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Abstract	
	
The environmental metabolome is a dominant and essential factor shaping microbial 
communities. Thus, we hypothesized that metagenomic datasets could reveal the 
quantitative metabolic status of a given sample. Using a newly developed bottom-up 
ecology algorithm, we predicted high-resolution metabolomes of hundreds of metagenomic 
datasets from the human microbiome, revealing body-site specific metabolomes consistent 
with known metabolomics data, and suggesting that common cosmetics ingredients are 
some of the major metabolites shaping the human skin microbiome.	
	
	
Main text	
	
Microbial communities constantly adapt to exploit available resources [Martiny 2015]. As a 
result, the presence of specific microbes or distributions of microbes allows us to infer 
environmental features. For example, the altered metabolic conditions in the 
microenvironment of colorectal cancer (CRC) tumors select for the outgrowth of specific 
species in the human CRC microbiome [Tjalsma 2012], allowing cancer detection [Zeller 
2014]. Similarly, microbes can serve as biosensors for geochemical features such as 
solvent or uranium contamination [Smith 2015]. These and many other empirical examples 
of significant associations between the environment and the microbiota [Merrifield 2016, 
Adams 2015] suggest that the composition and metabolic potential of microbial 
communities could be used to reconstruct the metabolic environment through a reverse 
engineering strategy.	
	
Shotgun metagenomics rapidly inventories the composition and genomic content of 
microbiomes, but obtaining similarly high-resolution metabolomic measurements of 
microbial environments remains challenging, among others due to the hundreds to 
thousands of biochemical compounds that may be difficult to distinguish using commonly 
used mass spectrometry-based technologies [Marcobal 2013]. Here we address this 
challenge by developing a novel approach that predicts the metabolic environment of a 
microbial community based on its metagenome, by using the inferred metabolism and 
abundance profiles of community members as input.	
	
The main premise of our approach, which we named bottom-up ecology, is that the 
metabolic potential of a microbiome that is encoded in the genes of the species and their 
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wiring into pathways, reveals how it can exploit the available metabolic resources. Using 
bottom-up ecology, we can quantitatively infer these resources by identifying the metabolic 
environment that yields growth of these microbes in the relative abundances as observed 
in the metagenome. Our approach is outlined in Figure 1 (see Supplementary Methods for 
details). First, we use reference genome sequences to generate genome-scale metabolic 
models of the species encountered (GSMMs) by using an established automated pipeline 
(1) [Henry 2010]. GSMMs provide a minimally biased description of the metabolic 
preferences of a microbial genome by integrating prior knowledge about protein functions 
based on information from many model and non-model organisms, and can be used to 
model the fluxes through the cellular metabolic network [Henry 2010]. Next, we determine 
the relative abundances of these organisms in the microbiome by mapping the 
metagenomic reads against the reference genomes (2). We can now ask the question, 
which metabolic environment would lead to relative growth rates of the GSMMs (3) that 
best correlate with the observed relative abundances (4), where growth is defined as the 
sum of all fluxes in biomass reactions in the GSMMs [Henry 2010]. Flux balance analysis 
(FBA) allows the growth or biomass production of GSMMs to be estimated given certain 
constraints. We constrain the GSMMs of all the microbes found in a metagenome by 
providing the same metabolic environment (modeled as an upper bound to the import 
reactions of metabolites) and assuming the same cellular objective of growth. Finally, we 
use semi-Markov chain sampling of the highly dimensional metabolome solution space to 
identify the metabolomic composition leading to the GSMM growth profile that optimally 
correlates with the abundance profile of the microbial genomes observed in the 
metagenome (5).	
	

	
Figure 1. Algorithm for bottom-up ecology from metagenomes to metabolomes. See text 

for details.	
	
To test our bottom-up ecology approach in a well-controlled system, we generated nine in 
silico metabolic environments by sampling random metabolites according to a realistic 
distribution (see Supplementary Methods). Next, we inferred growth of GSMMs generated 
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from the bacterial reference genomes of the Human Microbiome Project (HMP) 
[Consortium 2012], and assumed that the microbes with the highest growth rates would be 
the most abundant in the simulated metagenomes. Using only the predicted abundance 
values of the best growing species, we then re-inferred the environment based on their 
relative abundance profiles. As expected, the metabolomes inferred by using bottom-up 
ecology correlate with the metabolomes on which the species were grown, while this 
correlation is absent when comparing metabolomes predicted from non-matching species 
(Figure 2a). Importantly, correct inference of the metabolic environment depends on the 
information from the entire simulated microbial community. For example, the correlation 
values on the diagonal in the top-20 species plot were significantly lower than in the top-
100 species plot (P-value=0.04, one-tailed paired T-test of nine values, see Figure 2a).	
	

	
Figure 2. Pearson correlations between true and predicted metabolomic profiles. In A, the 
“true” metabolomes consist of nine random metabolic environments created in silico, while 
the predicted metabolomes were inferred using the top-20, top-40, top-60, top-80, and top-
100 best growing species in those environments. In B, the “true” metabolomes consist of 

six experimentally measured metabolomes from literature, while the predicted 
metabolomes were inferred using 175 HMP metagenomes from four body-sites. 

Correlations are only shown if >5 metabolites of the predicted metabolites were measured 
and vice versa. See Supplementary File 2 for details.	

	
Next, we tested the ability of the bottom-up ecology algorithm to infer the metabolomic 
environment in multiple human body-sites. We used 175 metagenomic datasets from four 
different body-sites (oral, skin, stool, and vaginal) where the relative abundances were 
measured of over one thousand reference bacteria [Consortium 2012]. A principal 
component analysis of the resulting predicted metabolomic environments revealed four 
clusters corresponding to the origin of the metagenomes (Supplementary Figure 1a), as 
was reflected in the body-site specific microbiomes that were previously observed 
[Consortium 2012]. This clustering was independent of the initialization of our algorithm in 
the highly dimensional metabolome search space. For example, searches based on oral 
metagenomes that were initiated with predicted skin metabolomes quickly converged to 
the oral metabolome cluster (Supplementary Figures 1b-e). Thus, our bottom-up ecology 
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algorithm predicted consistent and specific metabolomes for the human microbiome body-
sites. 
	
The metabolomes inferred from the HMP metagenomes allowed us to identify the most 
important metabolites in the different human body-sites. Due to the difficulties in obtaining 
quantitative, high-resolution metabolomic profiles of a sample [Marcobal 2013], there are 
relatively few experimental datasets that could be used for experimental benchmarking of 
our bottom-up ecology algorithm. From the Human Metabolome Database [Wishart 2013], 
we obtained three annotated metabolomes from saliva and one from fecal water. 
Moreover, we included one additional metabolome from a fecal incubator and one from 
vagina from recent literature [Kortman 2016, Vitali 2015]. We linked measured metabolites 
between these studies and our models (Supplementary File 1) and correlated the 
metabolomic profiles of these six independently measured metabolomes to the values of 
the metabolites inferred by bottom-up ecology from the 175 HMP metagenomic datasets. 
As shown in Figure 2b, the oral metagenomes are linked to the saliva metabolomes, the 
stool metagenomes to the fecal water and fecal incubator metabolomes, and the vaginal 
metagenomes to the vaginal metabolome (P-value≈0, one-tailed unpaired T-test). These 
results show that the metabolomic environment of a microbiome can be quantitatively 
captured in high-resolution by our bottom-up ecology algorithm.	
	
To our knowledge, no high-throughput human skin metabolome has been measured to 
date. To identify the main metabolites on the human skin, we averaged the relative 
concentrations of all metabolites in the metabolomes predicted based on 50 skin 
metagenomes (Supplementary File 1). Interestingly, the top compounds shaping the skin 
microbiome include various ingredients found in cosmetic and hygiene products 
(Supplementary Table 1). For example, myristic acid is used as a fragrance ingredient, 
cleansing agent, and emulsifier, and is readily adsorbed by the skin. Similarly, citrate is a 
commonly used ingredient to adjust the acidity of cosmetics. Nicotinamide ribonucleotide, 
aspartate, and N-acetyl glucosamine are used in skin conditioner products. Moreover, N-
acetyl glucosamine is a precursor to hyaluronic acid, a major component of skin structure, 
a pathway that responds to UV irradiation in skin [Averbeck 2007]. These results provide a 
first look into the metabolites shaping the human skin microbiome [Bouslimani 2015, Grice 
2011].	
	
Our bottom-up ecology approach exploits the fact that in an ecosystem, microbes are 
constantly competing for resources, leading to a relative abundance distribution reflecting 
their ability to exploit these resources. Metagenome-guided modeling enables a deeper 
understanding of microbial ecosystems by linking the environmental metabolome to the 
metabolic network of individual microbial populations [Levy 2013]. By explicitly modeling 
the fluxes of individual GSMMs that are matched with the species composition of the 
system in a probabilistic fashion, our approach provides a starting point for mechanistic 
models of microbial ecology, including the potential for systems with more complex cross-
feeding networks [Garza 2015].	
	
While our results show meaningful metabolomic profiles for diverse human body-site 
environments, there is still a relatively high level of noise (Figure 2b). First, it should be 
noted that the metagenomes and metabolomes used in this benchmark were measured 
and published independently in systems that may differ in unknown ways, e.g. a fecal 
incubator versus fresh stool. Second, automatically reconstructed GSMMs have ~70% 
agreement with experimentally measured microbial phenotypes [Henry 2010, Plata 2015], 
adding significant noise to the inferred metabolomic profiles. Third, our algorithm depends 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 24, 2016. ; https://doi.org/10.1101/060673doi: bioRxiv preprint 

https://doi.org/10.1101/060673
http://creativecommons.org/licenses/by-nc-nd/4.0/


on the availability of reference genome sequences to derive these GSMMs, as do 
approaches that exploit environmental sequencing data to make inferences about the 
genetic functionality of a microbial ecosystem [Langille 2013, Aßhauer 2015]. Ongoing 
work addressing these points is expected to improve bottom-up ecology as an approach to 
predict metabolic features of microbial environments, also in environments that are less 
well-sampled than the human microbiome. Nevertheless, it is promising that we can 
already reconstruct the metabolomes of human body-site environments by starting only 
from the metagenomic content of the microbial community.	
	
	
Supplementary Methods	
	
Datasets	
From the US Department of Energy Systems Biology Knowledgebase (KBase, 
www.kbase.us) and the Human Microbiome Project (HMP, www.hmpdacc.org) 
[Consortium 2012, Martin 2012] we downloaded the human microbiome reference 
genomes and their abundance profiles in 175 metagenomes, respectively, including 37 
oral, 50 skin, 39 stool, and 49 vaginal metagenomes (listed in Supplementary File 1). 
Experimentally measured metabolomic profiles were obtained from the Human 
Metabolomics Database [Wishart 2013], including one from fecal water [Gao 2010] and 
three from saliva [Tsuruoka 2013, Sugimoto 2013, Dame 2015]. Additionally, one stool 
[Kortman 2016] and one vaginal [Vitali 2015] metabolome were obtained from recent 
literature.	
	
Metabolic modeling	
We used the ModelSEED pipeline [Henry 2010] to generate genome-scale metabolic 
models (GSMMs) for the 1,145 HMP reference genomes that were present in at least one 
of the metagenomic datasets. Briefly, genomic annotations were used to identify the 
biochemical reactions in a species’ metabolic network. The molecular stoichiometry of 
these reactions was expressed in a matrix that transforms reaction-rates to the time-
derivative of metabolite concentrations. The nullspace of this matrix contains the equilibria 
solutions for reaction rates. Parsimonious gapfilling was applied by adding the minimal 
possible set of reactions to the model that are essential for a model to grow, i.e. to yield a 
flux through the biomass reactions [Henry 2010]. Gap-filled reactions were likely missed 
during sequencing, assembly, or genome annotation. We excluded dead-end exchange 
reactions from the models that remained unresolved after gap filling or had no influence on 
the objective function. Flux balance analysis (FBA) simulations were performed in a 
Python 2.7 environment, using the COBRApy package for constraint-based modeling 
[Ebrahim 2013] and Gurobi 5.6.3 (www.gurobi.com) or GLPK 4.35 
(www.gnu.org/software/glpk) as linear programming solvers. To reflect the constant 
competition between microbes, we used growth as the objective function in the FBA [Orth 
2010]. 
	
Bottom-up ecology algorithm	
The input of our bottom-up ecology approach (outlined in Figure 1 and main text) are (i) a 
list of microbes and their relative abundances, and (ii) a database of GSMMs generated 
from the genomes of these microbes. Thus, the approach depends on the availability of 
high-quality draft reference genome sequences, as are available for the microbes found in 
the human microbiome and increasingly also for other environments. Typically, one GSMM 
will have 35-80 exchange reactions representing the metabolic compounds that the 
organism can utilize. Depending on the complexity of the microbiome, the GSMMs of all 
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the microbes in a community together will be able to utilize >200 different metabolites. 
These combined exchange reactions represent the metabolites whose environmental 
concentrations are inferred by the bottom-up ecology framework.	
At the core of the approach is an optimization algorithm that searches the >200-
dimensional metabolome search space for a composition of the metabolomic environment 
that, when applied simultaneously to the GSMMs of all co-existing microbes using FBA, 
yields a relative biomass production profile b that correlates with the abundance profile m 
of the microbes in the metagenome. The metabolic compound concentrations are modeled 
in the FBA as an upper bound to the influx reaction. We use Monte Carlo optimization 
following a semi-Markov chain to search the highly dimensional solution space. After 
random initialization (or initialization with a decoy metabolome as in Supplementary 
Figures 1b-e), a new candidate environment e’ is generated from the current environment 
e, by slightly altering the concentration of one metabolite following a uniform distribution. 
The maximum biomass production rates of all GSMMs are then evaluated for the 
candidate environment, and the change is accepted if the Pearson correlation of the 
metagenomic abundances with the growth rates in the candidate environment, ⍴(m,be’) is 
higher than for the current environment ⍴(m,be), or with a uniform probability 
⍴(m,be’)/⍴(m,be) otherwise. Every 150 search steps, the algorithm evaluates the past 
outcomes and chooses the environment that yielded the highest correlation [Barbu 2008]. 
Samples are first subjected to 100,000 search steps, and 100,000 steps are subsequently 
added until a high Pearson correlation (⍴>0.6) with the target metagenomic abundance 
profile is achieved. Finally, the 10% time points with the highest Pearson correlation 
scores between the biomass profile and the metagenomic abundance profile are averaged 
and constitute the predicted metabolome. Note that the correlation that is optimized using 
the semi-Markov chain is the correlation ⍴(m,be) between the metagenomic species profile 
m and the biomass production rates be, while the correlations that are shown in our results 
(e.g. in Figure 2b) are correlations between the predicted metabolome e and 
experimentally measured metabolic concentrations.	
The Cython/Python implementation of the bottom-up ecology algorithm are available at 
https://github.com/danielriosgarza/Bottom_Up_Ecology_Functions.	
	
In silico random metabolomes	
To test the bottom-up ecology algorithm in a well-controlled system, we generated nine 
random metabolomes in silico. To implement a realistic metabolite distribution in these in 
silico metabolomes, we first used maximum likelihood estimates to assess the shape, 
location, and scale parameters that most accurately fit the distribution of metabolite 
abundances in all 175 predicted metabolomes. We fitted 74 common statistical 
distributions and found that most of the metabolomes could be modeled by right-skewed 
positive distributions, the Burr (type III) distribution resulting in the lowest average square 
mean errors (Supplementary Figure 2). Thus, nine random metabolic environments were 
drawn according to this distribution, and GSMMs based on all HMP reference genomes 
were grown on each in silico metabolome and sorted by growth rate. Finally, metabolomes 
were re-inferred based on the relative abundance profiles of the top-20, top-40, top-60, 
top-80, and top-100 best-growing species.	
	
Statistical analysis	
Statistical analysis, including the maximum likelihood estimate for statistical distributions 
were performed on a Python 2.7 environment, using the "stat" statistical package of Scipy 
0.15.1. Principal coordinate analyses were performed using the scikit-learn package.	
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Supplementary Figure 1. (A) Principal co-ordinate analysis of metabolome profiles inferred 
from 175 metagenomes from four different body-sites, displaying body-site specific 
metabolomes. (B-E) Trajectories of the semi-Markov chain search through the 
metabolome solution space towards the attractor domain of oral (B), skin (C), stool (D), 
and vaginal (E) metagenomes, when for each, the bottom-up ecology algorithm was 
initialized with two predicted metabolomes from the other body-sites.	
 

A:  

B:  
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C:  
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E:  
 
Supplementary Figure 2. Average square mean errors of 74 common statistical 
distributions used to fit the distribution of metabolite abundances in all 175 predicted 
metabolomes. 
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Supplementary File 1. Metabolomic profiles predicted based on 37 oral, 50 skin, 39 stool, 
and 49 vaginal metagenomes, and six experimentally measured metabolomic profiles. 
	
Supplementary File 2. Pearson correlations between 175 predicted metabolomic profiles 
and six measured metabolomic profiles. Correlations are only shown if >5 metabolites of 
the predicted metabolites were measured and vice versa. 
	
Supplementary Table 1. Top 20 metabolites predicted by applying the bottom-up ecology 
algorithm to 50 human skin metagenomes. Complete lists of all predicted metabolomes for 
175 metagenomes are provided in Supplementary File 1. 
	

Metabolite ID	 Chemical 
notation	

Name	 Predicted relative 
concentration	EX_cpd03847_e0	 C14H27O2	 Myristic acid	 0.74 %	

EX_cpd04097_e0	 Pb	 Pb	 0.73 %	
EX_cpd11590_e0	 C8H15N2O3S	 met-L-ala-L	 0.72 %	
EX_cpd00137_e0	 C6H5O7	 Citrate	 0.71 %	
EX_cpd00305_e0	 C12H17N4OS	 Thiamin	 0.70 %	
EX_cpd00276_e0	 C6H14NO5	 GLUM	 0.70 %	
EX_cpd11576_e0	 C5H11NO3S	 L-methionine R-oxide	 0.70 %	
EX_cpd00355_e0	 C11H14N2O8P	 Nicotinamide ribonucleotide	 0.70 %	
EX_cpd08305_e0	 C8H16NO	 crotonobetaine	 0.70 %	
EX_cpd03279_e0	 C10H12N4O4	 Deoxyinosine	 0.70 %	
EX_cpd00122_e0	 C8H15NO6	 N-Acetyl-D-glucosamine	 0.70 %	
EX_cpd00041_e0	 C4H6NO4	 L-Aspartate	 0.70 %	
EX_cpd00129_e0	 C5H9NO2	 L-Proline	 0.69 %	
EX_cpd00107_e0	 C6H13NO2	 L-Leucine	 0.69 %	
EX_cpd00322_e0	 C6H13NO2	 L-Isoleucine	 0.69 %	
EX_cpd01329_e0	 C36H62O31	 Maltohexaose	 0.69 %	
EX_cpd03422_e0	 C48H75CoN11O8	 Cobinamide	 0.68 %	
EX_cpd00108_e0	 C6H12O6	 Galactose	 0.68 %	
EX_cpd00084_e0	 C3H7NO2S	 L-Cysteine	 0.68 %	
EX_cpd00054_e0	 C3H7NO3	 L-Serine	 0.68 %	
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