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Breaking Lander-Waterman’s Coverage Bound
D. Nashtaali, S.A. Motahari and B.H. Khalaj

Abstract

Lander-Waterman’s coverage bound establishes the total number of reads required to cover the whole genome
of size G bases. In fact, their bound is a direct consequence of the well-known solution to the coupon collector’s
problem which proves that for such genome, the total number of bases to be sequenced should be O (G lnG).
Although the result leads to a tight bound, it is based on a tacit assumption that the set of reads are first collected
through a sequencing process and then are processed through a computation process, i.e., there are two different
machines: one for sequencing and one for processing. In this paper, we present a significant improvement compared
to Lander-Waterman’s result and prove that by combining the sequencing and computing processes, one can re-
sequence the whole genome with as low as O(G) sequenced bases in total. Our approach also dramatically reduces
the required computational power for the combined process. Simulation results are performed on real genomes with
different sequencing error rates. The results support our theory predicting the logG improvement on coverage bound
and corresponding reduction in the total number of bases required to be sequenced.

I. INTRODUCTION

Data generated from DNA sequencing machines are growing at an unprecedented rate. Extracting knowledge
from these data is extremely tedious and usually requires very powerful computing machines. The main reason is
that the volume of data generated for an experiment usually contains redundant data and one needs to pay the price
of extracting useful information and removing redundant information at the processing step. As an example, in the
whole genome sequencing of Human genome with 100x coverage, each base averagely is present in 100 sequencing
reads which means 99 percent of the data is redundant. The first question that comes in mind is whether the volume
of data generated by the sequencing machines can be reduced without affecting the overall performance. In this
paper, we focus on the whole genome sequencing problem and seek fundamental results on the redundancy level
required to obtain the desired result.

The first fundamental result in this area has been due to Lander and Waterman in [1] where they present a lower
bound on the number of reads, N , required to assemble the whole genome. We refer to this bound as coverage
bound. The coverage bound states that for a genome of size G and reads of length L, at least Ncov = G

L ln
(
G
Lε

)
reads are needed such that the whole genome is covered with a probability of no less than 1 − ε [2]. Therefore,
we should have N ≥ Ncov.

For the aforementioned scenario, the total number of bases sequenced by the sequencing machine is NL, which
requires to be of the order of G logG, from Lander-Waterman’s result. Consequently, the non-reducible redundancy
level in such setup will be of the order of logG. However, such result is based on the underlying assumption that
sequencing and computing steps are performed independently, i.e., a machine takes samples from the genome and
sequences as many reads required to cover the whole genome and then another machine processes the reads to
assemble the genome. The overall architecture of such approach for whole genome sequencing is shown in Figure
1 (a) and consists of the cascade of two blocks one for sampling and sequencing and one for assembly.

Although such separation between sequencing and processing has been traditionally assumed in the literature,
one can question whether such separation is fundamentally optimal with respect to amount of sequenced data which
is generated and subsequently processed or not. In other words, can we improve the overall performance of such
system by merging the two components? In fact, in order to verify the level of performance improvement achieved
by such integration, one needs to answer the following two key questions. First, is there any improvement on
lowering the redundancy of generated data by merging the two functions? Second, is it physically possible to build
such a machine to perform both functions simultaneously? In the rest of this paper, we will try to answer the first
question by proving that one can break the coverage bound of Lander and Waterman and reduce the number of

D. Nashtaali and B.H. Khalaj are with the Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran.
(nashtaali@ee.sharif.edu and khalaj@sharif.edu)

S.A. Motahari is with the Department of Computer Engineering, Sharif University of Technology, Tehran, Iran. (motahari@sharif.edu)

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 23, 2016. ; https://doi.org/10.1101/060384doi: bioRxiv preprint 

https://doi.org/10.1101/060384
http://creativecommons.org/licenses/by-nc-nd/4.0/


2

(a)

(b)

Fig. 1. Whole genome shotgun sequencing and our method platforms. In the classic method, the processing starts after termination of
random sampling and sequencing. In our proposed sequencing platform, sampling and processing machines work cooperatively. The results
of alignment are fed back to preempt reading redundant data in the sequencing machine.

sequenced bases to as low as O(G). It is worth mentioning that even if we may not have access to a machine that
can efficiently combine the sampling and computing units, the approach proposed in this paper can still reduce the
computational power required to assemble the genome. This is due to the fact that the processing unit processes the
data on the fly and if it detects that the information from the remaining part of data is redundant it will stop further
processing of that piece of data. As we will show, such early termination can have significant effect on reducing
computational complexity of the whole process. Answering the second question is in fact beyond the scope of this
paper. However, our approach clearly shows that if a sequencing machine can be built that can preempt sequencing
at the instant the computation part sees best fit, a much more efficient sequencing machine may actually be obtained.

Our strategy to merge the two functions is shown in Figure 1 (b) where the processing machine controls the
sequencing machine by blocking sequencing of redundant bases. Hence, we assume that the sequencing machine
sequences the DNA fragments base by base and it will stop sequencing a fragment once a blocking command from
the processing machine is initiated for that fragment.

In this paper, we only focus on the re-sequencing problem in the processing machine. we first present theoretical
results for i.i.d. genome and real genomes with given repeat structures with noiseless reads, and i.i.d. genome with
noisy reads. Our simulation results performed on chr19 of Human genome hg19 for both noiseless and noisy reads.
We have shown significant improvement on coverage bound for real genome is achieved by using this method. For
processing machine, Meta-aligner [3] are used to align reads on the reference genome.

The longer the read lengths, more reduction on number of read bases will be achieved by our method. A number of
Next Generation Sequencing (NGS) methods [4], such as PacBio [5] and Nanopore [6]-[8] already provide reads of
several thousand bases long and are suitable candidates for such analysis. Figure 2 shows read length distribution of
PacBio technology for the first two read archive in NCBI GenBank SRX533609 [9]. It can be envisioned that other
sequencing methods might also provide longer reads as sequencing technology further advances in that direction
in years to come.

The organization of this paper is as follows. Our basic method for i.i.d. and real genomes with noiseless reads,
and i.i.d. genomes with noisy reads are discussed in the Methods section. The simulation results on real genome
by considering different sequencing error rates are presented in the Results and discussion section. The last section
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Fig. 2. PacBio read length distribution. Almost 81% of PacBio reads have length of at least 2000 bps.

is devoted to the conclusion and future works.

II. METHODS

Conventionally, in the re-sequencing problem, a reference genome and a set of reads from a target genome are
available at the processing step. In this framework, the sequencing machine produces reads of length L from N
DNA fragments. Due to Lander-Waterman’s coverage bound, NL, the total number of bases read by the machine,
is required to be O(G logG).

Our method changes this bound by assuming that sequencing can be controlled by a processing machine such
that it can terminate sequencing at any base. In other words, the sequencer starts reading bases of one side of a
DNA fragment one by one and it will stop as soon as a command is initiated by the processing machine. In order
to explain the basic ideas and to prove that sequencing can be performed efficiently, We first analyse our proposed
methods on i.i.d. genomes. We extend the results to real genomes where repeats play an important role in the
structure of the genomes.

A. I.i.d. genomes

In this part, we assume that the reference and target genomes are i.i.d. random sequences of {A,C,G, T} with
uniform base probabilities. We also assume that reads are sampled uniformly and independently from the target
genome. Consider that reads are noiseless. The key strategy that we use to terminate the sequencing process in
a controlled manner is as follows. We divide L by some integer number K ∈ {0, . . . , L} and without loss of
generality assume that ` = L/K is also an integer. We allow the reading machine to read the first ` bases of all
the DNA fragments. Let R1 = {R1(`), . . . , RN (`)} denote the set of starting ` bases of all the fragments. Here,
Ri(`) is the first ` bases of the ith fragment.

After generating R1, all reads are mapped to the reference genome. Some of the the reads can be mapped
uniquely to a location on the genome. We call such reads anchored. More precisely, a read R is assumed to be
anchored if there is only one location on the genome with Hamming distance no more than α|R| where |R| is the
read length and α is some fixed constant.

After mapping, we partition the set R1 into three disjoint sets: RC1 the set of reads that are anchored to some
location on the genome and in addition, extending them does not increase the coverage, RA1 the set of reads
anchored to some location on the genome and in addition, extending them will increase the coverage, and RF1 the
set of reads that are not anchored in the first step. For a read Ri(`) in RC1 a termination command is initiated to
stop further reading of the ith fragment. The union of RA1 and RF1 is denoted by R2 that is the set of fragments
where reading processes will be continued on them.
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Subsequently, the next base of all fragments in R2 are read and we use the same procedure for mapping and
termination. Therefore, at the end of this step, we end up with the set RC2 of anchored and terminated fragments
with length ` + 1 and the set R3 that is used for extension in the next step. In this way, one can proceed to step
L− `+ 1 where all the fragments are extended to the maximum length L.

If we denote the set of reads that are uniquely mapped in the algorithm by O, then O = ∪L−`+1
k=1 RCk . Our

proposed algorithm is then detailed in Algorithm 1.

Algorithm 1
Input: N fragments with size Li of a target genome plus a reference genome of length G.
Output: A set of reads O, mapped to the reference genome.

Initiate:
Let L = maxi Li, O = ∅ and RA = ∅. Fix ` (the sub-fragment’s length), α ∈ [0, 1]. Set R1 to be the set of all
fragments.

1: for k = 1 to L− `+ 1 do
2: if k=1 then
3: Sequence the first ` bases of all the reads in Rk.
4: else
5: Sequence the (`+ k − 1)-th base of all the reads in Rk.
6: end if
7: Map all the reads inRk to the reference genome with their last ` fragments and Hamming distance d = bα`c.
8: Add uniquely mapped reads in Rk to the set RA. Put the rest of reads in the set Rk+1.
9: Add reads in RA to O, if by further extensions they will not cover a new base on the reference genome.

10: Add reads in RA to Rk+1, if by further extensions they will cover new bases on the reference genome.
11: end for

The two parameters of the algorithm, i.e., ` and α, should be specified based on the structure of reference genome
as well as, G, N and L. One can choose ` to be as low as 1. However, the chance of finding uniquely mapped
reads is very small for short reads resulting in much higher processing time. On the other hand, if ` is chosen to
be large, then a lot of reads will overlap after the first step of the algorithm and we will sample a lot of redundant
bases. Therefore, an optimal choice of ` is desired. The optimal value of ` depends on the size and repeat structure
of the genome as well as the statistics of the variations between target and reference genomes. In the following,
we describe selection of these parameters for noiseless reads.

It can be shown that for a given random DNA sequence of length G, the probability of observing two exact
copies of a substring with length ` is lower than G24−` [2]. Hence, a noiseless read of length ` > logG from
target genome almost certainly can be uniquely mapped to the reference genome. Conversely, a noiseless read of
length ` < logG from target genome will be mapped to at least two locations on the reference genome. Therefore,
for noiseless reads with no variation between target and reference genomes, we can choose ` = logG.

The choice of α depends on the mapper quality and allowable Hamming distance between reads and the reference
genome. If we assume a perfect mapper, the Hamming distance between a read and its true location is ν|R| where
ν is the variations rate between target and reference genomes. Therefore, it suffices to set α = ν. In this scenario,
we consider that variation between reference and target genome is negligible.

In order to evaluate the performance of the algorithm, we need to prove that the genome can be completely
covered by the reads in O and the number of bases read more than once is small. After the first step of the
algorithm, i.e. sequencing ` bases of all reads, all reads are anchored to their correct location on the genome with
maximum Hamming distance of d = 0. This is due to the preceding discussion on random genomes where duplicate
segments are scarce. We distinguish between two cases:

1) Two subsequent reads have common bases, such as ith read and (i+ 1)th read in Figure 3.
2) Two subsequent reads do not have a common base, such as jth read and (j + 1)th read in Figure 3.
In the first case, we will encounter reads whose extension does not increase the coverage and therefore, their

sequencing should be terminated. These kind of reads belong to R. We call the bases common between ith and
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Fig. 3. Two possible cases for two subsequent reads. They are either disjoint or have some common bases.

(i + 1)th read in such case, over-read bases. In the second case, we will encounter reads whose extension will
increase the coverage. We put reads of this kind in RA, to be further extended in the following steps of the
algorithm. Consequently, sequencing of an aligned read in RA continues until it becomes a member of O.

For further analysis, we assume that starting point of reads are a Poisson point process with rate λ = N
G . Hence,

the inter-arrival times have independent exponential distributions.

jth read start point (j+1)th read start point

0


x

x

Fig. 4. A read of RC1 and its adjacent read. The starting point of the second read is x bases after the starting point of the overlapped read
from the right hand side (assuming that the two reads are of equal length `).

Let Bi be a random variable representing the number of extra bases read by the sequencing machine for the ith

read. If B denotes the total number of over-read bases, then B =
∑N

i=1 Bi. Therefore, E{B} = NE{Bj}.
To compute E{Bj}, note that the next read of the jth read starts x bases after the jth read. If x ≤ `, then

Bj = `− x. Otherwise, Bj = 0, see Figure 4. Since x has an exponential distribution, we obtain

E{Bj} =

∫ `

0
(`− x)λe−λxdx = `− 1

λ

(
1− e−λ`

)
, V1 (`) . (1)

In the case of i.i.d. genomes, we set ` = logG. Hence, the average number of over-read bases of all reads is as
follow:

E{B} = N × V1 (logG) = G
(
κ− 1 + e−κ

)
, (2)

where κ = N logG
G . For a constant value κ, the order of E{B} becomes O(G) and number of reads becomes

N = κ G
logG . To be able to cover the genome with N reads, we need to be able in closing gaps of at least

G logG/N bases (from the coverage bound). Therefore, length of reads becomes L = 1
κ (logG)2.
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We observe that by tuning κ, one can control maximum read lengths as well as total number of bases read by
the machine. For instance, by choosing κ = 1, we obtain E{B} = 0.36G and the maximum read length becomes
L ≈ 1000 bps.

Next, we consider noisy reads with the error rate ε. Moreover, we assume that the target and reference genomes
vary in their sequences with the variation rate ν. Before presenting our algorithm for noisy reads, we set a parameter
denoted by Cε for the coverage depth. The coverage depth helps in removing sequencing errors by averaging over
several reads. The coverage depth is chosen such that if Cε reads cover a base then it is possible to correctly recover
that base with a given probability Pε.

To compute Cε, we choose a base as the target base if it has maximum vote amongst all other bases over reads
covering that location. Let Ii denote the error event of incorrect calling of the ith base. If the random variable Ci
denotes the coverage of the ith base, then error occurs if the corresponding base of more reads are incorrect base.
Thus, the probability of error for the ith base is,

P {Ii|Ci} =

bCi−1

2
c∑

i=0

(
Ci
i

)
(1− ε)i

Ci−i∑
j=i+1

(
Ci − i
j

)
3×

( ε
3

)j (2ε

3

)Ci−i−j
(3)

Hence,
Cε = arg min

Ci
P {Ii|Ci} ≤ Pε.

For an example, if Pε = 10−4 and ε = 0.07, Cε becomes 6. For having coverage depth of Cε, it suffices to
change the kth step of Algorithm 1 as follows: we add a read in RA to Rk+1 when its extension will cover a base
for cth times on the reference genome, where c ≤ Cε. Details of the proposed algorithm for noisy reads is presented
in Algorithm 2.

Algorithm 2
Input: N fragments with size Li of a target genome with G bases plus a reference genome with the same length.
Output: A set of reads R, mapped to the reference genome.

Initiate:
Let L = maxi Li, R = ∅ and RA = ∅. Fix ` (the sub-fragment’s length), α ∈ [0, 1] and dmax. Fix Cε.

1: for k = 1 to L− `+ 1 do
2: if k=1 then
3: Sequence the first ` bases of all the reads in Rk.
4: else
5: Sequence the (`+ k − 1)-th base of all the reads in Rk.
6: end if
7: Map all the reads in Rk to the reference genome with their last ` bases and Hamming distance dmax.
8: Add uniquely mapped reads in Rk to the set RA. Put the rest of reads in the set Rk+1.
9: Add reads in RA to R, if by further extensions they will cover a base more than Cε times on the reference

genome.
10: Add reads in RA to Rk+1, if by further extensions they will cover a base for the cth times on the reference

genome, where c ≤ Cε.
11: end for

Mapping fragments of length ` with maximum Hamming distance dmax to the reference genome is error prone
and we first analyze the performance of the alignment procedure. Let Ti and Fi denote the true and false alignment
events for the ith read, respectively. The ith read of length ` with a maximum Hamming distance of dmax is mapped
to its true location with probability

P {Ti} =
∑
i≤dmax

(
`

i

)(
ε+ ν − 4εν

3

)i (
(1− ε) (1− ν) +

εν

3

)`−i
, (4)
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and is mapped to a false location on the genome with maximum Hamming distance dmax with probability (using
the union bound),

P {Fi} ≤ G× Pw (`) , G
∑
i≤dmax

(
`

i

)(
3

4

)i(1

4

)`−i
= G4−`

∑
i≤dmax

(
`

i

)
3i, (5)

where Pw(`) represents the probability of incorrect alignment of a fragment of length ` to another position on the
reference genome. Denote, F = ∪Ni=1Fi as the false alignment event. Hence,

P {F} ≤ NP {Fi} ≤ NG× Pw (`) .

Therefore, if Pw (`) scales as O
(

1
NG

)
, P {F} tends to zero and all reads are mapped to their true location with

P{Ti}’s. In the worst case, if any read is extracted from each base of the reference genome, i.e. N = G, then
Pw (`) scales as O

(
1
G2

)
. It can be easily verified that for ε = 0.05, ` = 2 logG and dmax = 8, P {F} tends to

zero and P{Ti} ≈ 1. Therefore for ε ≤ 0.05, all noisy fragments of length ` are uniquely mapped to their correct
locations on the reference genome.

To compute the number of extra read bases, we use a similar argument as the one used in the noiseless case. To
obtain E{Bj} for the jth read in this case, assume that the C th

ε read after this read starts x bases further. Again
Bj = max{0, `− x}. Since, x has an Erlang distribution, we obtain

E{Bj} =

∫ `

0
(`− x)λe−λx

(λx)Cε−1

(Cε − 1)!
dx =

1

(Cε − 1)!

((
`− Cε

λ

)
γ (Cε, λ`) +

1

λ
(λ`)Cε e−λ`

)
, VCε (`) . (6)

where γ (s, x) is the lower incomplete gamma function and for s ∈ N is equal to

γ (s, x) = (s− 1)!

[
1− e−x

(
s−1∑
i=0

xi

i!

)]
.

Thus, the average number of over-read bases for all reads in this step is,

E {B} = E


N∑
j=1

Bj

 = N × VCε (`) =
N

(Cε − 1)!

{(
`− Cε

λ

)
γ (Cε, λ`) +

1

λ
(λ`)Cε e−λ`

}

=

{
1

(Cε − 1)!

(
(κn − Cε) γ (Cε, κn) + κCεn e

−κn)}×G, (7)

where κn = N`
G . Therefore, for any constant κn, E{B} becomes O(G). The coverage bound when each base of

the genome is covered by at least Cε reads can be determined as follows,

P
{
Ec = ∪Gi=1Ec,i

}
≤ GP {Ec,i} = G

Cε−1∑
j=0

e−λL
(λL)j

j!
, (8)

where Ec and Ec,i are error events that at least one base and the ith base of the genome are not covered by at least
Cε reads, respectively. Therefore, if

λL ≥ logG+ (Cε − 1) log (logG) , (9)

then each base of the genome is covered by at least Cε reads almost surely. Subsequently, for a fix ` and constant
value of κn, number of reads and read length from (9) become N = κn

G
` and L = `

κn
(logG+ (Cε − 1) log (logG))

respectively.
Again, there exists a trade-off between the length of reads and number of read bases that can be controlled by

κn. Figure 5 shows E {B} /G in (7) for sequencing error rates of ε = {0, 0.02, 0.05} and Cε = 6. Also, Figure 6
shows total read bases relative to read length for different sequencing error rates ε = {0, 0.02, 0.05, 0.1}. We set
Pε = 10−4 and therefore for ε = {0, 0.02, 0.05, 0.1} we use: Cε = {1, 4, 6, 8} from (3), and ` = {1, 1.5, 2, 3}×logG
with dmax = {0, 4, 8, 15} which satisfy alignment constraints, respectively. These figures show that when ε = 5%,
approximately 6.08G bases (only 0.08G bases are over-read) are read for read length of L ≈ 1000 bps.
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Fig. 5. The normalized average number of over-read bases and read lengths for different sequencing error rates and Cε = 6.
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Fig. 6. The normalized total number of read bases and read lengths for different sequencing error rates and Pε = 10−4. Note that, total
number of read bases in each error rate tends to its corresponding Cε.

B. Real Genomes

In this section, we consider DNA sequencing of real genomes where many repeats are dispersed across the
genome. First, we assume that reads are noiseless. Note that, if all the `-mers of the genome are repetitive elements
then Algorithm1 fails in anchoring reads correctly to the reference genome and therefore reading O (G logG) is
unavoidable. However, as we will show, the repeat patterns in real genomes allow successful coverage of bases
with only O (G) reading bases.

A mosaic model for capturing the repeat structure of the genome is presented in [3]. In this model the reference
genome consists of two types of intervals, repeat and random intervals. These types are defined based on two
parameters ` and d: representing the fragment length and mismatch factor, respectively. Repeat (random) intervals
are consecutive bases where any fragment of length ` starting from a base within these intervals can be aligned to
some other location(s) (one location) of the genome with maximum Hamming distance d. For the sake of simplicity,
we consider only d = 0.

Let denote a set of all exact repeat intervals of the reference genome as R. Also, assume that a repeat R ∈ R
has length `R and repeat lengths have the distribution f`. We need to treat reads starting from repeat and random
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intervals, differently. For this purpose, we consider three starting regions for start point of a given read, as S1, S2,
and S3. We can determine the average number of total over-read bases (i.e. E {B}) as follows,

E {B} = E

{
N∑
i=1

Bi

}
= NE {E {Bi|Si}} , (10)

where Si is a random variable that shows the starting region of the ith read. Hence,

E {B} = N
∑

j=1,2,3

E {Bi|Si = Sj}P {Si = Sj} . (11)

In the following, we determine each term of equation (11). Region S1 is random intervals such that reads starting
from random intervals can be anchored to their true locations based on their first ` bases. Therefore, we can readily
compute the average number of over-read bases in random intervals using equation (1). More precisely,

E {Bi|Si = S1} = V1 (`) = `− 1

λ

(
1− e−λ`

)
,

where the total average number of these reads is

N × P {Si = Sj} = N
G−

∑
R∈R `R

G
= λ

(
G−

∑
R∈R

`R

)
.

On the other hand, reads starting from repeat intervals can not be anchored unless it contains an `-mer which
resides in random interval. Using this fact, c.f. Figure 7, each repeat interval of length `R can be partitioned into two
disjoint intervals: 1) Mappable zone: the last min{L−`, `R} bases, 2) Un-mappable zone: the first max{0, `R−L+`}
bases. Regions S2 and S3 are mappable and un-mappable zones, respectively.

Clearly, reads from un-mappable zones cannot be anchored and therefore they need to be read up to length L.
Using (1), we compute the average number of over-read bases for each read in un-mappable zones as:

E {Bi|Si = S3} = V1 (L) = L− 1

λ

(
1− e−λL

)
≈ L− 1

λ
,

where the total average number of these reads is

N × P {Si = S3} = N

∑
R∈R max{0, `R − L+ `}

G
= λ

∑
R∈R

max{0, `R − L+ `}.

)( LLast              -bases

  Lr

Repeat intervals

Random intervals

 Lr

3Sregion
2Sregion

1Sregion
2Sregion

Fig. 7. Repeat intervals regions. The first region (S1) is random intervals. The second region (S2) is the last L− ` bases of repeat intervals.
The third region (S3) is the other bases of repeat intervals.

It remains to compute the number of over-read bases for reads from mappable zones. Consider all mappable
regions sm ∈ S2 of length lm, for m = {1, · · · , |R|}. If the mth repeat interval has length `m, then lm =
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min{L − `, `m}. At least lm + ` bases of each read within sm are being sequenced. Consider the ith read has
distance of li from the end of its mappable zone. The average number of over-read bases for the ith read in
mappable zones can be determined as:

|R|∑
m=1

E {Bi|Si = S2, ri ∈ sm}P {ri ∈ sm|Si = S2} =

|R|∑
m=1

{∫ `m

0

1

lm
V1 (li + `) dli

}
P {Si = S2, ri ∈ sm}

P {Si = S2}

=

|R|∑
m=1

{∫ lm

0

1

lm
V1 (li + `) dli

}
lm
G
.

Thus, the average number of total over-read bases for all reads in mappable zones becomes,

NE {Bi|Si = S2}P {Si = S2} = λ

|R|∑
m=1

∫ lm

0
V1 (li + `) dli. (12)

Define,

V̄1 (lm) =

∫ lm

0
V1 (`i + `) d`i =

l2m
2

+ lm`−
lm
λ

+
1

λ2

[
1− e−λ(lm+`)

]
.

Therefore, the average number of over-read bases by considering repeat structure in (10) becomes,

E {B} =λ

(
G−

∑
R∈R

`R

)
V1 (`) + λ

(∑
R∈R

max{0, `R − L+ `}

)
V1 (L) + λ

∑
R∈R

V̄1 (min{L− `, `R})

= λG

(
1− |R|

G

∫
`R

`Rf`Rd`R

)
V1 (`) + (λL− 1) |R|

∫
`R≥L−`

(`R − L+ `) f`Rd`R

+ λ|R|
∫
`R

(
`2R
2

+ `R`−
`R
λ

+
1

λ2

[
1− e−λ(`R+`)

])
f`Rd`R. (13)

Given the repeat length distribution (i.e. f`R) of any real genome, we can determine the E {B} for that genome.
The distribution of log f`r for Human genome hg19 is illustrated in Figure 8. Also, Figure 9 shows E {B} /G for
whole genome of hg19 and i.i.d. genome. In this simulation, we used ` = logG ≈ 30. Results confirm that for real
data set, we can read only O(G) bases to assemble the genome.

log fℓr

0 2 4 6 8 10 12 14
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o
f
re
p
ea
ts

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fig. 8. The distribution of repeat lengths logarithm (i.e. log f`R ) for Human genome hg19 based on Meta-aligner model with (`, d) = (30, 0)
defined in [3].

When reads are contaminated with sequencing errors of rate ε, we use a proper value of ` such that a fragment
length of ` is aligned to its correct location with a probability close to one. Also, consider the coverage depth, i.e.
Cε, as (3). We model the reference genome with Meta-aligner (`, d = 0)-model. Thus, using the same argument
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Fig. 9. The average number of over-read bases for i.i.d. genome and Human genome hg19 with ` ≈ 30 and N = G logG/L.

as noiseless reads, the average number of over-read bases can be determined similar to (13) except incorporating
VCε(.) in (6) instead of V1(.). Therefore, the average number of over-read bases for real genomes in the presence
of noise becomes,

E {B} = λ

(
G−

∑
R∈R

`R

)
VCε (`) + λ

(∑
R∈R

max{0, `R − L+ `}

)
VCε (L) + λ

∑
R∈R

V̄Cε (min{L− `, `R}) ,

(14)

where VCε (L) ≈ λL− Cε and

V̄Cε (lm) =

∫ lm

0
VCε (`i + `) d`i .

Figure 10 shows the E {B} /G for whole genome of hg19 with ε = {0, 0.05}. We use ` = logG ≈ 30 and
` = 2 logG ≈ 60 for ε = 0 and ε = 0.05, respectively.
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Fig. 10. The normalized average number of over-read bases for i.i.d. genome and Human genome hg19 with ` ≈ {30, 60} and N =
G logG/L for ε = {0, 0.05}, respectively.
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III. ALGORITHM COVERAGE ANALYSIS

In this section, we compute the number of gapped bases in the reference genome when the proposed algorithms
are used. First, consider i.i.d. genomes. We show that the whole genome is in fact covered by the noiseless reads
when using Algorithm1. Suppose that all reads of length ` are aligned to the reference genome. Let E denotes the
error event which is the event that a base is not covered in our algorithm. Let us denote the event of not covering
the ith base by Ei. Thus,

P (E) = ∪Gi=1P (Ei) . (15)

From union bound, we have

P (E) ≤ GP (Ei) , (16)

for arbitrary i ∈ {1, · · · , G}. Define the set Si, consisting of starting points of reads that are aligned to the reference
genome with less than L bases before the ith base location. Since the nearest read in Si to the ith base does not
overlap with other reads from its right hand side, this read will be extended in subsequent steps of the algorithm
and at the end, the ith base will be covered by this read. Hence, Si must be an empty set and Ei occurs when no
read’s starting point is located less than L bases before the ith base. This condition is the same as the coverage
bound condition. Thus,

P (E) ≤ GP (Ei) = Ge−λL = Ge−
NL

G . (17)

Thus, if the number of reads N and the reads’ length L satisfy the coverage condition in [1] (i.e. NL ≥ G logG),
the sequence is completely covered by the reads in our method for noiseless reads and i.i.d. genomes.

For noisy reads, we show the perfect coverage of reference genome when noisy reads are used in Algorithm 2.
For this purpose, the same argument as noiseless reads is considered. Let En denotes the error event which is the
event that a base is not covered by at least Cε reads in our algorithm. Also, denote error event for the ith base
by En,i. Therefore, En = ∪Gi=1En,i and En,i occurs when less than Cε read’s starting points are located within L
bases before the ith base. This condition is the same as the coverage bound condition with a given Cε in (8). Thus,
if number of reads N and reads’ length L satisfy the coverage condition for noisy reads in (9), the sequence is
completely covered by at least Cε noisy reads in our method as well.

Now consider a real genome. We must determine how many bases are covered with Algorithm 1 or Algorithm 2
(based on noiseless or noisy reads). For this purpose, let Ek denotes the error event that the kth base is not covered
by reads with the proposed algorithms. We only consider coverage in this section, therefore, we use Cε = 1 for
noisy reads. Based on the base location and its neighboring repeat intervals within the genome, this base is classified
to two different classes as shown in Figure 11. Using these two classes, different sub-classes for locating random
and repeat intervals can be modelled. Note that similar to i.i.d. genome, locating one read within distance of L
bases before a given base is sufficient for covering that base. In the following, we determine probability of the
Ek for each class. In the proposed analysis, we assume that each fragment of length ` is mapped uniquely to the
reference genome with probability pt. Also, we denote the number of reads within a random interval of length l
as N (l).

1) Class A: Assume d1 and d2 bases within distance of L bases before and after the kth base are in random
interval, respectively. If a read has a fragment within a random interval, it can be mapped to the reference
genome uniquely. If d1 + d2 ≥ L, we divide the interval of length L before the kth base to three parts: 1)
all bases with distance [L, d1] from base k, 2) all bases with distance [d1, L − d2] from base k, and 3) the
remaining bases of the random interval with distance [L− d2, 0] from base k.
Divide the first part to L−d1

` disjoint sub-intervals of length `, If any read starts within the jth sub-interval,
the number of fragments of that read within the random interval is d1

` + j − 1. If any read starts within the
second part, the number of fragments of that read within the random interval is L

` . In addition, divide the
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Fig. 11. Classification of each base of the reference genome based on random and repeat intervals of the genome. By considering special
cases for these two classes, six sub-classes created.

third part to L−d2
` sub-intervals of length ` such that if any read starts within the jth sub-interval, the number

of fragments of that read within the random interval is L
` − j. Thus,

P {Ek} =

L−d1∏̀
i=1

{ ∞∑
ni=0

P {N (`) = ni} (1− pt)ni(
d1
`
+i−1)

}

×

{ ∞∑
n′=0

P
{
N (d1 + d2 − L) = n′

}
(1− pt)n

′ L
`

}

×

L−d2∏̀
i=1

{ ∞∑
ni=0

P {N (`) = ni} (1− pt)ni(
L

`
−i)

}

=

L−d1∏̀
i=1

e
−λ`i

(
1−(1−pt)

d1
`

+i−1

)
× e−λ(d1+d2−L)

(
1−(1−pt)

L
`

)
×

L−d2∏̀
i=1

e
−λ`i

(
1−(1−pt)

L
`
−i

)

= exp

(
−λL+ λ`

(1− pt)
d1
` + (1− pt)

d2
` − 2 (1− pt)

L

`

pt
+ λ (d1 + d2 − L) (1− pt)

L

`

)
. (18)
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The same result is obtained when d1 + d2 < L, i.e.,

P {Ek} =

d2∏̀
i=1

{ ∞∑
ni=0

P {N (`) = ni} (1− pt)ni(
d1
`
+i−1)

}

×

{ ∞∑
n′=0

P
{
N (L− d1 − d2) = n′

}
(1− pt)n

′ d1+d2
`

}

×

d1∏̀
i=1

{ ∞∑
ni=0

P {N (`) = ni} (1− pt)ni(
d1+d2
`
−i)

}

=

d2∏̀
i=1

e
−λ`i

(
1−(1−pt)

d1
`

+i−1

)
× e
−λ(L−d1−d2)

(
1−(1−pt)

d1+d2
`

)
×

d1∏̀
i=1

e
−λ`i

(
1−(1−pt)

d1+d2
`
−i

)

= exp

(
−λL+ λ`

(1− pt)
d1
` + (1− pt)

d2
` − 2 (1− pt)

d1+d2
`

pt
+ λ (L− d1 − d2) (1− pt)

d1+d2
`

)
.

(19)

2) Class B: Assume d1 and d2 bases within distance of L bases before and after the kth base are in repeat
interval, respectively. If d1 + d2 ≥ L, we divide the interval of length L before the kth base to three parts
similar to class A. Thus,

P {Ek} =

L−d1∏̀
i=1

{ ∞∑
ni=0

P {N (`) = ni} (1− pt)ni(
L−d1
`
−i+1)

}

×

{ ∞∑
n′=0

P
{
N (d1 + d2 − L) = n′

}}

×

L−d2∏̀
i=1

{ ∞∑
ni=0

P {N (`) = ni} (1− pt)ni(i)
}

=

L−d1∏̀
i=1

e
−λ`i

(
1−(1−pt)

L−d1
`
−i+1

)
×

L−d2∏̀
i=1

e−λ`i(1−(1−pt)
i)

= exp

(
−λ (2L− d1 − d2) + λ`

2 (1− pt)− (1− pt)
L−d1
`

+1 − (1− pt)
L−d2
`

+1

pt

)
. (20)

The same result is obtained when d1 + d2 < L, i.e.,

P {Ek} =

d2∏̀
i=1

{ ∞∑
ni=0

P {N (`) = ni} (1− pt)ni(
d2
`
−i+1)

}

×

{ ∞∑
n′=0

P
{
N (L− d1 − d2) = n′

}
(1− pt)n

′ L−d1−d2
`

}

×

d1∏̀
i=1

{ ∞∑
ni=0

P {N (`) = ni} (1− pt)ni(
L−d2−d1

`
+i−1)

}

=

d2∏̀
i=1

e
−λ`i

(
1−(1−pt)

d2
`
−i+1

)
× e
−λ(L−d1−d2)

(
1−(1−pt)

L−d1−d2
`

)
×

d1∏̀
i=1

e
−λ`i

(
1−(1−pt)

L−d1−d2
`

+i−1

)
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= exp

(
− λL+ λ`

(1− pt)− (1− pt)
d2
` + (1− pt)

L−d1−d2
` − (1− pt)

L−d2
`

pt
+ λ (L− d1 − d2) (1− pt)

L−d1−d2
`

)
.

(21)

We are interested for error probabilities of some special cases. These interested cases are illustrated as sub-classes
in Figure 11. The error probability of each sub-class is determined in the following.
• The first sub-class (I): This sub-class can be modelled with the first class with d1 = d2 = L. Thus,

P {Ek} = exp
(
−λL

(
1− (1− pt)

L

`

))
. (22)

• The second sub-class (II): Consider that d bases within distance of L bases after the kth base is in random
interval. This sub-class can be modelled with the first class with d1 = L and d = d2 < L. Thus,

P {Ek} = exp

(
−λL+ λ`

(1− pt)
d

` − (1− pt)
L

`

pt
+ λd (1− pt)

L

`

)
. (23)

• The third sub-class (III): Consider that d bases within distance of L bases before the kth base is in random
interval. This sub-class can be modelled with the first class with d2 = L and d = d1 < L. Thus, the error
probability of this class is the same as the sub-class (II) except that L− d bases within distance of L before
the kth base exist in random interval.

• The forth sub-class (IV): Consider that d bases within distance of L bases before the kth base is in repeat
interval. This sub-class can be modelled with the second class with d2 = L and d = d1 < L. Thus,

P {Ek} = exp

(
−λL+ λ`

(1− pt)− (1− pt)
L−d
`

+1

pt

)
. (24)

• The fifth sub-class (V): Consider that d bases within distance of L bases after the kth base is in repeat interval.
This sub-class can be modelled with the second class with d1 = L and d = d2 < L. Thus, the error probability
of this class is the same as the sub-class (IV) except that L − d bases exist within distance of L before the
kth base in repeat interval.

• The sixth class (VI): This sub-class can be modelled with the second class with d1 = d2 = L. Thus, the error
probability of this sub-class is 1.

Thus, by considering repeat structure of the genome, we can determine the probability of coverage for the genome.
We classify bases of Human genome hg19 and determine probability of gap for each class using (18)-(21). The
average probabilities of gap, i.e. Ek {P {Ek}}, for different values of λ̃ = λL/ logG and read lengths (L) are shown
in Figures 12-13. These probabilities of gap are shown for pt = 1 and pt = 0.7 (dotted line). Note that, the coverage
bound shows that using reads of length L ≥ logG and λ̃ ≥ 1, all bases of an i.i.d. genome are covered reads with
probability almost one.

IV. RESULTS AND DISCUSSION

In this section, we propose simulation results for chr19 of Human genome hg19 with different sequencing error
rates.

A. Benchmark

The chr19 of Human genome hg19 is used as the reference. Noisy reads are also extracted uniformly from the
reference genome and are mapped to this genome. We consider sequencing error rates of ε = {0, 5, 10}% with
90% mismatches and 10% indels. Errors are added by an i.i.d. manner. We use Meta-aligner [3] to align reads with
their two fragments of length ` not with all their bases. We consider only the first stage Meta-aligner. Since with a
mismatch percentage of α and read length of `, there are α× ` bases altered in each read on the average, we allow
Meta-aligner to align reads to the reference genome with a distance of dα×`e. For chr19 of Human genome hg19 of
size G bases, ` = logG is approximately equal to 26 and we use ` = 30. Therefore, N = (30 + 4 (Cε − 1))G/L
reads are randomly generated from chr19 for any read length L and Cε. Also, we consider C0 = 1, C5 = 6,
C10 = 8.
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Fig. 12. The average probability of gap within Human genome hg19 versus λ̃ = λL/ logG and for different read length L =
{500, 1000, 2000, 3000} bps with pt = 1 and pt = 0.7 (dotted line).
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Fig. 13. The average probability of gap within Human genome hg19 versus read length L and for two values of λ̃ = λL/ logG = {1, 2}
with pt = 1 and pt = 0.7 (dotted line).

In each simulation, we also present number of aligned reads by Meta-aligner. Reports of Meta-aligner show its
robustness to sequencing errors such that it aligns many reads at its first stage almost correct. We need to read 2`
bases at the first step of Meta-aligner which increase over-read bases, but most of the mapped reads are located on
the genome correctly.

B. Coverage and Over-read Bases Analysis

Since, number of mapped reads effect on covered bases of the genome, before coverage simulation results we
determine number of mapped reads at end of the first stage of Meta-aligner. Figure 14 shows fraction of mapped
reads for ε = {0, 5, 10}%. Results show that most of reads are mapped uniquely to the reference genome.

In Figure 15, the total number of bases not covered by mapped reads (also known as genome gaps) for various
sequencing error rates after the first stage of Meta-aligner is presented. By increasing read length more repeat are
bridged by reads and the gap fraction is decreased. Also, Figure 16 shows step by step gap faction of the genome
for read length L = 1000 and different sequencing error rates. This figure shows that using the proposed method,
gradually the reference genome is covered by reads. Since, the remaining bases of the genome locate within long
repeat regions, they are covered by reads.
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Fig. 14. Fraction of mapped reads for different read lengths and sequencing error rates after the first stage of Meta-aligner.
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Fig. 15. Fraction of gap within the chr19 for different read lengths and different sequencing error rates after the first stage of Meta-aligner.

Figure 17 illustrates the normalized total number of read bases for various sequencing error rates. Note that, for
large enough read length number of over-read bases tends to zero and only O(G) bases needs to be sequenced
by sequencer machine. For different values of ε = {0, 5, 10}%, almost {1.2, 6.4, 8.7} ×G bases are read by using
Meta-aligner in read length of L = 4000 bps, respectively. Also, Figure 18 shows step by step normalized total
number of read bases of the genome for read length L = 1000 and different sequencing error rates. This figure reveal
that after each step some unmapped reads interfere with other mapped reads and total read bases are increased.

As these simulation results show, increasing sequencing error rates leads to an increase in the number of over-read
bases. This is due to the fact that each read can not be aligned to the genome at shorter lengths and its length is
increased iteratively. In addition, it is noticeable that genomes with a larger percentage of repeat patterns naturally
lead to a greater level of over-read bases (comparison of chr19 with i.i.d. genome). In such scenarios, less number
of reads are uniquely aligned to the genome due to the ambiguity caused by repeating patterns.

V. CONCLUSION AND FUTURE WORKS

Lander and Waterman have presented the coverage bound based on random sampling of i.i.d. DNA sequence.
After sampling, read fragments are sent to the processing part. Under such model, the coverage bound shows that
minimum number of reads required for covering the whole genome is N ≈ G logG/L. Equivalently, NL ≈ G logG
bases are required to cover the whole genome. In our method, sequencing and processing are combined such that
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Fig. 16. Step-by-step fraction of gap within the chr19 for different sequencing error rates and read length of L = 1000.
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Fig. 17. Normalized total number of read bases for various sequencing error rates and read lengths.

first all fragments are sequenced up to ` bases, for some `, and then the processor maps the fragments that are
uniquely mapped to the reference genome. Unmapped reads with non-overlapped reads from the right hand side at
the first step are sent back to sequencer for extension to next bases. This procedure is repeated until the process
reached the maximum read length L. As shown in the paper, through use of such approach, the number of bases read
in the sequencing part reduces to O(G) bases, a reduction by a logG factor in comparison with Lander-Waterman
coverage bound.

We propose theoretical results for i.i.d. and real genomes with noiseless reads and i.i.d. genome with noisy
reads. Also, we have simulated our method for chr19 of Human genome hg19 with different sequencing error rates.
Simulation results support the validity of the proposed algorithm and demonstrate our improvement on coverage
bound for real genomes.

As future work, we may expand our algorithm to derive more efficient alignment algorithms in terms of complexity
and precision. Also, we can extend this method for Denovo sequencing.
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