
 

 1 

Article (Methods section) 
 
No evidence for phylostratigraphic bias impacting inferences on 

patterns of gene emergence and evolution 
 5 
 

Tomislav Domazet-Lošo1,2,*, Anne-Ruxandra Carvunis3,*, M.Mar Albà4,5, Martin Sebastijan 

Šestak1, Robert Bakarić1, Rafik Neme6, Diethard Tautz6# 

 
1 Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer  Bošković 10 
Institute, 10002 Zagreb, Croatia 
2 Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia 
3 University of California, San Diego, La Jolla, CA 92093-0687, USA 
4 Evolutionary Genomics Group, Research Programme on Biomedical Informatics, Hospital 

del Mar Research Institute, Universitat Pompeu Fabra, Barcelona, Spain 15 
5 Catalan Institution for Research and Advanced Studies, Barcelona, Spain. 
6 Max-Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plön, 

Germany 

 

# corresponding author 20 
* these authors contributed equally 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 26, 2016. ; https://doi.org/10.1101/060756doi: bioRxiv preprint 

https://doi.org/10.1101/060756
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 2 

Abstract 25 

Phylostratigraphy is a computational framework for dating the emergence of sequences 

(usually genes) in a phylogeny. It has been extensively applied to make inferences on 

patterns of genome evolution, including patterns of disease gene evolution, ontogeny and 

de novo gene origination. Phylostratigraphy typically relies on BLAST searches along a 

species tree, but new simulation studies have raised concerns about the ability of BLAST 30 
to detect remote homologues and its impact on phylostratigraphic inferences. These 

simulations called into question some of our previously published work on patterns of 

gene emergence and evolution inferred from phylostratigraphy. Here, we re-assessed 

these simulations and found major problems including unrealistic parameter choices, 

irreproducibility, statistical flaws and partial representation of results. We found that, 35 
even with a possible overall BLAST false negative rate between 5-15%, the large 

majority (≥74%) of sequences assigned to a recent evolutionary origin by 

phylostratigraphy is unaffected by technical concerns about BLAST. Where the results 

of the simulations did cast doubt on our previous findings, we repeated our analyses but 

now excluded all questionable sequences. The originally described patterns remained 40 
essentially unchanged. These new analyses strongly support our published inferences, 

including: genes that emerged after the origin of eukaryotes are more likely to be 

expressed in the ectoderm than in the endoderm or mesoderm in Drosophila, and the de 

novo emergence of protein-coding genes from non-genic sequences occurs through 

proto-gene intermediates in yeast. We conclude that BLAST is an appropriate and 45 
sufficiently sensitive tool in phylostratigraphic analysis. 

 

 

 

Introduction 50 

 Correlating the emergence of particular sequences with molecular and phenotypic 

features is one way to harness the information that we obtain from genome sequencing 

projects. Phylostratigraphy is a framework in which this can be done in a phylogeny aware 

context (Domazet-Lošo et al. 2007). Starting from the genome of a focal species, 

phylostratigraphy infers the emergence of novel sequences at a particular phylogenetic node, 55 
usually by using the similarity search algorithm BLAST (Altschul et al. 1990) on a set of 

genomes that represent the nodes. Each sequence in the focal genome is thereby assigned an 

“evolutionary age” corresponding to the most distant node in the phylogeny where BLAST 

could detect a homologue for this sequence. This age classification, also referred to as 

“phylostrata” or “conservation level” classification, enables to distinguish younger sequences, 60 
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for which homologues can only be found in closely related species (often called orphans or 

taxonomically restricted), from older sequences that are conserved in very distant species 

(Tautz and Domazet-Lošo 2011). While phylostratigraphy is a general evolutionary 

framework that in theory applies to any type of sequence, it has mostly been exploited to 

study the evolution of novel genes and open reading frames (ORFs).   65 
 It is important to note that novel genes can evolve through two different mechanisms. 

One is de novo evolution, which has only relatively recently been recognized as an important 

mechanism for evolution of novel genes (Levine et al. 2006; Zhou et al. 2008; Heinen et al. 

2009; Knowles and McLysaght 2009; Toll-Riera et al. 2009; Carvunis et al. 2012; Neme and 

Tautz 2014). The other is rapid divergence from existing genes, for instance due to adaptation 70 
to a new function (Domazet-Lošo and Tautz 2003). The concept of phylostratigraphy was 

originally based on this latter mechanism and proposed the idea of a punctuated evolution of 

protein-coding genes and their descendant families (Domazet-Lošo et al. 2007; Domazet-

Lošo and Tautz 2010a). Punctuated evolution assumes that a gene originates by duplication 

from an existing gene followed by fast divergence, likely due to a new adaptation, with a 75 
subsequent slow-down in sequence evolution. Such slow evolving orphan genes were first 

detected in Drosophila, and they were proposed to represent lineage-specific adaptations 

(Domazet-Lošo and Tautz 2003). Hence, the shifts in sequence space generated by phases of 

fast evolution after gene duplication are indicators of a new adaptive function and 

phylostratigraphy aims to trace such events and to statistically correlate them to biological 80 
patterns (Domazet-Lošo and Tautz 2010b; Quint et al. 2012; Mendoza et al. 2013; Šestak et 

al. 2013; Šestak and Domazet-Lošo 2015; Drost et al. 2016). 

De novo emergence from a previously non-genic sequence can be equally detected by 

phylostratigraphy. For a long time, de novo emergence was considered to be very unlikely 

(Tautz 2014) and had therefore initially not been seriously considered as a model of origin of 85 
orphan genes (Domazet-Lošo and Tautz 2003). However, it is now clear that de novo gene 

birth is in fact another important process that can be traced by phylostratigraphy, in particular 

among closely related species (Tautz and Domazet-Lošo 2011). Accordingly, 

phylostratigraphy has also been used in later studies specifically focusing on the patterns and 

mechanisms of de novo evolution (Carvunis et al. 2012; Abrusán 2013; Neme and Tautz 90 
2013). 

 Although BLAST is very powerful in detecting homologues in large databases, it has 

known limitations when sequences are highly diverged. In particular, BLAST has problems to 

detect remote homologues of short and fast-evolving sequences (Elhaik et al. 2006; Moyers 

and Zhang 2015). These limitations do not much affect evolutionary inferences related to 95 
punctuated evolution of proteins and their descendant families, where the existence of 

possible remote homologues is not the primary question (Domazet-Lošo et al. 2007; 
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Domazet-Lošo and Tautz 2010a). If anything, BLAST could be too sensitive in this context, 

and find an older origin for a protein, although it has gone through a recent shift in sequence 

space. For example, transcription factors that have arisen to regulate a specific function in a 100 
young lineage may become placed into a much older node because of a match within their 

DNA binding domain (Capra et al. 2013). BLAST could also overestimate a protein's 

evolutionary age by yielding spurious hits that do not reflect true homology. On the other 

hand, the difficulty of BLAST searches to find remote homologues could be problematic in 

the context of making cases for true de novo gene emergence, versus fast divergence from an 105 
ancient gene (Schlötterer 2015). Ancient genes that have diverged too much for BLAST to 

detect them in the genomes of distant species may then be erroneously categorized as too 

young by phylostratigraphy. These BLAST limitations have motivated the development of 

further refined search methods, such as PSI-BLAST (Altschul et al. 1997), HHMER3 (Finn et 

al. 2011) or HHblits (Remmert et al. 2012). Although these refined methods can detect more 110 
remote homologues, they are computationally more costly, require similarity profiles from 

well-populated gene families and are therefore less generally applicable. Hence, BLAST 

remains the workhorse for obtaining initial phylostratigraphic information and it is therefore 

important to understand its advantages, as well as its limitations and possible error margins.  

 In an attempt to estimate the false negative error rate of BLAST and its impact on 115 
evolutionary inferences, Elhaik et al. (2006) simulated DNA sequence evolution and used 

BLAST to look for homologues of these simulated sequences. They found in these 

simulations that fast-evolving DNA sequences tended to appear younger than they were, and 

suggested that the “Inverse Relationship Between Evolutionary Rate and Age of Mammalian 

Genes’’ previously reported (Albà and Castresana 2005) may have been an artifact. This 120 
suggestion was rapidly refuted when Albà and Castresana (2007) pointed out a problem in the 

simulation framework used by Elhaik et al. (2006). BLAST uses a two-step search algorithm 

that starts by finding matches on short motifs and extending the alignment based on these 

(Altschul et al. 1990). Proteins that evolve homogeneously along their whole sequence are 

thus more difficult to trace than proteins that include at least one or more slowly evolving 125 
domains. Real proteins fall mostly into this latter class, allowing BLAST to find homologues 

even when the rest of a protein sequence evolves very fast. Therefore, Albà and Castresana 

(2007) argued that simulating protein evolution to assess the power of BLAST needs to take 

natural among-site rate heterogeneity into account.  

Using this controlled approach, Albà and Castresana (2007) have shown that less than 130 
5% of simulated homologues of mammalian genes are misclassified as recently evolved (i.e. 

too young) when rate heterogeneity is taken into account. The discussion on the potential 

biases introduced by false negatives in BLAST searches was therefore considered resolved 

(Tautz and Domazet-Lošo 2011). Using an orthogonal approach, Carvunis et al. (2012) have 
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estimated that only 5% of ORFs appearing young in phylostratigraphy were likely to be 135 
misclassified due to false negatives in BLAST searches. This estimate was obtained by 

searching the entire non-redundant protein sequence database of NCBI for potential 

homologues of ORFs classified young in a phylostratigraphy of Ascomycota fungi.  

 Still, the question re-emerged recently when Moyers and Zhang (2015; 2016) sought 

to quantify the power of BLAST to detect remote homologues once again, and to assess the 140 
possible implications for trends and patterns inferred from phylostratigraphic analysis. The 

first study (Moyers and Zhang 2015) criticizes Albà and Castresana (2007)’s work by stating 

that the rate heterogeneity models used in this study were derived from only 14 genes and 

may not have been typical. Hence, they used a much larger set of genes derived from 

Drosophila melanogaster and calculated among-site rate heterogeneity and average 145 
divergence rate for each gene based on an alignment among 12 Drosophila species. These 

actual genes and their associated divergence rates were then used to simulate their possible 

ancestors at the origin of life and ask which percentage of such ancestors can be traced by 

BLAST. They find that BLAST makes an incorrect assignment for 14% of the sequences 

simulated. According to their follow up analyses, these potential 14% of errors may have 150 
impacted two previously published evolutionary inferences: a peak of new gene origination in 

the common ancestor of bilateria, and a non-random age distribution of genes expressed in 

ectoderm, mesoderm and endoderm during Drosophila development (Domazet-Lošo et al. 

2007). Moyers and Zhang (2015) also claimed that false negative errors of BLAST may 

explain another previously published inference according to which human disease genes tend 155 
to be ancient (Domazet-Lošo and Tautz 2008), although they do not provide an estimated 

error rate for human-centered phylostratigraphy.   

 In their second paper, Moyers and Zhang (2016) addressed the question of de novo 

evolution of genes in yeast species. They choose as title for this paper "Evaluating 

phylostratigraphic evidence for widespread de novo gene birth in genome evolution", but they 160 
address mostly a different question, namely the significance of observed trends in recently 

evolved yeast ORFs. Starting from protein sequence alignments between yeast species closely 

related to the focal species Saccharomyces cerevisiae, Moyers and Zhang (2016) measured 

among-site rate heterogeneity and average divergence rates, and simulated possible ancestors 

throughout the phylogeny based on the measured rates. They report that BLAST missed 11% 165 
of the simulated ancient homologues, i.e. more than in the original study (Carvunis et al. 

2012) had reported. They show that the corresponding ORFs, which may erroneously appear 

young in phylostratography, despite potentially being ancient, share many physical and 

functional properties with the ORFs deemed young by Carvunis et al. (2012) and Abrusan et 

al. (2013). Based on these observations, Moyers and Zhang (2016) question the validity of 170 
genome-wide phylostratigraphic analyses for deriving models of de novo gene birth.  
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 In summary, Moyers and Zhang (2015; 2016) have revived several important 

technical and conceptual issues pertaining to an older debate on the limitations of BLAST 

(Albà and Castresana 2005; Elhaik et al. 2006; Albà and Castresana 2007). Here, we argue 

that Moyers and Zhang’s (2015; 2016) simulations have underestimated the power of BLAST 175 
in phylostratigraphy. We show that the previously published inferences on gene emergence 

and evolution that were questioned by Moyers and Zhang (2015; 2016)  are in fact robust to 

BLAST limitations, even if error rates were as estimated by Moyers and Zhang (2015; 2016) .  

Finally, we clarify several points that were misinterpreted or misrepresented by Moyers and 

Zhang. We conclude that the alleged evidence for a systematic phylostratigraphic bias cannot 180 
be reproduced.  

 

 

Results 
 185 
The power of BLAST in phylostratigraphic analysis 

 The simulations performed by Moyers and Zhang suggested that up to 14% of 

Drosophila melanogaster sequences (2015) and up to 11% of Saccharomyces cerevisiae 

sequences (2016) may erroneously appear to have originated recently due to the limitations of 

BLAST. While this is a higher fraction than the one found by Albà and Castresana (2007), it 190 
is no reason to claim an "extreme" problem of age underestimation. Regardless, we argue that 

Moyer and Zhang’s estimates are likely to be exaggerated due to several technical issues.  

 First, the simulations use the actual gene sets and their corresponding divergence 

rates obtained from Drosophila and yeast alignments to evolve them in the simulations, i.e. 

they retain features that are inherent to these gene sets, rather than starting from simulated 195 
model sequences. Second, they do not use the same substitution matrix as the subsequent 

BLAST analysis, which could influence the outcome in untested ways. Third, dipteran 

insects, including Drosophila, are known to evolve about three times faster than other insects 

or vertebrates (Savard et al. 2006), which might have inflated the BLAST detection error in 

Moyers and Zhang (2015). Finally, the phylostratigraphy methodology used by Moyers and 200 
Zhang (2016) to search for remote homologues among their simulated yeast sequences is less 

sensitive than the one deployed in the original analysis of real sequences (Carvunis et al. 

2012). In the original analyses, the authors assigned to each ORF sequence the conservation 

level of its most conserved paralogue, in an effort to avoid underestimating conservation 

(Carvunis et al. 2012). Moyers and Zhang (2016) did not implement this “oldest paralogue 205 
age” approach except in a single analysis, for which they did not report the corresponding 

BLAST false negative rate. Furthermore, where Moyers and Zhang (2016) used the program 
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BLASTP, Carvunis et al. (2012) used three BLAST programs: BLASTP, TBLASTX, 

TBLASTN. The use of three BLAST programs necessarily results in a lower false negative 

rate than the use of a single program. This was noted by Moyers and Zhang but they chose not 210 
to take it into account, because "realistic simulation of codon sequence evolution is difficult" 

(quote from (Moyers and Zhang 2016)). It is thus evident that the false negative rates of the 

original phylostratigraphic analyses must be lower than those estimated by Moyers and 

Zhang.   

 We also note that Moyers and Zhang (2016) misinterpreted Abrusán (2013) by stating 215 
he ‘used Carvunis et al.’s data to examine a number of additional gene properties that he 

proposed to reflect the gradual genetic integrations of de novo genes into cellular networks or 

maturation of protein structures’ (quote from (Moyers and Zhang 2016)). However, Abrusán 

(2013) only used the classification of very young ORFs from Carvunis et al. (‘proto-genes’) 

but drew from the orthology classification provided by Wapinski et al. (2007) to classify all 220 
more conserved genes, which constitute the majority of annotated ORFs in the S. cerevisiae 

genome. The false negative rate associated with the methodology used by Abrusán (2013) 

was not estimated by Moyers and Zhang (2016).  

 Moyers and Zhang (2015) claimed that their estimates of BLAST detection errors are 

conservative, in particular due to not taking into account variations in rate heterogeneities 225 
across time. Such changes are indeed well known in phylogenetic analysis under the term 

covarion pattern of protein evolution (Penny et al. 2001). Moyers and Zhang (2015) simulate 

such a covarion pattern to assess BLAST performance in an attempt to provide an even more 

realistic framework of protein evolution. They find that BLAST performs indeed less well 

under these conditions, with up to 67% error rate in finding the oldest assignments. However, 230 
to obtain such a high rate of misplacement, they had to assume unrealistic parameters. This 

should already be evident from the fact that such a high misplacement rate is not compatible 

with real data, since most genes are actually mapped to the basal nodes in all 

phylostratigraphies (e.g. Domazet-Lošo and Tautz 2008; Tautz and Domazet-Lošo 2011). In 

their covarion model they shuffle over time the rates of up to 5% of sites per 50My and state 235 
that shuffling 1% of sites per 50My is a "tiny amount of covarion evolution" (quote from 

(Moyers and Zhang 2015)). However, when 2,500My of evolution are simulated, 1% per 

50My amounts to 50% of the protein in total. Actual covarion proportions in old proteins 

were found to be around 10% (Wang et al. 2009). Hence, even 1% of sites per 50My is 

already beyond the realistic parameter space, let alone the 5% where they find the highest 240 
error rate. Even at the exaggerated 1% rate, the BLAST error is only around 18% (Table 2 in 

(Moyers and Zhang 2015)). The actual interpretation should therefore be that BLAST, when 

used in the phylostratigraphic framework, is very robust with respect to the rate 

heterogeneities found in real data.  
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 Independent of whether the performance of BLAST to detect remote homologues 245 
results in 5% (Albà and Castresana 2007), 11% (Moyers and Zhang 2016) or 14% (Moyers 

and Zhang 2015) false negatives, it is clear that the large majority of assignments in 

phylostratigraphic studies is still not in doubt. Using real data, phylostratigraphy analyses 

have revealed that comparatively large numbers of genes lack clear remote homologues and 

many can only be assigned to the most recent nodes (Moyers and Zhang 2015; Moyers and 250 
Zhang 2016). Here, we updated the Drosophila phylostratigraphy for over 13K Drosophila 

melanogaster real sequences (supplementary table S1). We then compared the simulated and 

the real data obtained for 6,629 of these sequences, where simulated age assignments were 

available (supplementary table S1). The resulting distributions show that the large number of 

sequences lacking remote homologues in real data cannot be recapitulated by Moyers and 255 
Zhang’s simulations (Figure 1A). Similarly in yeast, ~40% of 5,878 S. cerevisiae ORFs for 

which both real (Carvunis et al. 2012) and simulated  (Moyers and Zhang 2016) age data are 

available lack homologues in the distant species S. pombe, in stark contrast with the 11% 

estimate of misplaced ORFs by Moyers and Zhang (2016). The distributions of simulated 

versus actual data are again qualitatively very different (Figure 1B). Hence, the patterns found 260 
for real data are robust to BLAST errors. 

 

 

 
 265 
Figure 1: Distribution of phylostratigraphic assignments for simulated versus real sequences 
for D. melanogaster and S. cerevisiae. Distributions show that the majority of 
phylostratigraphy-based young age assignments cannot be attributed to BLAST limitations. 
(A) Phylostratigraphic assignments for the subset of D. melanogaster sequences chosen by 
Moyers and Zhang (2015) using real and simulated sequences; the simulated results represent 270 
the average number of sequences assigned to each phylostrata over 10 runs. (B) Distribution 
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is redrawn from Figure 1B in Moyers and Zhang (2016)(2016), using a linear scale, rather 
than a log scale. Numbers indicate groups of S. cerevisiae ORFs of increasing conservation 
level within the Ascomycota, from S. cerevisiae-specific (1) to conserved in S. pombe (10). 
 275 
 We next investigated whether the number of simulation runs performed would 

influence the comparatively large numbers of young sequences found in real versus simulated 

data (Figure 1). Indeed, since simulations are by nature stochastic, the list of sequences found 

error-prone in a given simulation run is expected to vary somewhat each time a new 

simulation run is performed. Therefore, the number of sequences found error-prone could 280 
potentially increase towards values equal or superior to the values observed in real data if the 

union of multiple simulation runs was considered. To evaluate the impact of the number of 

simulation runs on the estimated BLAST false negative rate, we performed a saturation 

analysis on a series of 10 independent runs simulated by Moyers and Zhang (2015) on 

Drosophila sequences. Starting from 3,840 sequences found to lack a remote homologue at 285 
the cellular life phylostrata in the real phylostratigraphy, we asked how many of these 

sequences are found susceptible to BLAST limitations in the union of up to ten successive 

independent simulation runs. We found that, while on average a single simulation run 

identifies 866 error prone sequences, this number increases only to 1,006 when the union of 

ten simulation runs is considered (Figure 2). The number of simulation iterations thus barely 290 
affects estimates of BLAST limitations. Therefore, while phylostratigraphic methods should 

be improved to reduce an already low false negative rate of 5-15%, technical BLAST artifacts 

cannot explain away the punctuated evolution of protein coding genes nor the evidence for de 

novo emergence throughout evolutionary time.    

 295 
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Figure 2: The number of Drosophila melanogaster genes classified young using real data 
(dashed grey line) that are also found susceptible to BLAST limitations by Moyers and 
Zhang’s simulations (2015) (black triangles) saturates rapidly. The average of 15 random 
permutations of 10 successive simulations is shown; standard errors of the mean are not 300 
shown because they are shorter than the height of the triangles. 
 
No "spurious" patterns of phylostratigraphy  

 We next asked if BLAST limitations, whatever their magnitude, could have 

influenced the published correlations between phylostratigraphic and biological patterns. This 305 
was attempted by Moyers and Zhang (2015 and 2016) who, although they admittedly could 

not reproduce the exact patterns that were found in real data, claimed that the simulated 

sequences also yielded evolutionary patterns that appear interesting and significant, and that 

one would have no possibility to tell which ones are correct. Specifically, Moyers and Zhang 

criticize three series of results that we previously published: 1) Domazet-Lošo et al. (2007) 310 
reported that the genes expressed in ectoderm, mesoderm and endoderm during Drosophila 

development show a non-random distribution of phylostratigraphic conservation levels; 2) 

Domazet-Lošo and Tautz (2008) showed that human disease genes tend to be more ancient 

than expected; 3) Carvunis et al. (2012) and Abrusán (2013) found that many structural and 

functional characteristics of ORFs sequences (such as length, expression level and 315 
hydropathicity) correlate with their date of emergence in the Ascomycota fungal phylogeny. 

Moyers and Zhang (2015) also re-investigated the finding that new gene origination peaked in 

the common ancestor of Bilateria (Domazet-Lošo et al. 2007) but they could not recapitulate 

this pattern in their simulations.  

 First, we re-examined the claim according to which simulated D. melanogaster 320 
sequences may yield significant over- and underrepresentation of genes from certain age 

groups that are expressed in ectoderm, mesoderm and endoderm (Moyers and Zhang 2015). 

We obtained the simulated sequence sets from the authors and reproduced the patterns shown 

in Moyers and Zhang (2015). However, we could not reproduce the corresponding 

significance values, (Figure 3A), even without Bonferroni correction (supplementary table 325 
S2) indicating some problem in Moyers and Zhang´s significance calculations. Moyers and 

Zhang (2015) have combined 10 simulation runs to obtain this pattern and its significance, but 

we show that the individual runs have no common trend and that none are significant (Figure 

3B). In fact, the magnitude of the log-odds ratio obtained in their simulations (Figure 3A) is 

much lower than reported in the original study (Domazet-Lošo et al. 2007).  330 
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Figure 3. Recreated phylostratigraphic analyses of gene expressions in simulated germ layers 
from Moyers and Zhang (2015). (A) Overrepresentation profiles averaged over 10 simulated 
datasets reported by Moyers and Zhang (2015) in their figure 3c. In contrast to the claims 335 
made by Moyers and Zhang (2015), none of the deviations is significant by hypergeometric 
test (ns) with Bonferroni correction. (B) Overrepresentation profiles in ectoderm for 10 
replicated simulations. Note the instability of profiles across the replicates and number of 
phylostrata without any expressed genes. None of the deviations at any phylostrata is 
significant by hypergeometric tests (ns).  340 
 

 Nevertheless, to further evaluate the robustness of the central original finding that the 

genes emerging after the origin of eukaryotes tend to be expressed more in ectodermal than in 

endodermal and mesodermal tissues (Domazet-Lošo et al. 2007) we repeated the analysis of 

Drosophila germ layers using the most recent expression and sequence databases. The input 345 
dataset we use here was much better populated compared to the datasets in the original study 

(see Methods). This analysis confirmed the initial finding that ectoderm is expressing more 

evolutionary younger genes compared to the mesoderm and endoderm (Figure 4A). However, 

some of the fluctuations seen in the original data (i.e. Fig. 2a in (Domazet-Lošo et al. 2007) 

appear to be more smoothed out in the current analysis, likely due to the more extensive data 350 
available. When we removed from the analysis genes that Moyers and Zhang found 

susceptible to the BLAST error in their simulations (192 out of 4157 genes with expressions) 

the general profiles remained largely unaffected (Figure 4B), i.e. such potentially misplaced 

genes do not distort the major results.  

 355 
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Figure 4: Updated phylostratigraphic analyses of gene expressions in fruit fly germ layers 
from Domazet-Lošo et al. 2007. (A) Real phylostratigraphic map using the latest sequence 
and expression databases. (B) Real phylostratigraphic map after the removal of genes that are 360 
found to be susceptible to BLAST limitations by Moyers and Zhang (2015). Note that the 
profiles remain largely unaffected. Stars represent significances after hypergeometric test with 
Bonferroni correction (* at 0.05 level, ** at 0.01 level and *** at 0.001 level).  
 

 Second, we observed another statistical problem in Moyers and Zhang’s (2015) 365 
critique of our finding that human disease genes are enriched in ancient genes relative to 

young ones, which was originally shown by assessing the significance of log-odds ratio per 

phylostratum (Domazet-Lošo and Tautz 2008). In Moyers and Zhang’s analyses, a set of 

human genes was simulated and they reported "a positive correlation between the inferred age 

of a gene and its probability of being a disease gene (Spearman’s ρ = 0.623, P = 0.004; Fig. 370 
4)." (quote from (Moyers and Zhang 2015). This statement is actually different from our 

finding that two phylostrata (origin of life and origin of metazoans) show a significant 

enrichment of disease genes and that young genes are significantly under-represented 

(Domazet-Lošo and Tautz 2008). In fact, given that Moyers and Zhang’s simulation 

framework assumes that all genes, including all disease genes, are old, their analysis could not 375 
have returned any other result than that the disease genes tend to be old. Indeed, the oldest 

phylostratum is an attractor where they placed all genes, including all disease genes. With this 

input constraint, it is very hard to produce conditions, by any realistic simulation, that would 

return the result that disease genes have no tendency to be old. Hence, Moyers and Zhang’s 

correlation analysis was circular. 380 
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 Third, we investigated whether the evolutionary continuum of structural and 

functional features in fungal ORFs reported by Carvunis et al. (2012) and Abrusán (2013) 

could be attributed to false negatives in BLAST, as claimed by Moyers and Zhang (2016). In 

the original study, Carvunis et al. (2012) had included several controls to show that the 

observed correlation between conservation level and ORF length was not an artifact of 385 
BLAST errors. They showed that a significant correlation could be reproduced even when 

limiting analysis to ORF sequences with BLAST hits covering at least 80% of sequence 

length, and they implemented a series of partial correlations to control for the known cross-

correlations between length, expression level and evolution rates. Furthermore, all 

correlations reported by Carvunis et al. (2012) were checked for robustness by verifying that 390 
significance was also observed when excluding very young ORFs and when sampling only 50 

ORFs from each phylostratum (100 bootstrap simulations per correlation statistics). Moyers 

and Zhang (2016) did not reproduce any of these controls.  

 To determine whether BLAST errors as estimated by Moyers and Zhang (2016) may 

nevertheless explain the observed evolutionary continuum, we revisited the original analyses 395 
after excluding all ORFs deemed to be susceptible to the BLAST artifact by Moyers and 

Zhang (2016). We calculated the Kendall correlations between various sequence features and 

evolutionary age, where age was inferred in three different ways: by phylostratigraphy on 

simulated ancestor sequences (as performed by (Moyers and Zhang 2016)), by 

phylostratigraphy on the real sequences (as performed by (Carvunis et al. 2012)) of the same 400 
5,878 ORFs included in the simulations, and by phylostratigraphy on the real sequences (as 

performed by (Carvunis et al. 2012)) of 5,209 ORFs shown to be robust to the BLAST false 

negative errors by Moyers and Zhang’s simulations (i.e. after removing all ORFs found to be 

young in the simulations). All trends reported by Carvunis et al. (2012) were qualitatively the 

same and statistically robust to the BLAST false negative rate, as they held up after removing 405 
the subset of ORFs susceptible to have been erroneously classified as young in the original 

study (Figure 5, Table 1). Hence, rather than undermining the original conclusions, the 

simulation approach actually strengthens them. 
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Figure 5: Distribution of six biological features for 5,878 S. cerevisiae ORF sequences with 410 
age inferred from real data (grey), for the same 5,878 ORF sequences with age inferred in 
simulations (black) and for 5,209 ORF sequences shown to be robust to potential BLAST 
artifact because they are assigned to the oldest age group in the simulation, with age inferred 
from real data (white). Vertical error bars represent standard error of the mean (A and B), 
standard error of the proportion (C, D and E) or standard error of the median (F). 415 
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Table 1: Correlations (Kendall’s tau) between inferred ORF age and various biological 
features. 420 
Comparison ORF 

Length 

RNA 

abundance 

Proximity 

to TFBS 

CAI Purifying 

selection 

Optimal 

AUG 

context 

              

All real proteins 0.39** 0.26** 0.08* 0.31** 0.32** 0.13** 

Real proteins, 

robust to BLAST 

artifact 

0.33** 0.17** 0.07* 0.25** 0.23** 0.09* 

Simulated 

proteins 

0.28** 0.26** 0.06* 0.21** 0.27** 0.12** 

* P<0.05. ** P<1E-16. Note that the conservation levels in the original Carvunis et al. (2012) 
paper and the first half of Table 1 from Moyers and Zhang (2016) comprised level 0, which 
corresponds to non-annotated S. cerevisiae ORFs, plus levels 1 to 10, estimated by 
phylostratigraphy on real or simulated sequences. Here only levels 1 to 10 are considered. 
 425 
 

 We next sought to understand why the simulation approach yielded results that were 

somewhat comparable to the real data. As mentioned above, in their simulations, Moyers and 

Zhang (2015; 2016) started with the real sequences – rather than in silico generated random 

sequences – and let them evolve randomly according to rate parameters inferred from real 430 
alignments among closely related species. Hence, the true features of these sequences are 

inherently still implied in the model, i.e. the same sequences that are short or fast evolving in 

reality are also short or fast-evolving in the simulations. These sequences in turn are most 

likely to be misclassified in the simulations since length and evolution rate affect the 

performance of BLAST. This leads to circularity, since it has been well established that 435 
recently emerged genes are short and evolve rapidly, in part through studies of closely related 

species where no BLAST error could reasonably be invoked (Reinhardt et al. 2013; Palmieri 

et al. 2014; Ruiz-Orera et al. 2015).  

The effect becomes very evident when one looks at the overlap between the real 

sequences placed at particular nodes and the simulated equivalents (Figure 6). Of 6,629 D. 440 
melanogaster sequences and 5,878 S. cerevisiae sequences with ages inferred both in the 

original phylostratigraphies and in simulations, only 1,324 and 699 appear susceptible to 

BLAST error for D. melanogaster and S. cerevisiae, respectively. The vast majority of these 

sequences (76% and 88% for D. melanogaster and S. cerevisiae, respectively) were also 

assigned a young age group in the original phylostratigraphies. Given these overlaps, it is 445 
evident that the characteristics of sequences of any given age group will be somewhat 
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comparable between simulated and real data, since the simulated data comprises mostly of 

sequences in the real data, with noise added and without dissociating the age-influencing 

features (length and divergence rate) from other features such as expression level. It is this 

circularity, rather than the false negative rate of BLAST per se (the alleged ‘phylostratigraphy 450 
bias’), that leads to seemingly similar patterns in the real and simulated data. If one wanted to 

assess whether the false negative rate of BLAST per se would give rise to such significant 

patterns, one should randomly distribute the rate parameters across genome sequences to 

simulate their evolution along the phylogeny in a manner that would be independent of their 

true features.  455 
 

 
Figure 6: Pie charts representing sequences in the real phylostratigraphy and their relation to 
the BLAST artifacts in the Moyers and Zhang simulations for D. melanogaster (A) and S. 
cerevisiae (B). The majority (74%) of sequences found young in real data are robust to 460 
BLAST artifact (grey). Some sequences are found ancient in the real data but not in the 
simulated data (black), indicating that the phylostratigraphic methods used in the real data 
were more sensitive than those used on the simulated data. The only sequences whose 
phylostratum of origin may be underestimated are in red. For Drosophila, a conservative 
approach was taken where we counted as susceptible to BLAST artifact all sequences found 465 
young in at least one of 10 simulation runs. For yeast, a single run was performed and 
analyzed. Note that the proportion of sequences found young is larger in Drosophila (A) than 
in yeast (B) because the species tree considered is much deeper.   
 

 470 
Phylostratigraphy and de novo evolution 

 As already pointed out above, Moyers and Zhang (2016) address the question of de 

novo evolution only rather indirectly. Since it is generally acknowledged that strong evidence 

for de novo evolution can only be derived from shallow phylogenies where the non-coding 
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sequences that gave rise to the newly evolved genes can still be traced, it is of less relevance 475 
to test BLAST error in deep phylogenies. Instead, one should focus on the youngest age 

classes, for example the first three in the Carvunis et al. (2012) paper. Moyers and Zhang 

(2016) find 14 misplaced hits in the yeast simulated data, while there are 445 in the real data, 

i.e. over 30 times more. An unbiased observer would consider this as strong evidence for the 

reported notion of a particularly high emergence of putative de novo genes in young 480 
phylostrata (Tautz and Domazet-Lošo 2011). But Moyers and Zhang (2016) prefer to discuss 

this away by claiming that they have underestimated the simulated divergence by not 

applying a covarion model. However, as pointed out above, a covarion model with realistic 

parameters would not change these numbers much.  

 Moyers and Zhang (2016) propose an additional criterion for credible de novo 485 
evolution, namely a requirement to show signs of purifying selection. However, this is not 

seen as a strict requirement by others in the field, for two reasons. First, some investigators 

have regarded recently evolved ORF sequences lacking selection signatures as interesting 

entities representing intermediate “proto-gene” stages (Carvunis et al. 2012) that may harbor 

valuable information to study the mechanisms leading to the emergence of new genes even if 490 
they are not per se functional. These may be part of a proposed life cycle of sequences 

switching between a stochastic and an adaptive phase (Neme and Tautz 2014). Second, even 

when the interest lies in identifying adaptively evolving canonical genes of recent 

evolutionary origin, classic dN/dS tests of purifying selection are not considered efficient 

since very young de novo genes typically do not have acquired enough new mutations to 495 
allow these tests to become significant.  

 In the case of S. cerevisiae, Moyers and Zhang (2016) re-analyzed 16 ORFs found to 

be S. cerevisiae-specific and to show evidence of selection in the original study by Carvunis 

et al. (2012). Moyers and Zhang (2016) argue that these ORFs are not species-specific and 

lack evidence of selection. However, the methodologies used to determine species-specificity 500 
and estimate selection are very different between the two studies. Of the 16 sequences, 15 

partially overlap a more conserved gene on another reading frame (overlaps are frequent in 

the compact yeast genomes). Carvunis et al. (2012) concentrated on the regions of these 

ORFs that were free from overlap and found them to be S. cerevisiae-specific. In contrast, 

Moyers and Zhang (2016) consider the full-length ORF sequences and found them to be more 505 
conserved. This is not surprising, since the full-length sequences include sequences pertaining 

to other genes on alternative reading frames that are indeed more conserved.  

To estimate the strength of selective pressures, Carvunis et al. (2012) used the full-

length sequences based on the assumption that the codon-level evolution of the alternative 

reading frames would not influence estimations of dN/dS on the ORF sequences of interest. 510 
Moyers and Zhang (2016) challenged these assumptions and focused this time on the overlap-
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free regions of the sequences to re-estimate dN/dS. However, they report only between 0-3 

SNPs per region. These low numbers prevent any statistical assessment of whether the 

number of non-synonymous SNPs compared to the synonymous ones is more or less than 

what is expected under neutrality using a Fisher test. They are aware of this limitation by 515 
stating in the discussion "Nonetheless, we recognize that statistical tests of natural selection 

may be powerless for species-specific genes because only intraspecific polymorphism data 

may be used and because newly created de novo genes may be short." We note that this is 

very different from the claim made in the abstract that "there is no evidence of purifying 

selection on very young de novo genes". The correct statement should have been that there is 520 
not enough statistical power to determine the amount of purifying selection based on the non-

overlapping regions of these recently-evolved ORFs.  

 Moyers and Zhang (2016) concede that ‘nothing is wrong with the theoretical model 

of de novo gene birth’. Their fundamental point of contention with Carvunis et al. (2012) and 

Abrusán (2013), which goes beyond a mere supposed 11% false negatives, is that the original 525 
publications did not explicitly state why the observed trends would be expected from the de 

novo gene birth model. For example, Moyers and Zhang wonder ‘why the refinement of 

biological function of an ORF has to occur by increasing the ORF length rather than by 

decreasing the length’, why ‘the mean hydropathicity should decrease’ etc.  They are 

particularly surprised to see that many of the trends continue even for older phylostrata, ‘as if 530 
the maturation of de novo genes takes more than 500 Myrs’. Let us here clarify these 

questions.  

 The prediction of the proto-gene model for de novo gene birth is actually broader than 

any single descriptor of genes such as length or hydropathicity: it is that the functional and 

structural characteristic of ORFs should follow an evolutionary continuum between non-genic 535 
sequences and genes (Carvunis et al. 2012). For example in the case of S. cerevisiae, non-

genic sequences are rippled with short ORFs thought to appear and disappear by chance 

through neutral mutations. In contrast, canonical protein coding genes with established 

biological functions are on average much longer. Thus, the continuum prediction of the de 

novo gene birth model is that, in Ascomycota, ORF length should increase on average with 540 
evolutionary conservation. This is not meant to imply that ORF length would continuously 

increase, for all ORFs, over extended periods of evolutionary time. Rather, the statement 

simply indicates that, since the randomly appearing ORFs are virtually all short, only those 

that have been maintained over longer periods of time can be long, which leads to an increase 

of average length over time-since-emergence. This trend is indeed also seen in studies of 545 
vertebrate taxa (Toll-Riera et al. 2009; Neme and Tautz 2014). One could imagine that the 

continuum prediction would actually predict the opposite trends in species where randomly 

appearing ORFs would tend to be longer, as may be the case in the Mycoplasmataceae 
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lineage, which uses only two stop codons (Tatarinova et al. 2016). Because the continuum 

prediction is so general, it allows investigators to discover evolutionary trends without a priori 550 
suppositions of how de novo proteins should evolve. Rather, the data can be examined with an 

open mind thanks to the power of phylostratigraphy.  

 Moyers and Zhang (2016) discuss also whether there is a prevalence of origination of 

new genes via gene duplication or de novo evolution. Carvunis et al. (2012) have discussed 

long-term trends and concluded that de novo evolution may be more frequent. This was also 555 
the finding of Neme and Tautz (2014) in vertebrates. The overall pattern of extensions of 

transcript length, number of exons, length of ORFs and acquisition of domains makes it more 

likely that new genes are initially short. If one would want to explain such trends through a 

duplication-divergence model, one would have to assume either that short genes are more 

likely to be duplicated, or that genes become shorter after duplication. Neither of these trends 560 
have so far been reported.  

 

Conclusion 
 The studies by Moyers and Zhang have revisited previously discussed important 

issues, but have failed to provide much new insights or evidence for the existence of a 565 
hypothetical phylostratigraphic bias due to the use of BLAST. Still, for genes that have arisen 

at deep phylogenetic nodes, there will be some uncertainty whether they evolved according to 

the duplication-divergence or the de novo evolution model. But as pointed out in the 

introduction, this is of secondary importance for tracing evolutionary patterns through 

phylostratigraphy. For genes that have arisen very recently, there is now overwhelming 570 
evidence that de novo gene birth has occurred repeatedly in many lineages, where possible 

deficiencies of detection via BLAST play no practical role. There is no reason to assume that 

the proven high rate of de novo evolution of transcripts has not occurred throughout 

evolutionary history. Although the turnover of de novo genes seems very high (Palmieri et al. 

2014; Neme and Tautz 2016), some will inevitably have been retained, in particular at times 575 
of major radiations and evolution of new lineages (Tautz and Domazet-Lošo 2011). We 

concur with Moyers and Zhang´s (2016) suggestions that gene by gene studies will provide 

deeper insights into these questions and that phylostratigraphic methodologies could be 

further improved to date the emergence of sequences with even higher accuracy. Research in 

this direction should consider not only BLAST false negatives, where sequences appear 580 
young versus ancient and fast evolving, but also false positives, where BLAST hits are 

spurious versus true homologues of the query sequences.  However, we refute the conclusion 

that genome-wide evolutionary trends are "insufficient and confounded by phylostratigraphic 

error." Instead, the data presented here demonstrate unequivocally that phylostratigraphic 
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analyses of patterns of gene emergence and evolution are robust to the false negative rate of 585 
BLAST, whether it is in the range of 5% or 15%. Finally, the errors we detected in the 

Moyers and Zhang´s (2015) analyses urge for the careful use of statistics when testing 

phylostratigraphic patterns.    

 

 590 

Methods 
Reanalysis of Moyers and Zhang 2015 dataset and statistics 

Moyers and Zhang kindly sent us their dataset with list of genes that contained 

ectoderm, endoderm and mesoderm and their simulated phylostrata over 10 simulation runs. 

For our saturation analysis (Figure 2), we generated 15 random permutations of these 10 595 
simulation runs. For each permutation, we calculated the number of Drosophila melanogaster 

genes found young in the real phylostratigraphy (lacking a detected ancestor at Cellular Life) 

that could have been misplaced when considering the union of 1 simulation, 2 simulations, 

…, 10 simulations. We then averaged the numbers over the 15 random permutations. We also 

repeated their ontogeny analysis and calculated hypergeometric tests with Bonferroni 600 
correction for all 10 runs and three germ layers (supplementary table S2). We created our Fig. 

3A to match their Fig. 3C by using average values of 10 runs. To be able to calculate 

significances by hypergeometric tests we rounded rational numbers obtained by averaging to 

integers. 

 605 
Phylostratigraphic reanalysis of the expressions in the fruit fly germ layers 

To allow broad sequence similarity searches we first built a custom built protein 

database by combining complete genomes from National Center for Biotechnology 

Information (NCBI), Ensembl and Joint Genome Institute (JGI). In total we collected 

113,834,351 protein sequences from 25,223 genomes. To reduce large redundancy of 610 
prokaryotic sequences (23,675 prokaryotic genomes) we clustered prokaryotic parts of the 

database with the CD-HIT at 90% identity (Li and Godzik 2006). After this procedure our 

database contained 43,899,817 protein sequences. For comparison, in the original study we 

used a database that comprised 2,777,855 protein sequences (only around 2% of the present 

database size). 615 
We compared 13,389 protein sequences of Drosophila melanogaster retrieved from 

the Ensembl database (Yates et al. 2016) against the protein database by using the similarity 

search algorithm BLASTP (Altschul et al. 1997) at E-value cut-off of 1e-03 (Domazet-Lošo 

et al. 2007). Using the obtained BLAST output we mapped the fruit fly genes onto a 

consensus phylogeny (12 phylostrata) using the most-distant BLAST match above the 620 
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significance threshold (BLAST E-value less than 1e-03) as described in the original study 

(Domazet-Lošo et al. 2007). This updated Drosophila phylostratigraphy is provided in 

supplementary table S1. 

 

Drosophila expression data and statistics 625 
We retrieved in situ hybridization expression data for 4,157 fruit fly genes that show 

tissue-specific expression during ontogeny from the Berkeley Drosophila Genome Project 

(Tomancak et al. 2002). In total, this set of genes contributes to 38,627 expression domains 

expressed over multiple tissues and the different stages of the ontogeny. In the original study 

we had used 1,967 genes with 10,432 expression annotations (only around 27% of the present 630 
expression dataset). We divided the fruit fly expression dataset into subsets corresponding to 

the specific germ layer (either ectoderm, endoderm or mesoderm). For every germ layer we 

performed an over-representation analysis by comparing a frequency of expression domains 

in a phylostratum to a frequency in the total dataset (expected frequency) (Domazet-Lošo et 

al. 2007; Domazet-Lošo and Tautz 2008; Domazet-Lošo and Tautz 2010b; Šestak et al. 2013; 635 
Šestak and Domazet-Lošo 2015). Obtained deviations, i.e., more or less expression than 

expected, are depicted in the figures by log-odds ratios and their significance was tested by 

two-tailed hypergeometric tests (Rivals et al. 2007) controlled for multiple comparisons via a 

Bonferroni correction. 

 640 
Fungal data and statistics 

The conservation levels of S. cerevisiae ORFs was estimated by Carvunis et al. 

(2012) and simulated by Moyers and Zhang (2016). Moyers and Zhang kindly provided us 

with the results of their simulations. Only 5,878 ORFs that were assigned a conservation level 

by both studies are included here. ORF characteristics (length, expression level etc.) were 645 
taken as in Carvunis et al. (2012). Distributions, error bars and p-values were computed using 

R scripts.  
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