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ABSTRACT

Molecular regulation was initially assumed to follow both a unidirectional and a hierarchical organization forming pathways.
Regulatory processes, however, form highly interlinked networks with non-hierarchical and non-unidirectional structures that
contain statistically overrepresented circuits (motifs). Here, we analyze the behavior of pathways containing non-hierarchical
and non-unidirectional interactions that create motifs. In comparison with unidirectional and hierarchical pathways, our pathways
have a high diversity of behaviors, characterized by the size and number of attractors. Motifs have been studied individually
showing that feedback circuit motifs regulate the number and size of attractors. It is less clear what happens in molecular
networks that usually contain multiple feedbacks. Here, we find that the way feedback circuits couple to each other (i.e., the
combination of the functionalities of feedback circuits) regulate both the precise number and size of the attractors. We show
that the different sets of expected results of epistasis analysis (a method to infer regulatory interactions) are produced by
many non-hierarchical and non-unidirectional structures. Thus, these structures cannot be correctly inferred by epistasis
analysis. Finally, we show that the structures producing the epistasis results have remarkably similar sets of combinations of
functionalities, that combined with other network properties could greatly improve epistasis analysis.

Introduction
Early approaches considered that molecular regulation is composed of hierarchical and unidirectional interactions, where
“above” molecules regulate “below” molecules, but molecules are not regulated by molecules at the same or lower levels
(molecules usually represent genes and gene products1). Unidirectional and hierarchical interactions form pathways, comprised
by an input, internal molecules, and an output (Fig.1A). Pathway dynamics (i.e., how the components in the pathway are
activated and inhibited in time), follow a sequential order of regulatory events going from the input to the output through the
internal molecules. Even though pathway dynamics seem to be an inherent property of molecular regulation2, 3, molecular
regulation is usually complex, forming highly inter-connected networks that are neither unidirectional nor hierarchical4–6. Our
objective is to systematically study the effect of including non-hierarchical and non-unidirectional interactions within pathways.

Adding interactions within a pathway modifies the pathway structure (i.e., the interaction graph describing who regulates
whom), allowing for the appearance of regulatory motifs. Motifs are statistically overrepresented regulatory interactions found
in molecular networks5. Among the motifs, circular chains of oriented interactions known as feedback circuits, are specially
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relevant, because they regulate both the number and size of the attractors. Attractors are stationary network states that represent
biologically meaningful properties7, such as cell identity8, 9. Positive feedback circuits are necessary to have multiple attractors
and negative feedback circuits are necessary to produce cyclic attractors10, 11. Moreover, the maximum possible number of
attractors is regulated by positive feedback circuits12. It is not completely clear, however, how the precise size and number of
attractors are regulated within molecular networks where many feedback circuits are present13–15. Here, we study how feedback
circuits couple and regulate together the size and number of attractors.

Experimental research at small scales commonly uses traditional analyses that rely on the hierarchical and unidirectional
assumptions. For example, epistasis analysis, as proposed by Bateson, is an analysis regularly used to infer and organize
molecular regulatory interactions that assumes that regulatory interactions are hierarchical and unidirectional and can distinguish
between different pathway structures1, 16. The presence of non-unidirectional and non-hierarchical interactions, however, can
produce incomplete or even wrong gene regulation inferences when using epistasis analysis17. Thus, the study of the properties
of non-hierarchical and non-unidirectional networks is fundamental to detect and solve limitations of traditional analyses. Here,
we explore the capacity of epistasis analysis to infer pathways with non-hierarchical and non-unidirectional interactions and
look for useful traits to distinguish between non-hierarchical and non-unidirectional regulatory structures.

In this work, we use synchronous Boolean networks to do a comprehensive analysis of Pathway-like networks (PLNs) that
are non-hierarchical and non-unidirectional versions of pathways. We focus on the dynamical properties of PLNs, represented
by both the number and the size of attractors. We show that PLNs have a large dynamical diversity in comparison with pathways.
We confirm that feedback circuits are important regulators of the size and the number of attractors in a network. Then, we
show for the first time, as far as we know, that the exact size and number of attractors in networks with multiple feedback
circuits is in large part determined by the combination of the functionalities of feedback circuits. This combination refers to
the network states where the feedback circuits in a network have an actual effect over the network dynamics. Then, we study
the effect of adding non-unidirectional and non-hierarchical interactions on the reach of epistasis analysis to infer regulatory
interactions. Epistasis analysis has different sets of expected results for each possible pathway structure. We show that there
are a vast number of PLNs capable of producing each set of expected results. Thus, epistasis analysis produces incomplete
or even wrong inferences when dealing with non-hierarchical and non-unidirectional regulatory structures. Interestingly, the
epistasis analysis’ sets of expected attractors have the same number of attractors of the same size and are produced by PLNs
with remarkably similar sets of combinations of functionalities. Thus, we explore how to use the combination of functionalities
combined with both the network dynamic and structure to improve epistasis analysis.

Methods
Boolean networks
Molecular networks have variables representing the genes, mRNA, proteins, or any other type of molecules included in the
network. The network structure is represented by the network’s interaction graph, which is a directed graph that describes
the regulatory interactions between the network’s variables. In this work, we use the Boolean formalism to model molecular
networks for the following reasons. (1) Because of their simplicity, Boolean networks are well suited to perform analyses in a
large number of networks, without needing to deal with problems such as parameter estimation. (2) Despite their simplicity,
Boolean networks obtain biologically meaningful results (e.g.,8, 9, 18–20). (3) Feedback circuits are fundamental for this work,
and feedback circuit functionality is well studied in Boolean networks21, 22. (4) Here we will focus on the size and number of
attractors, and it has been proven that in Boolean networks positive and negative feedback circuits are a necessary condition for
multistability and oscillations, respectively 11, 23. (5) We will use epistasis analysis that assumes that the molecules behave as
Boolean variables1, 16. Hence Boolean networks are a natural and simple extension of epistasis analysis.

In Boolean networks, variables can only take one of two possible values, 0 or 1, and their dynamics is described by

xi(t +1) = fi(x1(t), . . . ,xn(t)), (1)

where xi(t +1) represents the value of variable i at the time t +1 as a Boolean function fi of its n regulators x1(t), . . . ,xn(t) at
the current time. In particular, we use synchronous Boolean networks, where the value of all variables is updated at each time
step.

The set of all variables values at time t is a network state. Stationary network states are known as attractors. Single-state,
stationary configurations are known as fixed-point attractors whereas a set of network states that orderly repeat correspond to
cyclic attractors. The size of an attractor is equal to the number of network states that conform such attractor.

For this work it is important to note that not all interactions in a network structure are necessarily functional. Intuitively, an
interaction from a variable i to a variable j is considered functional, if j can change its value due to a change only in the value
of i. The interaction sign is positive, if the change in the value of j goes in the same direction as the change in the value of i, and
is negative otherwise (see Supplementary information for all the formal definitions). Note that a variable can act as a positive
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regulator and as a negative regulator of the same variable in different states. Interactions where a variable is a positive and
negative regulator of another variable are not common in molecular networks and non-functional interactions do not provide
interpretable results. Hence, in the networks analyzed here, we forbid both non-functional interactions and interactions where a
regulatory variable has both a positive and a negative influence over another variable.

A feedback circuit is a set of directed interactions forming a closed path. Feedback circuits can be positive or negative. The
sign of a feedback circuit is given by the signs of its interactions. A circuit is positive if it has an even number of negative
interactions, it is negative otherwise. Similarly to the interactions, the sole presence of a circuit in a network does not guarantee
its functionality. Thus, a circuit is considered functional if all interactions of the circuit are functional in a set of common
network states21. The functionality of a feedback circuit is characterized by the sign and number of network states where the
circuit is functional. The combination of the functionalities of feedback circuits is the set of all circuits functionalities present
in a given network. As a network can have many circuits and each circuit can have many functionalities, a network structure
could produce many different combinations of functionalities.

Pathway-like networks construction
We analyze two types of networks, namely pathways and pathway-like networks (PLNs), both containing different types of
interactions identified with the acronyms MUS, OUS and MP, which stand for mandatory unknown sign, optional unknown
sign, and mandatory positive, respectively (Fig.1D). MUS and MP interactions form a unidirectional and hierarchical pathway
structure (Fig.1A). PLNs contain MUS, MP and OUS interactions (Fig.1B and C). We construct two PLNs variants: single
(1-PLNs) and double (2-PLNs). 1-PLNs is the set of networks that contains a pathway within its structure and at least one OUS
interaction (Fig. 1B). 2-PLNs is the set of networks composed by two parallel pathways regulating the same output and at
least one OUS interaction (Fig. 1C). 2-PLNs may have cross-regulation among their constituent pathways, which is a common
biological situation. The classical pathway structure used in the epistasis analysis is shown in Fig.1A. Note that the added
interactions in 1-PLNs and 2-PLNs create motifs, including feedback circuits.

We used two different approximations to analyze the size and the number of attractors. (1) We simulated each PLN starting
from all its initial conditions until finding all the attractors. The number of initial conditions in any network is equal to 2v,
where v is the number of variables. (2) We use symbolic algorithms to search for PLNs with a specific number and size of
attractors. Is important to note that in most cases, a given network structure can be described by more than one set of Boolean
functions. Thus, there is a vast number possible PLNs structural and dynamical variants. Without considering the sign of the
interactions, the number of possible structures for a network with v variables is equal to 2v2

. The Boolean functions associated
with a variable is 22r

, where r is the number of regulators of the variable. Therefore, the total number of possible Boolean
functions for a completely interconnected network with v variables is 2n×2n

. The analysis of such a number of variants quickly
becomes unfeasible. In particular, there are≈ 4.15×1034 2-PLNs. Thus, we use random sampling or constrained the maximum
number of interactions for 2-PLNs analyses (see Supplementary information for more details).

Results
Non-hierarchical and non-unidirectional interactions greatly increases the dynamical diversity of pathways
Conventionally, molecular regulation is represented as unidirectional and hierarchical pathways, comprised by an input, internal
molecules, and an output (Fig. 1A). To study pathways with more realistic structures, we consider the possibility that the
internal molecules may regulate any component inside the pathway (excluding the input). We call this structure a Pathway-like
network (PLN). We analyzed single (1-PLNs) and double (2-PLNs) PLNs (Fig. 1B and C). PLNs have a non-unidirectional
and non-hierarchical structure. Regarding their dynamics, PLNs are constructed in such a way that the generation of Boolean
functions producing “meaningless” behaviors is forbidden17, 24. Altogether, PLNs contain realistic structural and dynamical
properties (see Methods).

We analyzed the dynamical diversity, measured as the number and the size of attractors in pathways, 1-PLNs and 2-PLNs.
We observed that the dynamical diversity vastly increases from pathways to 1-PLNs to 2-PLNs (Fig.1 E and F). Because the
inputs follow the identity function, the minimum number of attractors is equal to 2|inputs|, where inputs is the set of inputs. The
maximum number of attractors, on the other hand, are 2, 6, and 44 in pathways, 1-PLNs and 2-PLNs, respectively. This increase
is also observed in the mean values, where the mean value of the number of attractors of 2-PLNs is significantly larger than in
1-PLNs (P < 0.001; Fig.1G; see Supplementary information file for detailed information about all statistical results). Similar
results can be observed for the size of attractors. Specifically, the maximum sizes are 1, 4, and 13 for pathways, 1-PLNs and
2-PLNs, respectively. Here, too, the mean value of the size of the 2-PLNs attractors is significantly larger (P < 0.001; Fig.1H).
Also, there is a statistically significant negative relation between the mean size and mean number of attractors (P < 0.001; Fig.
1I and Supp. Fig.1A). Note that both the mean size and number of attractors are much closer to their minimum value than to
their maximum value. This indicates that most networks have a small number of attractors of small size; and at first sight it
seems that they might fit a long-tailed distribution. It is interesting to note that these data do not fit power-law, logarithmic,
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exponential, normal or Poisson distributions. Nevertheless, our results clearly show that the overall diversity of dynamical
behaviors grows from pathways to 1-PLNs to 2-PLNs, represented by the number and the size of attractors.

Feedback circuits role in the regulation of the PLNs attractors properties
To understand what regulates the observed increase in the number and the size of attractors, we focus on feedback circuit motifs.
Positive feedback circuits are necessary for multistability, while negative feedback circuits are necessary to produce cyclic
attractors10, 11. Thus, it seems reasonable to look for relations between the number and size of attractors with the presence of
positive and negative feedback circuits. Indeed, positive feedback circuits are positively related with the number of attractors
(P < 0.001), and negatively related with the size of attractors (P < 0.001). In turn, negative feedback circuits have a negative
relation with the number of attractors (P < 0.001), and a positive relation with the size of attractors (P < 0.001; Fig. 2A-D;
Supp. Fig.1).

To better analyze the effect of feedback circuits on the attractors, we classified the PLNs according to their number and
size of attractors in four categories. (1) PLNs with the minimum number of attractors, whose mean size were bigger than 90%
of the mean of the total set of PLNs analyzed (n–s+). (2) PLNs with more attractors than the 90% of PLNs, all fixed-point
attractors (n+s–). (3) PLNs with the minimum number attractors, all fixed-point (n–s–). (4) PLNs with more attractors than
90% of the PLNs, whose size was bigger than 90% of the PLNs (n+s+) (Fig.3A). Then, to see if the quantity of feedback
circuits in a PLN is important to determine the number and the size of the attractors, first, we compare the total number of
feedback circuits of n+s+, n+s–, n–s+ and n–s– PLNs against all the PLNs analyzed. The total number of circuits, does not
differs between any selection of 1-PLNs and the complete set of 1-PLNs, but it differs between all possible 2-PLNs selections
and the total set of 2-PLNs (Fig. 3B and C and Table 1). Then, we analyzed both the number of positive and the number of
negative feedback circuits. In comparison with all 2-PLNs analyzed, 2-PLNs n+s– and n–s– have significantly fewer positive
and fewer negative feedback circuits, while 2-PLNs n–s+ and n+s+ have significantly more positive and more negative feedback
circuits. In 1-PLNs n+s– and n–s– there are significantly more positive and fewer negative feedback circuits, while the opposite
behavior is observed in 1-PLNs n–s+ (Table 1). As observed, the results differ from 1-PLNs to 2-PLNs, and it is not possible to
understand how the size and the number of attractors is defined from the number of feedback circuits, whether it is the total, the
positive or the negative feedback circuits.

According to Kwon et al.25, the positive/negative feedback circuits ratio provides the trend of the number and the size of
attractors, with larger ratio values for networks with more attractors of smaller size. If this is the case, n+s– PLNs should have a
bigger positive/negative feedback circuits ratio than the complete set of PLNs. On the other hand, n–s+ should have a lower
positive/negative feedback circuit ratio than the complete set of PLNs. Finally, n–s– and n+s+ could have a balance between
positive and negative feedback circuits and not show any difference in their ratio against the complete set of PLNs analyzed. As
observed in Fig.3B and C and Table 1, this is indeed the case in both 1-PLNs and 2-PLNs (P < 0.001). From the circuits ratio
result, we can expect the PLNs n+s– to have more positive feedbacks and fewer negative feedbacks, the opposite behavior for
n–s+, and a similar number of positive and negative feedback circuits in the n+s+ and n–s–. As observed in Table 1, this is the
case in both 1-PLNs or 2-PLNs. Thus, our results support the idea that the positive/negative feedback circuits ratio provides the
correct trend for the size and the number of attractors.

The combination of the functionalities of the feedback circuits regulates the attractors size and number
We detected PLNs n+s- with a lower positive/negative feedback circuits ratio than PLNs n-s+ and vice versa. This result is
opposite to what is expected. The positive/negative feedback circuits ratio cannot explain this type of results, as it do not
provides a mechanistic of how do multiple feedback circuits regulate the size and the number of attractors. Is important
to note that the mere presence of a feedback circuit in the structure of a network does not guarantee the expected behavior
unless the circuit is functional21, 26. For a circuit to be functional, all interactions within such a circuit should be functional
at the same time21. The functionality of the circuits could explain why we can find larger positive/negative feedback circuits
ratio in n–s+ than in n+s– and vice versa. For example, a network with the same number of positive and negative feedback
circuits, but whose negative feedback circuits are not functional, could produce a large number of small attractors, even when
the positive/negative feedback circuits ratios is equal to 1. We find that at least one feedback circuit is functional in all the
PLNs with feedback circuits in its structure. However, not all feedback circuits are functional. This indicates that, (1) due
to the constraints imposed to the PLNs Boolean functions (see Methods), at least one feedback circuit within a PLN will be
functional, but (2) the functionality of each feedback circuit within a PLNs with multiple feedback circuits will depend on how
it interacts with the other feedback circuits and (3) that the coupling among feedback circuits could be behind the regulation
of the attractors size and number. Observe that because the definition of circuit functionality does no imply that the circuit
should be functional in a specific set of network states, it is possible to have a set of functionalities for the same feedback
circuit in a given network structure. Furthermore, since a network can have more than one feedback circuit, it is also possible
for a single network structure to have different combinations of the functionalities of its feedback circuits (hereinafter named
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combinations of functionalities). Different combinations of functionalities reflect different couplings between feedback circuits.
Consequently, we analyzed the combination of functionalities to see if they regulate the size and number of attractors.

To study if the combinations of functionalities are the main regulators of the attractors size and number, we analyzed
such combinations in PLNs containing at least one feedback circuit. In total, all 1-PLNs (8,960) and a sampling of one
million 2-PLNs were analyzed. From these PLNs, we selected the n–s– PLNs to compare them with the total of PLNs. We
selected n–s– PLNs for this analysis, because they are the more common ones, providing the possibility of finding each
combinations of functionalities in more than one PLN in both 1-PLNs and 2-PLNs. We found 680 and 61,951 n–s– 1-PLNs
and 2-PLNs, respectively. In the set of all PLNs, we found 62 and 231,949 combinations of functionalities for 1-PLNs and
2-PLNs, respectively. In the PLNs n–s– there were 8 and 11,260 combinations of functionalities.

We noticed that the number of PLN structures was reduced from all PLNs to PLNs n–s– from 14 to 6 and from 23,786 to
6,983 in 1-PLNs and 2-PLNs, respectively. Given that a combination of functionalities can only be achieved when the PLN
structure contains the feedback circuits that conform with such a combination, we performed an analysis to assure that the
reduction in the combinations of functionalities number is not due to the reduction in PLNs structures. If the PLN structures
reduction are the main cause in the reduction of the number of combinations of functionalities, we should find similar sets of
combinations of functionalities in a structure, independently of whether we analyze the complete set of PLNs or the n–s– PLNs.
We found that the mean number of combinations of functionalities contained in each structure diminished from 8.85±21.38 to
2.66±3.65 and from 14.24±0.199 to 2.36±0.146 in 1-PLNs and 2-PLNs (Fig.3D), respectively. This reduction is significant
in the 2-PLNs case (P < 0.001). These result indicates that even when the PLNs structure determines the combinations
of functionalities that can be generated, only some of such combinations of functionalities are able to produce n–s– PLNs,
suggesting that the combinations of functionalities is an important regulator of the attractors size and number.

If the combinations of functionalities are the main regulator of the attractors size and number, any or almost any PLN
capable of producing the same combinations of functionalities should also be able to produce the same number and size of
attractors, independently of the PLN structure. In the case of the 1-PLNs, each combination of functionalities is contained in
exactly two structures in both the n–s– 1-PLNs and the complete set of PLNs. In 2-PLNs there was no significant difference
(P = 0.331) as, on average, each combinations of functionalities is present in 1.46±0.005 in the complete set of 2-PLNs, vs.
1.43±0.0022 in the 2-PLNs n–s– (Fig.3D). Hence, our results strongly suggest that the combinations of functionalities are a
fundamental regulator of the PLN’s attractors properties.

Finally, to study if there were other important constrains in the PLNs structures for the appearance of n–s– attractor
properties besides the combination of functionalities, we analyzed which structures in the complete set of PLNs contained
the functionalities found in the PLNs n–s–. We found that each combination of functionalities found in the n–s– PLNs was
contained in 2± 0 and 2.60± 0.030 in the complete set of 1-PLNs and the 2-PLNs, respectively. As observed, there is no
change in the 1-PLNs. However, there is a slight, but significant increase in the 2-PLNs case (P < 0.001) (Fig.3D). Hence, we
looked if this increase was due to the need of another interaction (or a lack of it) to produce the desired results. We found no
indispensable additional interactions. Hence, the increase should be due to another type of constrains that we were not able to
detect here. Our results indicate, however, that the combinations of functionalities are one of the most important regulators of
the attractors properties.

Combinations of the functionalities of feedback circuits and the analysis of epistasis
Our results suggest that, in general, networks with the same combination of functionalities produce the same number and size of
attractors. It is important to note, that this result seems to be independent of which network states represent the attractors, as we
did not considered this data in our previous analyses. Thus, a complementary way to test if the combinations of functionalities
regulate the number and the size of attractors, is to search for networks with the same number of attractors of the same size,
but whose attractors are represented by different network states. These networks should be produced by the same or similar
sets of combinations of functionalities. Observe that the possible combinations of positive and negative interactions in a
pathway already gives four pathway variants that have the same number and size of attractors, but the attractors of each pathway
variant correspond to different network states. The epistasis analysis, as originally conceived by Bateson, has characterized the
expected results of the four pathway variant1, 16. Thus, we used the expected results of each pathway variant by the epistasis
analysis to further analyze the importance of the combinations of functionalities in the regulation of the size and number of
attractors.

Briefly, epistasis is a term used when the phenotype of an allele is masked by an allele in another locus. The gene with
the allele whose phenotype persists when the alleles of both loci are present is called epistatic gene, while the other is the
hypostatic gene. Epistasis analysis uses a simple set of two rules to order the epistatic and hypostatic genes1, 16, 27. First, in a
double-mutant experiment, the epistatic gene is upstream and positively regulates the downstream gene when the two genes
used in the double-mutant display a characteristic single-mutant phenotype under the same condition. And second, in a double
mutant experiment, the epistatic gene is downstream and is negatively regulated by the upstream gene when the two genes
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display a characteristic single mutant phenotype under different conditions. The epistasis analysis can be formalised in Boolean
term in a straightforward way (Fig.4A). We named each pathway variant according to the sign of the regulation from GENE1 to
GENE2 and from GENE2 to the OUTPUT, as ++, +–, –+ and – –. Then, we interpreted the epistasis analysis expected results
for each pathway variant as the set of target attractors in our PLNs (Fig 4B) and analyzed the number of 1-PLNs and 2-PLNs
that achieved each of the fours possible sets of target attractors.

The number of PLNs able to produce the target attractors in the 1-PLNs is 60 for the ++ and +– variants and 68 for the –+
and – – variants. We were unable to perform an exhaustive 2-PLNs search because of the astronomical number of redundant
2-PLNs found. We restricted our search to 2-PLNs with a maximum of five extra interactions compared to the pathway structure.
We found than more than 4.731×107 2-PLNs that produced each set of target attractors.

In the 1-PLNs case, the target attractors of a pathway variant are only obtained when the same pathway variant is contained
in the PLN. On the other hand, ≈ 2.41% of the 2-PLNs produced the target attractors of a pathway variant different from the
pathway variant contained in its structure. This demonstrates that epistasis analysis can produce wrong regulatory inferences
when there analyzing non-unidirectional and non-hierarchical networks, as stated before by our group17. The wrong inferences
increase as we added more interactions (Fig 4C) and are produced thanks to the added interactions between the parallel
pathways contained in the 2-PLNs. It is interesting to note, that when there are wrong inferences, the extra interactions produce
an alternative pathway that conformed with the expected pathway variant but that contained some intermediary steeps between
GEN1 and GEN2 or between GEN2 and OUTPUT (see some examples in Supp. Fig. 2). However, the alternative pathway by
itself is not sufficient to produce the expected results as the alternative pathway can be created by adding one interaction and
inconsistencies between the target attractors and the pathway variant contained in the PLNs appear only when we added three
or more interactions (Fig 4C). Thus, our results demonstrate that epistasis analysis produce wrong and incomplete inferences in
non-hierarchical and non-unidirectional networks, but when a network has a low connectivity, wrong regulatory inferences are
scarce.

The combinations of functionalities that produced the four target attractors are almost the same in both 1-PLNs and 2-PLNs.
In 1-PLNs all four target attractors share one combination of functionalities. This is a meaningful result as that is the only
combination of functionalities that produced the target attractors of the variants ++ and +– and one of the two combination of
functionalities that produce the target attractors of the variants –+ and – –. In the 2-PLNs case, there are 6,481 combinations of
functionalities that produced the target attractors of the variants ++ and +– and 7,060 that produced the target attractors of the
variants –+ and – –. 6,304 combinations of functionalities found are shared (Fig.4D). This is an astonishing result that greatly
supports the importance of the combinations of functionalities to determine the attractors properties, as the target attractors vary
for each pathway variant, indicating that the common feature among the PLNs found are the number and the size of attractors.

Comprehensive characterization of PLNs
Under the unidirectional and hierarchical assumptions, there is only one structure capable of producing the attractors expected in
each pathway variant. However, our results show that adding non-hierarchical and non-unidirectional interactions in a pathway
structure increases the number of networks that can produce these attractors. This raises a problem for the analyses of molecular
regulation by traditional methods, such as the epistasis analysis, as they cannot distinguish between these networks. Hence, we
did an exploration of which properties could be useful to distinguish between these networks. For this characterization, we
used all 1-PLNs and 2-PLNs with no more than 2 interactions added to the unidirectional and hierarchical pathway structure,
comparison of PLNs with three or more extra interaction was extremely challenging or computationally impossible.

First, we analyzed if structurally similar PLNs followed similar dynamics. As observed in fig.5A, structurally close PLNs
can have big dynamical distances and vice versa, indicating that dynamical and structural distances are not related. On the other
hand, we noticed that PLNs with the same combination of functionalities and the same structure cluster together and that the
PLNs within the same cluster have more similar dynamics between them, than PLNs in a different cluster (Fig.5B). Thus, each
cluster have distinguishable properties. Consequently, the combination of functionalities, seem to group together dynamical
and structural similar PLNs. Thus, studying the characteristics of these regions could be an important step towards a better and
more general understanding of molecular regulation and could allow for a better characterization of regulatory networks to
improve the scope of traditional methods.

Conclusions and discussion
We characterized the effect of adding certain interactions within unidirectional and hierarchical pathway structures. These
extra interactions create realistic regulatory structures with a resulting non-unidirectional and non-hierarchical organization
containing motifs that we named Pathway-like Networks (PLNs). Additionally, we included certain procedures to ensure the
creation of only biologically meaningful dynamics3, 18, 24. As a result, PLNs have realistic structural and dynamical properties.
Here we showed that PLNs have a great dynamical diversity, as characterized by the number and the size of attractors.
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The explosion in the dynamical possibilities of the PLNs was expected from previous works. For example, Kauffman7

hypothesized that the number of attractors in random Boolean networks increase as
√

v. Later, it was found that the number of
attractors in Boolean networks increases faster than any power law as the number of variables increases28. A strict comparison
between these proposals and our results is difficult, because both Samuelsson and Kauffman’s proposals were based on studies
with a fixed number of connections, while our networks have a variable connectivity. Nonetheless, our results clearly show that
PLNs have more attractors than unidirectional and hierarchical pathways.

We then focused on the role of network motifs, specially feedback circuits, in the size and the number of attractors. We
found that, as the number of positive feedback circuits increases, the number of attractors increases and the size of the attractors
decreases. We also observed the exact opposite relation between the number of negative feedback circuits and the number
and size of attractors. These results were expected considering that positive and negative feedback circuits are required for
multistability and oscillations10, 11. As it has been reported25, the positive/negative feedback circuits ratio give the correct trend
for the number and the size of the attractors. These results are interesting, but they do not explain how feedback circuits in
PLNs, which can have multiple coupled feedback circuits, regulate the size and number of attractor. Thus, we looked for a more
mechanistic understanding of the regulation of the size and the number of attractors by analyzing the coupling of feedback
circuits. We found that the combination of functionalities (i.e., the way feedback circuits couple) is a key regulator of the
number and the size of attractors. In general, PLNs with the same combination of functionalities can produce the same number
and size of attractors, independently of its structure. In our opinion, this is a characteristic worth of further research to fully
understand the nature of molecular regulation.

In accordance with previous observations13, 19, 29, we found that many PLNs are capable of producing the same number,
size, and even the same set of attractors. This result emphasizes how limited are the traditional methods for the analysis of
experimental results, as the epistasis analysis. First, because such analyses consider only a restricted number of possible
networks, they are not well suited to deal with the huge diversity of possible dynamic behaviors. Second, because such methods
are unable to distinguish between alternative networks producing the same set of attractors. Thus, we searched for the number
of PLNs that produced the epistasis results. In 2-PLNs, the number of network that produced the same set attractors was so
huge, that we needed to constrain our search to a limited quantity of PLNs structures. As a consequence, we can conclude that
with the use of traditional methods for the analysis of experimental data many interactions cannot be detected14. Even more, we
find that in some cases they can even produce wrong gene regulation inferences17. These incorrect inferences are due to the
appearance of alternative pathways that can produce the expected behaviors. There may not be general rules to infer complex
networks structure, such as PLNs13, 14. However, the PLNs found, share most of their combinations of functionalities and the
PLNs with the same structure and with the same combination of functionalities produce dynamically similar regions that can be
distinguished. Thus, we believe that a more general understanding of the combination of functionalities and its relation with
networks structure and dynamic will open possible ways to study and analyze molecular regulation of biological processes.
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(A)
1-PLN Circuits

Total Positive Negative Ratio
Poisson GLM Poisson GLM Poisson GLM GLS

mean z p mean z p mean z p mean t p
ALL 2.589 - - 1.295 - - 1.295 - - 1.190 - -
n–s– 2.588 0.020 = 0.988 1.441 3.220 = 0.001 1.147 3.270 = 0.001 1.172 0.640 = 0.520
n+s– 2.585 0.130 = 0.897 2.069 28.430 < 0.001 0.515 31.920 < 0.001 1.639 24.830 < 0.001
n–s+ 2.513 1.740 = 0.083 0.577 23.360 < 0.001 1.936 19.700 < 0.001 0.811 19.560 < 0.001
n+s+ NA NA NA NA NA NA NA NA NA NA NA NA

(B)
2-PLN Circuits

Total Positive Negative Ratio
Quasipoisson GLM Quasipoisson GLM Quasipoisson GLM GLS

mean t p mean t p mean t p mean t p
ALL 12.802 - - 6.423 - - 6.379 - - 1.237 - -
n–s– 4.833 2.810 = 0.005 2.833 2.270 = 0.023 2.000 2.620 = 0.009 1.500 1.220 = 2.223
n+s– 3.891 36.65 < 0.001 3.022 27.66 < 0.001 0.869 38.31 < 0.001 2.239 19.832 < 0.001
n–s+ 15.476 25.13 < 0.001 7.368 15.78 < 0.001 8.108 27.92 < 0.001 1.077 9.291 < 0.001
n+s+ 15.751 11.37 < 0.001 8.597 14.79 < 0.001 7.154 5.170 < 0.001 1.394 3.473 < 0.001

Table 1. Feedback circuits analyses. Total, positive, negative and positive/negative ratio of feedback circuits in (a) 1-PLNs
and 2-PLNs (B). All values are from comparing ALL against each of the PLNs selection (i.e., n–s–, n–s+,n+s– and n+s+).
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Figure 1. Pathway-like networks and their dynamical diversity. (A) Pathway, (B) 1-PLN and (C) 2-PLN structure. INP =
INPUT and IM = Intermediary Molecules. (D) Interaction types considered in this work to construct pathways, 1-PLNs and
2-PLNs: mandatory positive (MP), mandatory of unknown sign (MUS) and optional of unknown sign (OUS). Mandatory
interactions are always present, while optional in OUS interactions can be either present or not. Positive interactions are always
positive. Unknown sign interactions can be either positive or negative. The possible combinations of negative and positive
interactions of (A) form the four pathway variants, shown in Fig. 4B. Distribution of the (E) number and (F) size of the
attractors. The red dot represents the result of the pathway, the green line the results of 1-PLNs and the blue line 2-PLNs. Mean
and confidence interval of the (G) number and (H) size of attractors for 1-PLN and 2-PLNs. (I) Relation between the number
and mean size of attractors of 2-PLNs. Each point represents a single 2-PLN data, while the line represents the values predicted
by Poisson GLM. Points are displaced in the X axis only for visual purpose.
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Figure 2. Relationship between 2-PLNs circuits and attractors. Mean size of attractors vs. quantity of (A) positive and
(B) negative feedback circuits, respectively. Number of attractors vs. quantity of (C) positive and (D) negative feedback circuits,
respectively. The lines are predicted by Poisson GLMs. Points are displaced in the X axis only for visual purpose. Similar
results were found in 1-PLNs (Supp. Fig. 1B-E).
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Figure 3. PLNs attractors properties regulation by feedback circuits. (A) Classification of PLNs according to the
number and mean size of the attractors: n+ more attractors than 90% of the PLNs, n– minimum number of attractors, s+ mean
size of attractors bigger than 90% of the PLNs and s– fixed-point attractors. Mean number of total feedback circuits and
positive/negative feedback circuits ratio for all PLNs and for each of the possible classifications: (n–s–, n+s–, n–s+, n+s+) in
1-PLNs (B) and 2-PLNs (C). (D) Mean number of combinations of functionalities in a structure (F) and mean number of PLNs
structures that contained each combination of functionalies (T) in all 2-PLNs (All), 2-PLNs n–s– (n–s–) and all 2-PLNs that
contain the n–s– combinations of functionalities (f-). NA stands for non applicable.
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Figure 4. Characterization of the PLNs that produce the epistasis results. (A) Boolean interpretation of the epistasis
analysis using the ++ pathway variant shown in (B). Target attractors for each of the four pathway variants using the epistasis
analysis. Mutated genes are highlighted in grey. For 1-PLNs we only consider INP1, GEN1 GEN2 and OUTPUT values.
Epistasis analysis do not consider the possibility of a second parallel and cross-talking pathway. Thus, the asterisks represent
unknown values for GENE3 and GENE4 in the 2-PLNs case. Input values are considered equal to 1 because the epistasis
analysis assumes that the input values are constant during the experiment1. (C) Percentage of 2-PLNs that produce the target
attractors of different pathway variant than the pathway variant contained in the 2-PLN as we added more interactions the
unidirectional and hierarchical pathway structure. (D) Percentage of combinations of functionalities shared between the PLNs
that produced each of the four sets of target attractors.
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Figure 5. PLNs characterization. (A) Relationship between dynamical and structural distance between 2-PLNs. (B) In the
right size, 1-PLNs hierarchical clustering dendogram using the dynamical distance. The 1-PLNs cluster according to the
pathway variant. The colored leaves represent the combinations of functionalities observed on the left. On the left, 1-PLN
cluster formed with structural distance of 0, the grey color correspond to PLNs with no functional circuits, and the other colors
correspond to the different combinations of functionalities found. Similar results were obtained in 2-PLNs.
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