deleted 237	
immediately after use, it would be more reasonable to store the k-mer counts in RAM. Storing only the 238	
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relevant k-mers avoids the so-called “curse of deep sequencing,” in which a higher coverage genome 239	
can overwhelm the memory or disk requirements of the software30. The disk and memory requirements 240	
of FastGT are not directly affected by the coverage or the amount of sequencing data. 241	
 242	
Our analysis focuses on genotyping SNVs. However, FastGT is not limited to identifying SNVs. Any 243	
known variant that can be associated with a unique and variant-specific k-mer can be detected with 244	
FastGT. For example, short indels could be easily detected by using pairs of indel-specific k-mers. In 245	
principle, large indels, pseudogene insertions, polymorphic Alu-elements, and other structural variants 246	
could also be detected by k-mer pairs designed over the breakpoints. However, the detection of 247	
structural variants relies on the assumption that these variants are stable in the genome and have the 248	
same breakpoint sequences in all individuals, which is not always true for large structural variants. The 249	
applicability of FastGT for detecting structural variants requires further investigation and testing. 250	
 251	
This software has only been used with Illumina sequencing data, which raises the question of whether 252	
our direct genotyping algorithm is usable with other sequencing technologies. In principle, k-mer 253	
counting should work with most sequencing platforms that produce contiguous sequences of at least k 254	
nucleotides. The uniformity of coverage and the fraction of sequencing errors in raw data are the main 255	
factors that influence k-mer counting because a higher error rate reduces the number of usable k-mers 256	
and introduces unwanted noise. The type of error is less relevant because both indel-type and 257	
substitution-type errors are equally deleterious for k-mer counting.  258	
 259	
NGS data are usually stored in BAM format, and the original FASTQ files are not retained. In this 260	
case, the FASTQ file can be created from available BAM files, which can be performed by a number of 261	
software packages with multiple filtering choices(Picard, bam2fq from SAMtools package1, bam2fastx 262	
from TopHat package31). We have tested FastGT software with raw FASTQ files and FASTQ files 263	
generated from the BAM-formatted files and did not observed significant differences in the k-mer 264	
counts or genotype calls. The sequencing strategies and techniques are diverse, and there is no single 265	
correct method of extracting the sequences. In principle, care should be taken to avoid multiple 266	
occurrences of the same reads in the resulting FASTQ file. Regardless of the method of genome 267	
analysis, contamination-free starting material, diligent sample preparation, and sufficient genome 268	
coverage are the ultimate pre-requisites for reliable results. The “garbage in, garbage out” principle 269	
applies similarly to mapping-based genome analyses and k-mer based genome analyses. 270	
 271	
 272	
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FIGURES 364	
 365	
 366	

 367	
Figure 1. Overall principle of k-mer-based genotyping. 368	
 369	
 370	

 371	
 372	
Figure 2. Illustration of genotype calling based on the frequencies of two k-mers. The parameters that 373	
define boundaries between genotypes are estimated from the k-mer frequency data of each individual. 374	
By default, only conventional genotypes are reported in the output. “A” denotes the reference allele, 375	
and “B” denotes an alternative allele. The median k-mer frequency of the individual used in this 376	
example was 38.6. 377	
 378	
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 379	
Figure 3. Effect of genome coverage on the concordance of genotypes. The accuracy of calling non-380	
reference variants starts to decline as the genome coverage drops below 20x. Only the accuracy of the 381	
non-reference allele (genotypes AB and BB) calls declines significantly as the coverage drops because 382	
the higher prior probability of the reference allele has a stronger influence on the final decision of the 383	
Bayesian classifier in situations where the coverage is low (which increases the bias toward the more 384	
common allele). 385	
 386	
 387	

 388	
 389	
Figure 4. The time spent counting k-mer frequencies is proportional to the genome coverage (because 390	
of the larger FASTQ files). Gmer_counter is able to obtain data from multiple files simultaneously; 391	
thus, it runs faster if the sequence data are distributed between different files (e.g., files with paired 392	
reads).   393	
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TABLES 394	
 395	
Table 1. Concordance between the autosomal genotypes of two individuals from the Platinum dataset 396	
and bi-allelic FastGT genotypes called from the same individuals. “A” denotes the allele from the 397	
reference genome, and “B” denotes the alternative allele. 398	

 399	
 400	
 401	
Table 2. Distribution of all autosomal genotypes inferred by FastGT (rows) from the raw sequencing 402	
data of 10 individuals from the Estonian Genome Center and the Illumina HumanOmniExpress 403	
microarray genotypes (columns) from the same individuals. The depth of coverage of NGS data in 404	
these individuals was between 21 and 35.  405	
 406	

407	
  408	

AA AB BB

AA 54,246,425 (93.39%) 987 (0.00%) 68 (0.00%)

AB 20,041 (0.03%) 2,427,315 (4.18%) 1,516 (0.00%)

BB 2,261 (0.00%) 156  (0.00%) 1,245,902 (2.14%)

NC 126,513 (0.22%) 1,787 (0.00%) 10,376 (0.02%)

concordant (%) 99.96% 99.95% 99.87%
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Platinum genotype calls

AA AB BB
AA 2,750,130 (54.55%) 1,602 (0.03%) 1,204 (0.02%)
AB 1,695 (0.03%) 1,477,508 (29.31%) 3,580 (0.07%)
BB 2 (0.00%) 815 (0.02%) 804,828 (15.96%)
NC 89 (0.00%) 253 (0.01%) 24 (0.00%)
concordant (%) 99.94% 99.84% 99.41%

Platinum genotype calls
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SUPPLEMENTARY METHODS 409	
 410	
Compilation of database of unique k-mers 411	
 412	
A k-mer length of 25 was used throughout this study, and the k-mers for genotyping were selected by 413	
the following filtering process (see also Figure S1). First, the validated single nucleotide variants 414	
(SNVs), as well as the validated and common indels, were extracted from the dbSNP database (build 415	
146). Indels were used for testing the uniqueness of k-mers only; they are not included in the database 416	
of variants. For every bi-allelic SNV from this set, two sequences surrounding this SNV location were 417	
created: the sequence of the human reference genome (GRCh37) and the sequence variant 418	
corresponding to the alternative allele. The sequences were shortened to eliminate any possible overlap 419	
with neighboring SNVs or common indels. Essentially, this filtering step removed all of the SNVs that 420	
were located between two other SNVs (or indels) with less than 25bp between them. This step was 421	
chosen to avoid the additional complexity of filtering, counting, and calling algorithms because of the 422	
multiple combinations of neighboring SNV alleles. For all these SNVs that had variant-free sequences 423	
of at least 25bp, the sequences were divided into 25-mer pairs. 424	

In the second filtering step, we tested the uniqueness of the 25-mers compiled in the previous step. The 425	
uniqueness parameter was tested against the “expanded reference genome,” which is a set of 25-mers 426	
from the reference genome plus all possible alternative 25-mers containing the non-reference alleles of 427	
the SNVs and indels. A k-mer pair is considered unique if both k-mers occur no more than once in the 428	
“expanded reference genome”. All non-unique k-mer pairs were removed from the list. The 429	
Glistcompare tool29, which performs set operations with sorted k-mer lists, was used in this step. 430	
The k-mer pairs demonstrating uniqueness even with one mismatch were preferred. This constraint was 431	
added to reduce the risk of forming an identical k-mer by a rare point mutation or a sequencing error. 432	

In the third step, the k-mers were further refined using the k-mer frequencies in a validated set of 433	
sequenced individual genomes. For this purpose, the k-mer counts were calculated for all SNVs of 50 434	
random individuals whose DNA was collected and sequenced during the Center of Translational 435	
Genomics project at the University of Tartu. Twenty-five men and 25 women were used for filtering 436	
the autosomal SNVs; for chrX and chrY, 50 men were used. The sequencing depth in these individuals 437	
varied between 21 and 45. The k-mers showing abnormally high frequencies (greater than 3 times the 438	
median count in at least 2 out of 50 individuals) were removed from the database. In addition, the k-439	
mer frequencies were counted for 50 women for chrY, and all the k-mers with a count greater than 3 440	
were removed. 441	

In the fourth stage, the remaining SNVs were filtered using the genotyping results from the same set of 442	
sequenced individual genomes. The genotypes for the remaining SNVs were calculated for 50 443	
individuals (25 men + 25 women for markers from autosomes and chrX, 50 men for markers from 444	
chrY). The SNVs that produced a non-canonical allele count in more than one individual out of 50were 445	
removed from the dataset. The non-canonical allele count is any value other than two alleles in 446	
autosomes or a single allele in male chrX and chrY. 447	
The final set contained 30,238,283 SNVs usable by FastGT, with 6.8% (2,063,839) located in protein-448	
coding regions. 449	
 450	
 451	
Statistical framework 452	
 453	
The statistical framework for Empirical Bayes Classifier implemented in gmer_caller is described 454	
in Pajuste_2016_SupplementaryMaterial_S1.pdf 455	
 456	
 457	
Testing genotype concordance 458	
 459	
Version 20160503 of the FastGT package was used throughout this study. For the concordance analysis 460	
with the Platinum genotypes, gmer_counter and gmer_caller were run with the default options. 461	
The performance was tested on a Linux server with 32 CPU cores, 512GB RAM, and IBM 6Gbps and 462	
SAS 7200rpm disk drives in a RAID10 configuration. 463	
 464	



High-quality genotypes were retrieved from the Illumina Platinum Genomes FTP site at  465	
ftp://ussd-ftp.illumina.com/hg38/2.0.1/.  466	
BAM-format files of NA12877 and 12878 were downloaded from 467	
ftp://ftp.sra.ebi.ac.uk/vol1/ERA172/ERA172924/bam/NA12877_S1.bam and 468	
ftp://ftp.sra.ebi.ac.uk/vol1/ERA172/ERA172924/bam/NA12878_S1.bam. 469	
 470	
FASTQ files were downloaded from the European Nucleotide Archive at 471	
http://www.ebi.ac.uk/ena/data/view/ERP001960. FASTQ files for the chrY genotype comparison were 472	
created from the corresponding BAM files using SAMtools bam2fq version 0.1.18. The read length of 473	
the Platinum genomes was 101 nucleotides. 474	
 475	
Illumina HumanOmniExpress microarray genotypes and Illumina NGS data (read length 151 nt) for 476	
individuals V00278, V00328, V00352, V00369, V00402, V08949, V09325, V09348, V09365, and 477	
V09381 were obtained from the Estonian Genome Center. For the concordance analysis with the 478	
microarray genotypes, gmer_caller was run with the microarray markers (504,173) only.  479	
 480	
The 5x, 10x 20x, 30x, and 40x data points for Figure3 were created using random subsets of reads from 481	
raw FASTQ files of 50x coverage from the Platinum individual NA12878. 482	
 483	
 484	
  485	



SUPPLEMENTARY FIGURES 486	
 487	
 488	

 489	
 490	
Figure S1. Simplified example of seven k-mer pairs (k=7) that can be used to distinguish two alleles of 491	
an SNV. 492	
 493	

k-mer	pair	1:                  TAGGCAA       TAGGCAG          
k-mer	pair	2: 	                  AGGCAAC       AGGCAGC 
k-mer	pair	3:                    GGCAACG       GGCAGCG 
k-mer	pair	4:                     GCAACGT       GCAGCGT 
k-mer	pair	5:                      CAACGTT       CAGCGTT 
k-mer	pair	6:                       AACGTTA       AGCGTTA  
k-mer	pair	7:                        ACGTTAG       GCGTTAG

Reference	genome		
													and		
variant	of	interest: 	...AATTTCTCCAAAATAGGCA[A/G]CGTTAGACTACTGTGACTAAGG... 

Variant	regions	(length	2k-1):																								TAGGCAACGTTAG TAGGCAGCGTTAG



 494	
Figure S2. Pipeline for filtering markers. 495	
 496	

NO	
Are	there	any	k-mers	covering		

this	SNV,	but	not	containing	any	other	
known	SNVs	or	indels?	

Remove	SNV	
from	the	database	

Step	2.	Test	the	uniqueness	of	all	k-mer	pairs	for	a	given	
SNV	in	the	expanded	reference	genome.	Remove	k-mer	
pairs	if	at	least	one	k-mer	in	the	pair	is	not	unique.	Keep	
up	to	3	k-mer	pairs.	

Step	1.	Test	the	spacing	of	SNVs	

Final	list	of	SNVs	

Does	this	SNV	have	at	least	one	unique	
k-mer	pair	(both	k-mers	located	only	
once	in	expanded	reference	genome)?	

NO	

Step	3.	Test	the	k-mer	frequency	in	the	sequencing	data	of	
50	individuals.	Remove	the	k-mer	pairs	that	have	a	
abnormally	high	frequency	in	more	than	one	individual.	

NO	

Remove	SNV	
from	the	database	

Remove	SNV	
from	the	database	

YES	
Step	4.	Test	the	allele	count	of	the	predicted	genotypes	
from	the	sequencing	data	of	50	individuals.	Remove	the	
SNVs	that	have	a	non-canonical	allele	count	in	more	than	
one	individual.	

NO	Remove	SNV	
from	the	database	

Validated	and	bi-allelic	SNVs		
from	dbSNP	

YES	

YES	
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NGS	sequencing	data	of	50	individuals	
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mers	from	reference	genome	plus	all	
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validated	SNVs	and	indels	from	dbSNP)		

Does	this	SNV	have	canonical	genotype	
in	>	48	out	of	50	individuals?	

Does	this	SNV	have	at	least	one		
k-mer	pair	that	has	a	summed	frequency	

≤	3x	median	summed	frequency	in		
>	48	out	of	50	individuals?	



 497	
Figure S3. Principles of using redundant k-mer pairs for genotyping. K-mer pairs located as far away 498	
from each other as possible are selected. For example, in the case of k=7, as shown in this figure, we 499	
would prefer to use the 1st, 4th, and 7th k-mer pairs. For 25-mers, we prefer to use the 1st, 13th, and 500	
25th k-mer pairs. If the most distant k-mer pair cannot be used (is not unique or contains SNVs), the 501	
next farthest k-mer pair is used. The third k-mer pair is chosen in the middle at an equal distance from 502	
both k-mers if possible. Thus, if a rare mutation at one side of the SNV changes the sequence on that 503	
side, we expect the k-mer pair from the other side to still have the expected counts. Although the 504	
frequencies for all three pairs are counted by gmer_counter, the genotype calling software 505	
gmer_caller uses only one pair, which is the pair with a total k-mer frequency count that is closest 506	
to the median k-mer frequency in a given individual. 507	
  508	
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should	sEll	be	usable.		
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SUPPLEMENTARY TABLES 509	
 510	
 511	
Table S1. Number and fraction of usable SNVs remaining after subsequent filtering steps. 512	

 513	
 514	
 515	
 516	

Table S2.Differences in all Y chromosome genotypes inferred by FastGT (rows) and the genotypes in 517	
the VCF files of 11 men from the HGDPpanel24.518	

 519	
 520	

Dataset
All SNVs                  
from dbSNP

Autosomal SNVs from 
HumanOmniExpress

Bi-allelic validated SNVs 46,954,719 (100%) 650,307 (100%)
After filtering step 1 (removal of closely located SNVs) 40,946,100 (87%) 596,806 (92%)
After filtering step 2 (removal of SNVs without unique k-mer pair) 34,463,965 (73%) 594,762 (91%)
After filtering step 3 (removal of k-mer pairs with high k-mer counts) 34,398,367 (73%) 594,736 (91%)
Final set after filtering step 4 (removal of SNVs with abnormal genotypes) 30,238,283 (64%) 504,173 (78%)

AA AB BB
A 247,246 (94.42%) 3,797 (1.45%) 38 (0.01%)
B 43 (0.02%) 148  (0.06%) 7,446 (2.84%)
NC 3,026 (1.16%) 82 (0.03%) 41 (0.02%)
concordant (%) 99.98% 0% 99.49%

VCF genotype calls
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