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Abstract  

High-throughput chromosome conformation capture technologies, such as Hi-C, 

have made it possible to survey 3D genome structure. However, the ability to 

obtain 3D profiles at kilobase resolution at low cost remains a major challenge. 

Therefore, we herein report a computational method to precisely identify 

chromatin interaction sites at kilobase resolution from MNase-seq data, termed 

chromatin interaction site detector (CISD), and a CISD-based chromatin loop 

predictor (CISD_loop) that predicts chromatin-chromatin interaction (CCI) from 

low-resolution Hi-C data. The methods are built on a hypothesis that CCIs result 

in a characteristic nucleosome arrangement pattern flanking the interaction sites. 

Accordingly, we show that the predictions of CISD and CISD_loop overlap 

closely with chromatin interaction analysis by paired-end tag sequencing (ChIA-

PET) anchors and loops, respectively. Moreover, the methods trained in one cell 

type can be applied to other cell types with high accuracy. The validity of the 

methods was further supported by chromosome conformation capture (3C) 

experiments at 5kb resolution. Finally, we demonstrate that only modest amounts 

of MNase-seq and Hi-C data are sufficient to achieve ultrahigh resolution CCI 

map. The predictive power of CISD/CISD_loop supports the hypothesis that CCIs 

induce local nucleosome rearrangement and that the pattern may serve as 

probes for 3D dynamics of the genome. Thus, our method will facilitate precise 

and systematic investigations of the interactions between distal regulatory 

elements on a larger scale than hitherto have been possible. 
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Introduction  

The 3D genome architecture underlies many cellular processes in the nucleus 1-3. 

Proximity ligation-based chromosome conformation capture (3C) and its 

variations 4-6 constitute a major engine driving the exploration of 3D genome 

architecture 7,8. Using one genome-wide version of 3C technology, Hi-C, it has 

been possible to explore the global 3D architecture of the human 9,10, mouse 11,12, 

fly 13 and yeast genomes 14. Mediator-specific 3D chromatin interaction maps 

have also been surveyed by the ChIA-PET method in mammals for such proteins 

as CTCF 15,16, Pol II 16,17, cohesin 18 and histone modifications 19. With these 

mappings, genomes were found to be physically separated into two 

compartments (A and B), one active and the other inactive 9. Higher resolution 

mapping could reveal finer structures. For example, with increased Hi-C 

resolution, the so-called "topologically associating domains" (TADs) 11,20 and sub-

TAD 21 structures in mammals have been identified, along with detailed 

chromatin fiber looping structures 16,22. However, because most cis-regulatory 

sequences are in the size range of hundreds of base pairs and may be closely 

clustered 23, precise definition of individual enhancer-promoter interactions on a 

genome-wide scale remains beyond the capacity of current Hi-C methodology.  

Attempts have been made to improve the resolution of chromatin-chromatin 

interaction (CCI) maps15,16,22,24-29. In order to reach one kilobase resolution, Rao 

et al. sequenced several billions of paired-end tags in GM12878 22. Obviously, 

such a massive sequencing effort cannot easily be applied on a wider scale. 

Alternatively, capture-based methods 15,16,24-27, or alternative DNA cutters 28,29, 
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have been described in the literature. For example, Duan and colleagues 

replaced restriction enzymes with DNaseI 28, and obtained better genome 

coverage and resolution than normal Hi-C. However, as a result of inherent 

limitations of the current 3C-based protocols, it remains challenging to 

substantially increase comprehensive mapping resolution to a level beyond 

1~2kb within reasonable cost constraints 22,24. 

Chromatin 3D architecture is associated with various epigenetic features. For 

example, by comparing the ChIA-PET map with DNase-seq, ChIP-seq and RNA-

seq datasets, Snyder and colleagues showed strong association between CCIs 

and chromatin accessibility 19. Computational models have also been developed 

to associate histone marks with A/B compartments 30, CCI hubs and TADs 31. 

More recently, methods that integrate high-dimension multi-omics data in multiple 

cell types to predict CCIs have also been reported32-35. However, the massive 

multi-omics data required by these methods have made it difficult to elucidate the 

underlying mechanisms linking CCIs to chromatin dynamics. 

Therefore, in this paper, we report the development of a chromatin interaction 

site detector (CISD) and a CISD-based chromatin loop predictor (CISD_loop) 

that respectively predict CCI sites and CCIs at kilobase resolution. CISD and 

CISD_loop only require low-resolution micrococcal nuclease digestion combined 

with high-throughput DNA sequencing (MNase-seq) data and low-resolution Hi-C 

input, respectively. We observed distinct arrangements of nucleosomes flanking 

the binding sites of CCI-associated factors, e.g., CTCF. Moreover, if a CCI is 

allele-specific, the nucleosome positioning will be more periodic in the interacting 
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allele compared to the alternative allele. Based on these observations, it was 

hypothesized herein that physical CCIs could significantly alter the local 

chromatin context, resulting in a characteristic nucleosome arrangement pattern 

flanking the interaction sites. Thus, CISD was designed to predict CCI sites 

through the detection of such pattern, and with current annotations of TAD and 

low-resolution Hi-C data, CISD_loop was developed to further predict CCIs 

between sites predicted by CISD. We show that the predictions of CISD and 

CISD_loop are enriched for ChIA-PET anchors and loops, respectively. We 

performed 3C experiments at 5kb resolution and validated two CISD_loop 

predictions not reported in ChIA-PET data. Because the methods trained in one 

cell type can be applied to other cell types with high accuracy, the association 

between the characteristic nucleosome arrangement pattern and the CCI sites 

may be universal in human cells. The power of characteristic nucleosome 

arrangement pattern to predict CCIs further supports our initial hypothesis. 

Finally, by saturation analysis, we show that only moderate amounts of MNase-

seq and Hi-C data are sufficient to achieve an ultrahigh resolution CCI map.  
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Results  

Existence of distinct arrangement pattern of the nucleosomes at CCI sites. 

It is herein proposed that physical CCIs may alter the local chromatin context, 

which, in turn, causes rearrangement of the nucleosomes around the interaction 

sites and a resulting distinct pattern of nucleosomes. This hypothesis is based on 

the following facts. First, although nucleosomes have been shown to have strong 

DNA sequence preference 36, their arrangement is highly dynamic, i.e., subject to 

either passive remodeling by stochastically aligning to bound transcription factors 

(TFs) 37 or active remodeling by ATP-dependent remodeling enzymes 38. Second, 

genomic events or features, e.g., stably bound TF, the end of a heterochromatin 

domain, or simply a nucleosome-free DNA region (NFR), are sufficient to cause 

statistical phasing of a considerable portion of all nucleosomes 39 37,40. Third, the 

phasing patterns of the nucleosomes vary considerably among bound TFs (Fig. 

1a) 41,42. For example, Sun and colleagues found that the nucleosome profiles of 

transcription factor binding sites (TFBSs) could be classified into tens of clusters, 

which could not be explained solely by the binding of one TF per se42. This 

difference may reflect the local chromatin context among TFs.  

To test the hypothesis, we first analyzed all 99 TFs for which ChIP-seq data are 

available for K562 cells in the ENCODE project 43. Principle component analysis 

(PCA) of MNase-seq signals flanking the ChIP-seq peaks of the 99 TFs resulted 

in isolating five TFs (CTCF, RAD21, SMC3, ZNF143 and NFE2) from the others 

(Fig. 1b). Notably, CTCF, cohesin (RAD21 and SMC3) and ZNF143 are well 

known CCI-associated proteins 18,19,44. NFE2 is a chromatin remodeler and also 
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reported to be engaged in enhancer-promoter interactions 45. However, the 

binding of the five TFs alone is not sufficient to predict all known CCI sites (Fig. 

1c). For example, 16.3% (5,765 of 35,323) of ChIA-PET anchors do not overlap 

with any ChIP-seq peaks arising from these 5 TFs in K562. Therefore, to quantify 

the difference in nucleosome pattern arrangement (Fig. 1b), we compared the 

fast Fourier transform (FFT) frequency spectrum of MNase-seq data flanking the 

ChIP-seq peaks of 4 TFs (Fig. 1d, see Methods) and found that the amplitude of 

the fifth and sixth frequencies was most significantly different between CCI-

associated proteins (CTCF, Rad21) and the others. Thus, by the fifth, sixth and 

direct component of the frequencies (see Methods), we defined a score, termed 

as periodic score, to index nucleosome periodicity and found the periodic score 

to be a better predictor of ChIA-PET anchors than the binding of TFs per se (Fig. 

1c). 

Each chromosome occupies largely mutually exclusive territories 12,46. Therefore, 

if the hypothesis is true, it can be expected that allele-specific CCI sites will also 

have allele-specific nucleosome arrangement patterns. Accordingly, we 

examined this prediction in GM12878 cells, which have well-phased, high-density 

SNP data47, and 1,707 and 1,712 maternal- and paternal-specific Rad21 ChIA-

PET anchors with CTCF motifs were identified, respectively. However, because 

of limited SNP density flanking most of allele-specific CCI sites (+/- 1kb), allele 

origins could be assigned to an average of only 6.5 MNase-seq reads, making it 

necessary to perform an aggregation analysis (see Methods). Indeed, at the 

maternal-specific CCI sites, we found that nucleosomes are more periodically 
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arranged in the maternal allele compared to the paternal allele. Meanwhile, the 

pattern is just the opposite at the paternal-specific CCI sites, and no significant 

difference can be found in randomly selected CCI sites (Fig. 1e). Taken together, 

this evidence supports our hypothesis that nucleosome arrangement pattern is 

reflective of the local chromatin environment and might be utilized for the 

detection of CCIs. 

Detecting chromatin interaction sites at kilobase resolution with CISD. 

Therefore, based on the predictive potential of nucleosome arrangement in the 

context of local chromatin environment, as shown above, we developed the 

chromatin interaction site detector (CISD) to identify CCI sites. For any given 

genome locus, CISD takes MNase-seq data as input and determines whether the 

nucleosomes display the assumed arrangement pattern of a CCI site. First, CISD 

is composed of a logistic regression model (LRM) that determines whether the 

input genome locus has a periodic nucleosome arrangement pattern. If so, a 

second support vector machine (SVM) model then determines whether the locus 

has a nucleosome pattern characteristic of CCIs (hereinafter termed CISD sites 

when predicted by CISD) (Fig. 2a). The AUC for the LRM was 0.97 and 0.92 in 

K562 and GM12878 cells, respectively, and five-fold cross-validations of the 

accuracy of the SVM model were above 80% in both cell types. The resolution of 

CISD is defined as the length of the genome segment needed to make a credible 

prediction. In this work, we took 1kb as the default resolution. Using the default 

threshold for the periodic score (0.5), we applied CISD to K562 and GM12878 

cells and predicted 22,112 and 26,801 CISD sites, respectively. Some canonical 
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CCI sites have been successfully revealed by CISD, such as human β-globin 

locus in K562 (Supplementary Fig. 1a).The genome-wide distributions of the 

CISD sites are similar between the two cell types (Supplementary Fig. 1b).  

To further evaluate CISD, we took ChIA-PET loop anchors as the gold standard 

because ChIA-PET is believed to identify CCIs at high resolution48. Compared to 

DNase I hypersensitive sites (DHSs), which were reported to be predictive of 

chromatin looping anchors 19,35,49, CISD sites enriched more ChIA-PET anchors. 

In K562, CISD sites were 2.4-fold more enriched for ChIA-PET anchors than 

were DHSs, as 24.9% (43,340 out of 174,043) and 60.0% (13,278 out of 22,112) 

of DHSs and CISD sites, respectively, overlapped the ChIA-PET loop anchors 

(Fig. 2b). Results largely corresponding to these were also seen in GM12878 

cells (Supplementary Fig. 1c). In the LRM model, when the threshold for periodic 

score was increased from 0.5 to 0.9, only 12.6% more CISD sites (up from 60.0% 

to 72.6%) overlapped ChIA-PET loop anchors in K562, and the corresponding 

figure for GM12878 was only 21.1% (up from 72.3% to 93.4%), suggesting that 

the predictive power of CISD is not sensitive to the threshold for the periodic 

score it used. Because the DHSs are ubiquitous in the genome, it is not 

surprising to find that the total number of DHSs overlapping ChIA-PET anchors is 

larger than the total number of CISD sites (Fig. 2b, Supplementary Fig. 1c). 

Based on this disparity, we decided to examine to extent to which CISD sites 

lacking support from Chl-PET data, termed as nonsupported (ns) CISD sites, 

might be involved in chromatin interactions. To accomplish this, we compared the 

number of Hi-C reads around the nsCISD sites to those around genomic regions 
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that have a high periodic score, but were not predicted as CISD sites. Indeed, the 

nsCISD sites were not only significantly more enriched for Hi-C reads than were 

control sites (P-value<2.2e-16, rank sum test), but a considerably higher 

enrichment of Hi-C-mated reads was observed between nsCISD sites than that 

observed between control sites (P-value <2.2e-16, rank sum test, Fig. 2c, 

Supplementary Fig. 1d). Finally, we experimentally validated two nsCISD sites by 

3C at 5kb resolution, as detailed below.  

Prediction of CCIs between CISD sites with CISD_loop.  

To predict chromatin loops between CISD sites, we developed CISD_loop which 

takes CISD sites and low-resolution Hi-C data as input. Briefly, CISD_loop is a 

SVM model trained on intra-TAD CISD site pairs taking the Hi-C contact index 

and the distance between the two anchors as features (see Methods and Fig. 

3a,b). The 5-fold cross-validation of accuracy of this SVM predictor was 79.0% 

and 76.6% in K562 and GM12878 cells, respectively. We applied CISD_loop on 

Hi-C data from K562 and GM12878 cells and predicted 35,143 and 60,342 

interactions, respectively, out of which 14.4% and 21.3% could be supported by 

ChIA-PET loops. Compared to random intra-TAD CISD site pairs, CISD_loop 

predictions have 3- and 2.3-fold higher enrichment for ChIA-PET loops in K562 

and GM12878 cells, respectively. 

To assess the reliability of CISD_loop predictions that have no ChIA-PET data 

support, we performed 3C experiments to validate two such examples (Fig. 3c,d). 

The two were selected because the restriction sites flanking the CISD sites had 
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suitable density to allow accurate determination of the interaction sites within an 

approximate 5kb window. The restriction fragments with nsCISD sites had the 

highest crosslinking frequencies, and all qPCR products were confirmed to be 

the expected ligation products using Sanger sequencing. In comparison to more 

than 10kb length of the Hi-C segments in which the two selected “nsCISD” sites 

were located, 3C experiments confirmed our predictions at 5kb resolution (Fig. 

3c,d). 

Evidence for the reliability of CISD_loop predictions also comes from 

transcriptome data. For example, in a sub-TAD (chr3:15,460,000-156,200,00; Fig. 

3e)22, a strong enhancer and three genes (METTL6, EAF1 and COLQ) are 

annotated in the UCSC genome browser. However, RNA-seq data show that 

only METTL6 and EAF1 are actively transcribed in K562 cells. The promoter of 

the transcriptionally silent gene COLQ is much closer to the enhancer than the 

common bidirectional promoter of METTL6 and EAF1. This apparent anomaly 

could be explained by our CISD_loop prediction which showed direct contact 

between the strong enhancer and bidirectional promoter of METTL6 and EAF1, 

while bypassing COLQ (Fig. 3e). 

The characteristic nucleosome pattern flanking CCI sites is concordant in 

cell types 

To test whether the characteristic nucleosome pattern is concordant across cell 

types, we trained CISD and CISD_loop with data from one cell type and tested 

them on data from another cell type (Table 1). When the training data were from 
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K562 cells, both CISD and CISD_loop had comparable predictive power in K562 

and GM12878 cells, and the CISD_loop predictions in GM12878 had an even 

higher validation rate by the ChIA-PET data than that of K562 cells. When the 

training data were from GM12878, the intercell-type validation rate was 

substantially reduced. This could be explained by comparing the ChlA-PET 

GM12878 and K562 datasets. The ChIA-PET GM12878 contains more Pol II-

mediated CCIs compared to that of K562, which introduces training biases in the 

CISD/CISD_loop (73.6% and 17.9% ChIA-PET data were targeting Pol II, in 

GM12878 and K562, respectively). Even so, on average, validation rates of 46.3% 

and 6.2% were still 1.9-fold and 4.4-fold higher than random assignments for 

CISD and CISD_loop, respectively, compared to 25.0% and 1.4%. Thus, the 

underlying nucleosome pattern that CISD identified with data from K562 cells 

may be more representative of a possible “consensus nucleosome pattern” in 

cells. In accordance with this surmise, the default CISD and CISD_loop were 

therefore trained with K562 data. 

Modest amounts of data are sufficient for CISD/CISD_loop to achieve 

ultrahigh resolution predictions. 

To examine how many MNase-seq reads are necessary to obtain highly accurate 

CISD site predictions, we composed testing datasets by randomly sampling 

descending numbers of mapped MNase-seq reads, e.g., one half, one quarter, 

and one eighth, from the original data in chromosome one of K562 cells, or about 

142 million mapped reads 41. The original sequencing depth was about 20-fold, 

and the testing datasets simulated sequencing depths of 10-, 5- and 2.5-fold, 
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with read density equivalent to about 570, 285, 143, and 71 kilo reads per million 

base-pair region, respectively. Even with the lowest number of reads, CISD could 

successfully identify periodic nucleosome regions (Fig. 4a), and over one third of 

the predictions overlapped with currently available ChIA-PET loop anchors (Fig. 

4b). However, because the overlapping proportion dropped substantially when 

read coverage became less than 5-fold, we suggest 5-fold or higher coverage for 

CISD site prediction. 

We next confirmed how many MNase-seq and Hi-C reads would be needed to 

obtain high accuracy of CISD loops. We composed the testing data with all, 10% 

and 1% of the current Hi-C reads in chromosome one of K562 cells22, with read 

density equivalent to about 442, 44 and 4 kilo reads pre million base-pair region, 

respectively, and examined the performance of CISD_loop for all combinations of 

the three Hi-C and four MNase-seq testing datasets (Fig. 4c). Exponential 

reduction of Hi-C reads number did not substantially affect the validation rate. 

With only 10% of Hi-C reads, CISD_loop still had nearly the same validation rate 

as it did with the full data, and the validation rate only dropped to half when the 

Hi-C data were reduced to 1%. Thus, we may set the sequencing depth 

according to the desired validation rate. For example, if 10% of CISD loops are 

expected to be supported by ChIA-PET, then the combination of 20-fold 

coverage of MNase-seq and about 1% of Hi-C reads (equivalent to about 570 

and 4 kilo reads/Mb for MNase-seq and Hi-C, respectively) or, alternatively, 5-

fold coverage of MNase-seq and 10% Hi-C reads (equivalent to about 143 and 

44 kilo reads/Mb for MNase-seq and Hi-C, respectively), would allow 
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CISD/CISD_loop to achieve the desired validation rate. Finally, we also trained 

the model in one cell type, either K562 or GM12978, and tested it in the other cell 

type and obtained similar results (Supplementary Fig. 2a-c), suggesting that the 

method can be widely applied in human cell lines.
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Discussion  

In this paper, we developed CISD/CISD_loop for genome-wide identification of 

potential CCI sites and loops at kilobase resolution. This ultrahigh resolution can 

be achieved because the number of nucleosomes with distinct arrangement 

pattern flanking barriers is not large 50, and current MNase-seq data are sufficient 

to detect such pattern. In addition to ultrahigh resolution, our methods also make 

3D genome profile exploration more economical than ultra-deep sequencing, as 

only MNase-seq and low-resolution Hi-C data are used. 

As a complement to current methods, e.g., EpiTensor 33 and TargetFinder 34, 

which detect consistent CCIs across cell types, CISD/CISD_loop can predict 

CCIs in a cell type-specific manner, essentially because our methods do not rely 

on data from other cell types. Cell type-specific CCI prediction is an important 

advance, given the highly dynamic nature of chromatin interactions and 

prevalence of cell-type specificity on promoter-enhancer interactions 3,37,38. 

Epigenetic features of the genome have been used for computational modeling 

of chromatin architecture 19,30,31,33,34. The success of such models suggests the 

presence of profound links between CCI sites and the dynamics of the chromatin 

per se 34. However, data integration-based methods can only provide limited 

insight toward the elucidation of such links. The predictive power of 

CISD/CISD_loop suggests that CCIs may serve as special barriers which alter 

the local chromatin context and cause rearrangement of the nucleosomes. This, 

in fact, may be a potential mechanism linking CCI sites and the dynamic behavior 
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of nucleosomes. Although the actual characteristic pattern is complicated and 

cannot be simplified as nucleosomal periodicity or openness of chromatin, the 

pattern per se is universal cross cell types.  

The biochemical mechanisms underlying chromatin interactions are far from 

being understood. It is certain to be a complex process with many factors 

involved at multiple levels. Thus, any method relying on a single datum is likely to 

yield an incomplete result, and indeed, the sensitivity of CISD is limited. 

Therefore, it is possible that further improvement may be achieved by marrying 

data integration and hypothesis-driven modeling. Furthermore, as indicated by 

Whalen et al., the information relevant to looping interactions is not just limited to 

the interacting loci 34. Thus, taking the data from outside the interacting loci into 

account also merits further investigation. 

The considerable attention in recent literature directed towards 3D genome 

studies reflects the importance of such knowledge. CISD and CISD_loop provide 

an approach that facilitates the expansion of the field of 3D genome research by 

allowing the exploration of more cell types, tissues, and species.  
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Method and Materials 

Cell culture and 3C experiment 

Human K562 cells were obtained from ATCC (http://www.atcc.org/) and were 

grown in RPMI 1640 medium containing 10% FBS and penicillin/streptomycin. 

Cells were routinely tested for mycoplasma contamination and were 

characterized by DNA fingerprinting analysis. The 3C assay was performed as 

previously described with a few modifications 9,22 . Briefly, 5 million cells were 

crosslinked with 1% formaldehyde for 10min. After cells were lysed, DNA was 

digested with HindIII or EcoRI overnight with rotation. In-nucleus ligation was 

conducted using T4 ligase in order to reduce spurious contact from random 

ligation. Crosslinking was reversed, and DNA was purified by two rounds of 

phenol-chloroform extraction and ethanol precipitation. DNA concentrations were 

measured using a Qubit fluorometer and subsequently diluted for real-time 

quantitative PCR with SYBR green. BAC clones spanning the analyzed loci 

(RP11-48E24 and 241N21 for EcoRI loci; RP11-100621 and 997N5 for HindIII 

loci) were digested, religated and used as a control for primer efficiency. To 

correct for the differences in quality and quantity of templates in different 

replicates, the ligation frequencies were normalized to control interactions at the 

housekeeping Ercc3 gene locus. A full list of primers is available upon request. 

Data 

We downloaded the MNase-seq 41, ChIP-seq51, DNase I hypersensitive sites 52, 

and ChIA-PET data (GSE39495) in the ENCODE project43.GEO accession 
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numbers include GSM920557; GSM920558; GSM736629; GSM736566; 

GSM736496; GSM736620; GSM970216; GSM935310; GSM935311; 

GSM935319; GSM935336; GSM935337; GSM935338; GSM935340; 

GSM935343; GSM935344; GSM935355; GSM935356; GSM935358; 

GSM935361; GSM935368; GSM935371; GSM935372; GSM935373; 

GSM935374; GSM935385; GSM935388; GSM935391; GSM935392; 

GSM935394; GSM935401; GSM935402; GSM935407; GSM935410; 

GSM935411; GSM935414; GSM935425; GSM935428; GSM935429; 

GSM935433; GSM935439; GSM935464; GSM935466; GSM935467; 

GSM935468; GSM935469; GSM935470; GSM935471; GSM935472; 

GSM935473; GSM935474; GSM935475; GSM935479; GSM935481; 

GSM935487; GSM935488; GSM935490; GSM935494; GSM935495; 

GSM935496; GSM935497; GSM935499; GSM935501; GSM935502; 

GSM935503; GSM935504; GSM935505; GSM935516; GSM935520; 

GSM935521; GSM935532; GSM935539; GSM935540; GSM935544; 

GSM935546; GSM935547; GSM935548; GSM935549; GSM935565; 

GSM935568; GSM935569; GSM935573; GSM935574; GSM935575; 

GSM935576; GSM935594; GSM935595; GSM935597; GSM935598; 

GSM935599; GSM935600; GSM935602; GSM935616; GSM935632; 

GSM935633; GSM935634; GSM935642; GSM935645; GSM1003608; 

GSM1003609; GSM1003610; GSM1003611; GSM1003620; GSM1003621; 

GSM1003622; GSM1003625. Additional ChIA-PET data were downloaded from 

the studies of 19 and 16. Hi-C data were downloaded from 11,22. 
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Determination of allele-specific MNase-seq reads. 

We downloaded the most updated phased SNP of the GM12878 cell line in the 

1000 Genomes Project 47, from Gerstein’s lab 53. By overlapping the mapped 

reads with phased SNPs, we identified 8,382,815 and 8,456,093 paternal-

specific and maternal-specific MNase-seq reads, respectively. 

Determination of allele-specific CCI. 

We took the ChIA-PET loop anchors in the GM12878 cell line as the gold 

standard CCI sites48. However, the anchor lengths were too short (mean = 424bp) 

to carry out a sufficient number of SNPs. Therefore, instead of using ChIA-PET 

data, we pooled all Hi-C reads that mapped within a 5kb genome region flanking 

each ChIA-PET loop anchor 22. We used the ratio of the maternal-specific read 

number to the paternal-specific read number to index the allele specificity of the 

CCI in each region. We did not consider CCIs in chromosome X. As the index 

has a bell shape distribution (Supplementary Fig. 3), we took the first and last 10% 

as maternal- and paternal-specific CCIs anchors, respectively. We further filtered 

CCIs which had an abnormally high number of reads.  

Aggregation analysis on allele-specific MNase-seq data  

The purpose of this analysis is to aggregate information from sporadic allele- 

specific MNase-seq reads to reveal a general pattern of nucleosome 

arrangement at allele-specific CCI sites. As an example, we describe how the 

information of nucleosome arrangement in the maternal allele at paternal-specific 

CCI sites is aggregated. We first collected maternal-specific reads in the 10kb 
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flanking region of paternal-specific CCI sites, denoted as ( , )ASR m p . By sampling 

5500 reads with replacement from the ( , )ASR m p , we could generate a virtual 

allele-specific sequencing dataset. We aggregated reads in this dataset centered 

by the CTCF motifs found in each CCI site. The periodic score could then be 

calculated as described below. We generated 200 virtual datasets for ( , )ASR m p  

and drew boxplot of periodic scores as in Figure 1e. 

Chromatin interaction site detector (CISD) 

Basically, CISD determines whether the nucleosome arrangement pattern in a 

given genome locus is a pattern that is characteristic of chromatin interactions. 

The algorithm can be largely separated into a data preparation section and two 

model training sections (Fig. 2a).  

Data preparation. Here, we convert MNase-seq data into the frequency 

spectrum by fast Fourier transform (FFT). CISD first smoothes the input MNase-

seq reads. For any given genomic region (1kb-long in this study), the mapped 

reads are binned into 10bp-long bins, resulting an n-dimensional vectorV . V is 

then fed into the iNPS for denoising and smoothing 54. The iNPS is an improved 

version of NPS 55; both iNPS and NPS denoise and smooth the wave-form signal 

by Laplacian of Gaussian convolution (LoG) 54,55. After the LoG, the frequency 

feature of the original data is preserved, while its direct current component is 

substantially reduced. The denoised and smoothed V (denoted as V’) is further 

normalized by dividing the standard deviation of V’ over the whole genome, and it 

was denoted as { }, 0,2,...,n 1.jV v j= = −%

%  After data denoising, smoothing and 
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normalization, CISD converts the linear data into frequency space. To do this, for 

any given V% , FFT is applied to retrieve the frequency information. In general, 

FFT is a fast computational method for Discrete Fourier Transformation (DTF). 

The DTF converts an n-dimensional vector V%  of complex numbers into a 

complex number vector { }, 0,2,3,..., 1,jC c j n= = −   

1

,j

n
it

j t
t

c v e ω−

=

=∑ %  

where i is the basic unit of the imaginary number, and 2 /j j nω π= . Since 1)C  is 

conjugate symmetric and 2) we are only interested in the modulus of C , we 

discarded that half of the elements in C where the real parts are negative. We 

thus arrive at the definition of the FFT profile (denoted as F ) of the nucleosome 

arrangement in a genome segment such that 

{ }, 0, 2,3,..., / 2 ,j jF F c j n= = = ⎡ ⎤⎢ ⎥  

where jc denotes the modulus of jc . 

Model training one: Periodic region detection. We define a metric for the 

periodicity of a given genomic region by a logistic regression model (LRM). To 

train the LRM, we constructed a positive and a negative dataset containing 

CTCF/cohesin co-binding of the ChIA-PET anchors and the control genomic 

regions, respectively, in the GM12878 and K562 cell types. In the positive data- 

set, the cobinding of CTCF and RAD21 is inferred by the ChIA-PET anchors. 

CTCF and cohesin are considered to be co-binding if the two ChIA-PET anchors 
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overlap by more than one basepair. The negative set is composed of genomic 

segments that are located at least 5kb away from the CTCF, cohesin and 

ZNF143 binding sites and are also not in promoter regions, i.e., at least 5kb away 

from UCSC annotated transcription start sites. We chose 0 5,F F and 6F  in the FFT 

profiles ( jF ) as the features with which to train the LRM. The LRM was trained by 

R. An artificial threshold of LRM score (periodic score) was then chosen to 

determine if the input genomic segment is carrying a periodic nucleosome 

pattern. In this paper, we took 0.5 as the threshold and applied the LRM to the 

whole genome, denoting the determined periodic nucleosomal regions as high 

score peaks (HSPeaks) to be used as input for the next step. 

Model training two: interaction site detection. As we have shown above, not 

all periodic nucleosomal regions are associated with chromatin interactions. 

Accordingly, we trained a supporting vector machine (SVM) to further distinguish 

interactive loci from the remaining periodic nucleosomal regions. We took the full 

frequency spectrum (F) as the feature. To train the SVM, we constructed a 

positive and a negative dataset from the HSPeaks. The positive sets consisted of 

overlapping CTCF and cohesin ChIA-PET anchors, while the negative set was 

randomly sampled from a subset of HSPeaks that did not overlap any ChIA-PET 

anchors. The SVM model was implemented by R-package “e1071” with default 

parameter settings. 

CISD-based Chromatin loop predictor (CISD_loop). 
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CISD_loop is a SVM model for determination of intra-TAD chromatin loops 

between CISD sites. In addition to CISD, TAD annotation and raw Hi-C reads are 

required for the operation of CISD_loop. The TADs annotated in hESC were 

used as the reference for all human cells, as the TAD structure is believed to be 

largely consistent among tissue types 11. CISD_loop was trained according to the 

following procedure. First, we constructed a “total” dataset composed of all intra-

TAD CISD site pairs. Then, the training and testing datasets were drawn from the 

“total” dataset so that the positive set (5,000 data points in this work) was 

composed of the CISD pairs that overlapped with ChIA-PET loops, and the 

negative set was an identical number of randomly sampled CISD pairs from the 

remaining data. Two features were employed in CISD_loop, namely, the Hi-C 

contact index and the distances between the pairs of CISD sites (Fig. 3b).The Hi-

C contact index was defined using the normalized Hi-C contact matrix with a 

genome bin size of 5kb 22. For any given pair of CISD sites, (Ci, Cj), we denoted 

the genome bins that cover the CISD sites Ci and Cj as Bi and Bj, respectively. 

We also denote Bi-1 and Bi+1 as the 3’- and 5’- neighbor bins of Bi, respectively. 

Then, the Hi-C contact index was defined as the average number of the 3×3 

square [Bi-1 – Bi+1 × Bj-1 – Bj+1] in the Hi-C contact matrix (Fig. 3b). The SVM 

model was implemented by R-package “e1071” with default parameter settings. 

Code availability. Source code for the CISD and CISD_loop can be found at 

https://github.com/huizhangucas/CISD. 

Evaluation of the models. In all total datasets, we had identical numbers of 

entries in the positive and negative sets. The accuracy of a model was defined as 
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(TP + TN) / (TP + TN + FP + FN), where TF, TN, FF, and FN represent true 

positives, true negatives, false positives and false negatives, respectively. 

Standard five-fold cross-validation was performed according to the following 

procedure. The original total data sample was randomly partitioned into 5 

subsets of equal size. Of the five subsets, a single subset was retained as the 

testing data, and the remaining 4 subsets were used as training data. We 

repeated this procedure 5 times with each of the 5 subsets used exactly once as 

the testing data. The 5 results were averaged for the final evaluation. 
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Figure and Table legends 

Figure 1. Characteristic nucleosome arrangement patterns flanking the 

binding sites of major CCI-mediating proteins. (a) The distribution of MNase-

seq reads flanking the ChIP-seq peaks of Rad21, CTCF, NFYB and KAP1 in 

K562. (b) PCA analysis of MNase-seq signals flanking ChIP-seq peaks of 99 TFs. 

Five TFs separated from the remaining TFs are marked in red. The predictive 

power of ChIP-seq peaks and the periodic score of the CCI site were assessed 

by overlapping them with ChIA-PET loop anchors, and the ROC curves for the 

two methods were drawn as dashed and solid lines, respectively, in (c). (d) The 

FFT profile of MNase-seq signals flanking the ChIP-seq peaks of the four 

proteins in (a). (e) Aggregation analysis of allele-specific MNase-seq data at 

allele-specific CCI sites. Each boxplot represents the distribution of periodic 

scores from 200 virtual datasets. ***: rank sum test P value < 1e-10. 

 

Figure 2. CISD workflow and performance. (a) The flow chart of CISD. The 

ovals represent datasets that were used or generated, and the square boxes 

represent data processing steps. (b) Fractions of DHSs and CISD sites that 

overlap ChIA-PET loop anchors (left columns) in K562 and fractions of ChIA-PET 

loop anchors that overlap DHSs and CISD sites (right columns). (c) Distribution 

of Hi-C reads count around nsCISD and control sites (left); distribution of Hi-C 

contact index between nsCISD sites and between control sites (right) in K562. 

For each site, the reads count is calculated from the normalized Hi-C contact 
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matrix. The 5kb resolution matrix was used in this figure. (***: rank sum test P-

value< 2.2e-16).  

 

Figure 3. CISD_loop workflow and performance. (a) Flowchart of CISD_loop. 

For explanation, see Figure 2a. (b) Illustration of the Hi-C contact index 

calculation (see Methods). The diamonds represent the entries in the normalized 

Hi-C contact matrix. Two 3C experiments were performed (c) between 

chr5:42,000,785-42,006,207 (anchor) and chr5:41,856,243-41,857,738 (target) 

and (d) between Chr11:111,153,407-111,155,719 (anchor) and 

Chr11:111,297,381-111,301,207 (target). Each data point represents mean ± 

SEM of three technical replicates and three normalized biological replicates. The 

CCIs predicted by CISD_loop are marked as arches. The third CISD site was 

marked in grey, indicating that it could not be validated in this experiment 

because a restriction site appears in the site. (e) A putative chromatin interaction 

predicted by CISD_loop is marked as an arch. MNase-seq reads, ChIP-seq 

peaks, DNase-seq reads and CISD_loop predictions are shown within a sub-TAD 

region on chr3:15,460,000-156,200,00.  

 

Figure 4. MNase-seq and Hi-C data requirements for high-resolution 

prediction by CISD and CISD_loop. (a) ROC curves for LRM predictions with 

different portions of MNase-seq data. (b) Percentages of CISD sites supported 

by ChIA-PET loop anchors under different periodic score thresholds and different 

portions of MNase-seq data. (c) Percentages of CISD_loop predictions 
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supported by ChIA-PET loops with different portions of MNase-seq and Hi-C data. 

The threshold of periodic score in the LRM step was set at 0.5. Each data point 

represents mean ± SD of 10 technical replicates. 

 

 
Table 1. Intra- and intercell-type performance of CISD and CISD_loop.  

 

Training set Testing set # of CISD 
sites 

% of ChIA-
PET anchors 

# of CISD 
loops 

% of ChIA-
PET loops 

K562 K562 22,112 62.30% 35,143 14.40% 

K562 GM12878 17,441 59.90% 16,681 39.70% 

GM12878 GM12878 26,801 72.30% 60,342 21.30% 

GM12878 K562 34,036 46.30% 117,608 6.20% 
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