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This	paper	introduces	a	new	hypothesis	concerning	the	formation	of	habits	in	the	cortex	of	primates	under
the	implicit	supervision	of	the	basal	ganglia. This	hypothesis	has	been	formulated	using	a	theoretical	model	and
confirmed	experimentally	in	monkeys. To	do	so, and	prior	to	learning, we	inactivated	the	internal	part	of	the
globus	pallidus	(GPi, the	main	output	structure	of	the	BG) with	injections	of	muscimol	and	we	tested	monkeys
on	a	variant	of	a	two-armed	bandit	task	where	two	stimuli	are	associated	with	two	distinct	reward	probabilities
(0.25	and	0.75	 respectively). Unsurprisingly, their	performance	 in	 such	conditions	are	at	 the	chance	 level.
However, the	theoretical	model	predicts	that	even	if	the	performance	is	random, the	value	of	the	stimuli	are
implicitly	evaluated	and	learned. This	has	been	tested	and	confirmed	on	the	next	day, when	inhibition	has
been	removed: monkeys	instantly	showed	quasi-optimal	performances, demonstrating	they	knew	the	relative
value	of	 the	 two	 stimuli. Said	differently, we	managed	 to	explicitly	dissociate	 reinforcement	 learning	 from
Hebbian	 learning	 and	 demonstrated	 covert	 learning	 inside	 the	 basal	 ganglia. These	 results	 suggest	 that	 a
behavioral	decision	results	from	both	the	cooperation	(acquisition)	and	competition	(expression)	of	two	distinct
but	entangled	memory	systems, the	goal-directed	system	and	the	habit	system	that	may	represent	the	two	ends
of	the	same	graded	phenomenon.
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Introduction

When	entering	a	new	building, you’re	 confronted	 to
a	very	simple	binary	choice: should	you	pull	or	push
the	door	to	enter? If	there	is	no	external	sign	indicating
what	 is	 the	 rightful	 action, you	might	 as	well	 select
a	 random	 action	 or	 select	 the	 one	 you’re	 the	 most
used	 to	and, in	case	of	 failure, you	can	 immediately
switch	 to	 the	 alternate	 action. If	 you	 come	 to	 this
building	on	a	regular	basis, you	will	rapidly	learn	what
is	the	right	action	to	enter	(push)	and	to	exit	(pull)	the
building	without	ever	noticing	it. To	enter	and	to	exit
the	building	will	 be	 soon	part	 of	 you	daily	 routines.
However, if	 for	 some	 reason	 the	 door	 is	 reversed
(because	of	works), you	will	find	yourself	persisting	in
pushing	the	door	to	enter	and	pulling	the	door	to	exit.
Even	 though	you	 realized	on	 the	first	day	 something
has	 changed, this	 situation	 can	 last	 for	 several	 days
until	you	actually	change	your	behavior	and	adapt	it	to
the	new	situation. But	there	are	some	situations	where
adapting	behavior	to	new	conditions	is	not	so	easy	and
overcoming	 habits	 becomes	 extremely	 difficult. For
example, when	you	live	in	a	right-side	driving	country,
you’re	 used	 to	 look	 first	 at	 the	 left	 side	 to	watch	 for
incoming	 cars	 before	 crossing	 the	 road. If	 you	now
travel	 to	 a	 left-side	 driving	 country	 for	 a	 short	 stay,
it	 is	 extremely	 difficult	 to	 look	 on	 your	 right	 before
crossing	the	road. The	habit	is	so	strongly	imprinted	in
your	brain	and	your	body	that	it	cannot	be	overcome
in	just	a	few	days. Only	a	long-term	stay	can	give	you
a	chance	(if	any)	to	adapt	to	the	new	conditions.

Such	 habits	 have	 been	 identified, demonstrated
and	 studied	 for	 a	 long	 time	 in	many	 different	 fields
of	 neuroscience	 and	 psychology	 [1–4]	 but	 there	 is
still	 a	 large	 degree	 of	 uncertainty	 around	 their	 exact
definition. According	 to	 the	 review	 provided	 by
[5], habits	 can	be	characterized	using	five	common,
although	not	always	present, features: inflexible, slow
or	 incremental, insensitive	 to	 reinforcer	 devaluation,

unconscious	 and	 automatic. This	 characterization
may	 further	 vary	 across	 fields	 depending	 on	 the
species, tasks	 and	 methodologies	 such	 that	 in	 the
end, it	 is	difficult	 to	assess	if	a	given	behavior	results
from	 an	 habit	 or	 from	 another	 process. However,
even	if	insensitivity	to	reinforcer	devaluation	is	largely
considered	to	be	a	hallmark	of	habits	[6–11]	(although
such	overtraining	is	hardly	ever	defined), things	might
be	more	complex	as	illustrated	by	the	simple	example
we	 introduced	previously. Habits	might	be	 indeed	a
more	graded	phenomenon.

To	gain	a	better	 insight, we	have	 to	consider	both
action-outcome	(A-O) and	stimulus-response	(S-R) pro-
cesses	that	are	two	forms	of	instrumental	conditioning
and	 important	 components	 of	 behavior. The	 former
evaluates	 the	benefit	of	an	action	 in	order	 to	choose
the	 best	 action	 among	 those	 available	 (action	 selec-
tion)	while	 the	 latter	 is	 responsible	 for	automatic	be-
havior	(habits), eliciting	a	response	as	soon	as	a	known
stimulus	is	present	[1, 7], independently	of	the	hedonic
value	of	the	stimulus. Habits	and	action	selection	can
be	easily	characterized	using	a	simple	operant	condi-
tioning	setup	such	as	for	example, a	two-armed	bandit
task	(see	Fig 1)	where	an	animal	must	choose	between
two	options	of	different	value, the	value	being	proba-
bility, magnitude	or	quality	of	reward	[12, 13]. After
some	trials	and	errors, a	wide	variety	of	vertebrates	are
able	to	select	the	best	option	[14–22]. This	selection	is
believed	to	result	from	the	behavioral	expression	of	the
action-selection	system. If	the	associated	values	are	to
be	changed	after	only	a	few	trials, the	animal	can	still
adapt	its	behavior	and	select	rapidly	the	new	best	op-
tion. However, after	 intensive	 training	 (that	depends
on	the	species	and	the	task)	and	if	the	same	values	are
used	all	along, the	animal	will	tend	to	become	insen-
sitive	 to	 change	and	persist	 in	 selecting	 the	 formerly
best	option	[20, 23]. This	selection	is	believed	to	re-
sult	from	the	behavioral	expression	of	the	habit	system.
Most	of	the	studies	on	action	selection	and	habits	agree

2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 23, 2016. ; https://doi.org/10.1101/060236doi: bioRxiv preprint 

https://doi.org/10.1101/060236
http://creativecommons.org/licenses/by/4.0/


The	Formation	of	Habits	in	Primates

on	 a	 slow	 and	 incremental	 transfer	 from	 the	 action-
selection	system	to	the	habit	system	such	that	after	ex-
tensive	training, the	habit	system	takes	control	of	be-
havior	and	the	animal	becomes	insensitive	to	reward
devaluation	[5, 24]. But	very	little	is	known	on	the	ex-
act	mechanism	underlying	such	transfer	and	one	diffi-
cult	question	that	immediately	arises	is	when	and	how
the	brain	switches	from	a	flexible	action-selection	sys-
tem	to	a	more	static	and	habitual	one? Our	working
hypothesis	is	that	there	is	no	need	for	such	an	explicit
switch. We	propose	instead	that	an	action	expressed
in	the	motor	area	results	from	both	the	continuous	co-
operation	(acquisition)	and	competition	(expression)	of
the	two	systems. We	therefore	upgraded	our	previous
model	of	reinforcement	learning	and	decision	making
through	the	cortex	BG loop	[13, 25, 26]	by	adding	a
cortical	module	that	is	granted	a	competition	mecha-
nism	and	Hebbian	learning	capacity.

Saline or muscimol injection
 into the internal part of
the Globus Pallidus (GPi)

15 minutes before session

Cue presentation

(1.0 - 1.5 second)

Trial Start

(0.5 - 1.5 second)

Decision
(1.0 - 1.5 second)

Go Signal

Reward

Up

Down

Left

Right

Reward (juice) delivered
according to the reward
probability associated

with the chosen stimulus

Control

Figure 1: Description	of	 the	 task. A trial	 is	made	of	 the	simul-
taneous	presentation	of	two	cues	at	two	random	positions	associ-
ated	with	a	fixed	reward	probability. The	monkey	has	to	choose	a
stimulus	at	the	go	signal	and	maintain	this	choice	for	one	second.
Reward	is	delivered	according	to	the	reward	probability	associated
with	the	chosen	stimulus.

Results

We	designed	 a	 simple	 two-armed	bandit	 task	where
two	 stimuli	 A and	 B are	 associated	 with	 different

reward	 probability	 (respectively	 0.25	 and	 0.75)	 as
shown	on	Fig 1 (see	Material	and	Methods	section	for
full	 description	 of	 the	 different	 protocols). The	 goal
for	 the	 subject	 is	 to	 choose	 the	 stimulus	 associated
with	 the	 highest	 reward	 probability, independently
of	 its	 position. The	 theoretical	model	makes	 a	 clear
distinction	 between	 the	 acquisition	 of	 habits	—	 that
requires	the	basal	ganglia	to	imprint	the	cortex	—	and
the	expression	of	habits	—	 that	does	not	 require	 the
basal	ganglia per	se. However, if	these	two	processes
are	 normally	 entangled	 and	 congruent	 in	 the	 course
of	daily	behavior, the	model	predicts	that	it	is	possible
to	 dissociate	 them	 experimentally. The	 idea	 is	 to
consider	 the	 learning	 of	 a	 novel	 set	 of	 stimuli	 (with
respective	 reward	 probability	 0.25	 and	 0.75)	 while
the	GPi	output	is	suppressed, such	that	the	BG cannot
influence	the	selection	through	the	cortical	feedback.
Because	 cortical	 learning	 in	 the	 model	 is	 Hebbian
[27]	 and	 does	 not	 depend	 on	 reward, we	 should
observe	 random	 choices	 from	 the	model, leading	 to
an	equal	amount	of	learning	for	any	of	the	two	cues.
In	the	meantime, and	because	the	BG still	receive	the
dopaminergic	 signal	 following	a	choice, it	 is	 able	 to
learn	 the	 actual	 value	 of	 the	 cue, even	 if, it	 cannot
influence	anymore	the	actual	action.

We	first	ran	a	series	of	control	experiments	for	both
the	model	and	the	monkeys	to	ensure	the	task	can	be
learned	without	difficulty	as	shown	on	Fig 2 (Control).
We	proceeded	with	2	different	protocols	where	the	GPi
is	either	 inhibited	on	day	1	 (protocol	2)	or	on	day	2
(protocol	1). In	 the	case	of	protocol	1, and	because
the	control	experiment	has	demonstrated	that	both	the
model	and	the	monkeys	were	able	to	learn	the	respec-
tive	value	of	A and	B,	this	also	induces	a	preferential
selection	of	stimulus	B in	order	to	obtain	a	higher	prob-
ability	of	reward. If	the	process	is	repeated	over	many
trials, this	leads	implicitly	to	an	over-representation	of
stimuli	 B at	 the	 cortical	 level. Said	 differently, the
value	of	B has	been	converted	 into	 the	 temporal	do-
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main	(i.e. frequency). Considering	our	hypothesis	that
Hebbian	learning	occurs	in	the	same	time	at	the	corti-
cal	level	(LTP/LTD) and	depends	mostly	on	the	occur-
rence	of	 coincident	 events, the	 cortex	 can	 implicitly
learn	the	value	of	the	stimulus	through	such	sequence
of	repeated	trials. This	means	that	on	day	2	(D2), we
should	observe	an	above	chance	performance, when
the	GPi	is	inhibited. More	interestingly, the	model	also
predicts	 that	protocol	1	can	be	reversed, that	 is, GPi
can	be	inhibited	on	day	1	(D1)	and	later	disinhibited
on	day	2. During	the	first	day	and	after	several	trials
in	such	condition, we	hypothesize	the	value	of	the	two
stimuli	to	have	been	learned	within	the	BG even	if	the
BG cannot	influence	decision, meaning	the	actual	de-
cision	should	be	random. However, when	the	inhibi-
tion	of	the	GPi	is	removed	on	day	2, we	should	observe
a	radical	change	in	behavior	for	subsequent	trials. Be-
cause	the	BG has	learned	the	actual	value	of	the	cue
and	can	now	influence	behavior	through	thalamus	and
cortex	(whose	learning	resulted	in	a	no	differentiation
of	the	two	cues), peak	performance	should	be	reached
quasi	instantly.

Theoretical	results

Left	part	of	Fig 2 shows	the	theoretical	results	for	the
first	 25	 trials	 and	 the	 last	 25	 trials	 averaged	over	 25
different	 simulations. For	 protocol	 2, when	 the	GPi
output	is	suppressed	on	day	1	(D1), the	performance
is	random	from	the	start	 (P=0.506 ±0.12)	 to	 the	end
(P=0.555 ±0.15)	of	 the	 session. However, after	GPi
inhibition	has	been	removed	on	day	2	(D2, at	trial	120)
and	 ran	 for	 another	 batch	 of	 120	 trials, we	 can	 ob-
serve	a	significant	change	in	the	performance	and	the
model	immediately	reaches	near-optimal	performance
level	 (P=0.907 ±0.09)	and	improves	until	 the	end	of
the	 session	 (P=1.000 ±0.00). We	 further	proceeded
with	the	model	and	tested	it	on	day	3	with	a	renewed
suppression	of	 the	GPi	output. Interestingly	enough,
performances	do	not	drop	to	chance	level	but	start	at

a	 high	 level	 (P=0.882 ±0.06)	 and	 improve	 until	 the
end	of	the	session	(P=0.938±0.05)	beause	habits	have
been	formed	at	the	cortical	level. These	results	are	also
reported	on	Fig 3 that	display	the	instantaneous	perfor-
mance	using	a	sliding	window	of	10	trials. The	discon-
tinuity	between	the	end	of	day	1	and	the	start	of	day
2	is	particularly	clear. More	interestingly, the	measure
of	the	internal	estimation	of	the	reward	probability	for
each	of	the	two	stimuli	show	no	such	discontinuity	as
predicted	by	our	hypothesis.

Experimental	results

We	tested	the	prediction	on	two	female	macaque	mon-
keys	which	have	been	implanted	two	cannula	guides
into	 the	 left	 and	 right	 GPi	 (see	Materials	 and	Meth-
ods	section	 for	details). We	applied	 the	same	proto-
col	 as	 in	 the	 theoretical	model, that	 is, we	 injected
bilaterally	GABA agonist	muscimol	15	minutes	before
working	session	 (see	Materials	&	Methods	 in	supple-
mentary	material)	on	day	1. The	 two	monkeys	were
trained	for	6	and	7	sessions	respectively, each	session
using	the	same	set	of	stimuli. Results	(right	part	of	Fig
2)	 shows	 that	 animals	 are	unable	 to	choose	 the	best
stimulus	in	such	condition	from	start	(P=0.36 ±0.05)
to	end	(P=0.41 ±0.05)	of	the	session. On	day	2, ani-
mals	were	injected	bilaterally	a	saline	solution	15	min-
utes	before	working	session	and	they	were	trained	us-
ing	the	exact	same	protocol	as	for	day	1. Results	shows
a	drastic	and	significant	change	in	behavior: animals
start	with	near-optimal	performance	on	the	first	25	tri-
als	(P=0.97±0.05), confirming	our	hypothesis	that	the
BG have	previously	learned	the	value	of	stimuli	even
though	they	were	unable	to	alter	behavior. Based	on
these	theoretical	results	and	in	light	of	experimental	re-
sults	in	the	monkey	for	protocol	1, we	can	predict	that
a	similar	habit	 formation	would	occur	in	the	primate
frontal	cortex.
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Figure 2: Comparative	results. Protocol	2 D1	corresponds	to	the	first	day	of	the	experiment	where	GPi	output	is	suppressed	in	both
the	model	(removal	of	GPi-Thalamus	connection)	and	the	monkeys	(muscimol	injection). D2	corresponds	to	the	second	day	where	the
suppression	of	the	GPi	output	is	removed. It	is	remarkable	to	see	that	D1	results	in	random	choice	while	in	D2	performances	are	quasi
instantly	optimal	and	improve	until	the	end	of	the	session. This	tends	to	confirm	the	hypothesis	that	the	BG have	learned	the	value
of	the	stimuli	during	day	1	even	if	they	were	unable	to	alter	behavior. During	D3, GPi	output	is	suppressed	again	and	performances
remains	very	high. This	is	due	to	the	learning	of	the	task	at	the	cortical	level	in	the	model. Note	that	for	monkeys, D3	results	is	only	a
prediction	based	on	model	results	and	monkey	protocol	1	results. They	have	have	not	yet	been	confirmed. Control	condition reveals
that	without	suppression	of	the	GPi	output, both	the	model	and	the	monkeys	are	able	to	quickly	reach	a	very	good	performance	level
at	the	end	of	day	1	(D1, second	column). Protocol	1 D1	corresponds	to	the	first	day	of	the	experiment	where	the	habits	are	believed	to
have	been	acquired	by	the	end	of	the	day. D2	corresponds	to	the	second	day	where	GPi	output	is	suppressed	in	both	the	model	(removal
of	GPi-Thalamus	connection)	and	the	monkeys	(muscimol	injection). Even	if	the	performances	are	a	bit	lower	than	at	the	end	of	D1,
they	are	significantly	higher	than	at	the	start	of	D1. These	results	in	the	monkeys	allow	us	to	predict	performances	for	protocol	2	and	D3
for	the	monkeys. (*)	(resp. (**))	means	significant	difference	with	(1)	(resp. (2)), all	other	differences	being	not	significant.

Material	and	Methods Behavioral	experiments

Experimental	 procedures	 were	 performed	 in	 accor-
dance	with	the	Council	Directive	of	20	October	2010
(2010/63/UE) of	the	European	Community. This	project
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Figure 3: Theoretical	results. Top	panel. The	measure	of	the	in-
stantaneous	performance	over	a	sliding	window	of	10	trials	(strong
line)	clearly	shows	the	discontinuity	in	performances	between	end
of	day	1	and	start	of	day	2, indicating	values	have	been	learned	dur-
ing	day	1. Bottom	panel. The	measure	of	the	internal	estimation
of	 stimuli	value	shows	no	discontinuity	and	 is	 thus	 independent
of	the	state	of	the	GPi, as	predicted	by	our	hypothesis. Final	val-
ues	are	0.76±	0.02	and	0.35±0.04	respectively, which	are	close
to	the	actual	reward	probability	of	the	two	stimuli	(0.75	and	0.25
respectively). Since	 the	 lowest	 probability	 stimulus	 is	 less	 often
chosen	(after	learning	has	occurred)	it	is	expected	its	value	to	be
only	roughly	approximated.

was	approved	by	the	French	Ethic	Comity	for	Animal
Experimentation	(#50120111-A).	Data	were	obtained
from	 two	 female	macaque	monkeys	 that	were	previ-
ously	used	in	a	related	set	of	experiments. All	the	de-
tails	concerning	animal	care, experimental	setup, sur-
gical	procedure, bilateral	 inactivation	of	 the	GPi	and
histology	can	be	found	in	[28].

Computational	modeling

Architecture

The	 model	 is	 an	 extension	 of	 previously	 published
models	[13, 25]. The	model	by	[25]	introduced	an	ac-
tion	selection	mechanism	which	derives	from	the	com-
petition	between	a	positive	feedback	through	the	direct
pathway	and	a	negative	 feedback	 through	 the	hyper-

direct	pathway	in	the	cortico-basal-thalamic	loop. The
model	has	been	extended	in	[13]	in	order	to	explore	the
parallel	organization	of	circuits	in	the	BG.	This	model
includes	all	the	major	nuclei	of	the	basal	ganglia	(but
GPe)	 and	 is	 organized	 along	 three	 segregated	 loops
(motor, associative	and	cognitive)	that	spread	over	the
cortex, the	basal	ganglia	and	the	thalamus	[29–32]. It
incorporates	a	two-level	decision	making	with	a	cog-
nitive	 level	 selection	 (lateral	 prefrontal	 cortex, LPFC)
based	on	cue	shape	and	a	motor	level	selection	(sup-
plementary	motor	area, SMA,	and	primary	motor	cor-
tex, PMC) based	on	cue	position	 (see	Fig 4). In	 this
latter	model, the	cortex	is	mostly	an	input/output	struc-
ture	under	the	direct	 influence	of	both	the	task	input
and	the	thalamic	output	resulting	from	the	basal	ganglia
computations. Consequently, this	cortex	cannot	take	a
decision	of	it	own. In	the	present	work, and	to	cope
with	our	main	hypothesis, we	added	a	lateral	competi-
tion	mechanism	in	all	three	cortices	(motor, cognitive,
associative)	based	on	short	range	excitation	and	long
range	inhibition	and	connections	between	the	associa-
tive	cortex	and	cognitive	(resp. motor	ones)	to	allow	for
the	cross	talking	of	these	structures. This	competition
results	in	the	capacity	for	the	cortex	to	make	a	decision
as	shown	on	Fig 5, although	slower	than	the	BG.

Dynamics

The	dynamic	of	a	decision	in	the	model	is	 illustrated
on	Fig 5 before	any	learning	has	occurred. The	top	part
shows	the	dynamics	of	the	unlesionned	model	where	a
decision	occurs	a	few	milliseconds	after	stimulus	onset.
However, in	the	lesioned	model, the	suppression	of	the
GPi	output	slows	down	considerably	the	decision	pro-
cess	compared	to	the	intact	model. This	means	that	the
decision	is	initially	driven	by	the	basal	ganglia.
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Figure 4: Architecture	of	the	model. The	computational	model	is	made	of	12	neural	groups	organized	along	three	segregated	loops
(motor, associative	 and	 cognitive)	 that	 spread	over	 the	 cortex, the	 basal	 ganglia	 and	 the	 thalamus. Blue	 lines	 represent	 excitatory
pathways, red	lines	represent	inhibitory	pathways	and	dashed	lines	represent	emulated	pathways	(they	are	not	physically	present	in	the
model	but	their	influence	is	taken	into	account). Red	crosses	represent	lesion	sites	emulating	the	muscimol	injection	in	the	GPi	of	the
monkeys. The	color	of	the	different	units	has	only	an	illustrative	purpose	and	does	not	represent	actual	activation.
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Figure 5: Dynamic	of	a	decision At	the	beginning	of	the	trial, all	the	neurons	are	settled	to	their	steady	state. Each	red	line	represents	one
cognitive	cortical	neuron	and	each	blue	line	one	motor	cortical	neuron. At	t=500	ms, stimuli	are	presented	to	the	model. The	activity	of
cortical	neurons	associated	to	cues	or	positions	that	are	not	shown	are	immediately	suppressed	while	the	activity	of	the	present	cues	and
positions	start	to	compete	such	that	in	the	end	only	one	cognitive	and	one	motor	neuron	stay	active	(i.e. a	decision	has	been	made). The
suppression	of	the	GPi	output	(bottom	panel)	slows	down	considerably	the	decision	process	compared	to	the	intact	model	(top	panel).

Learning

Dopamine	 modulates	 learning	 using	 reinforcement
learning	(RL) between	the	cognitive	cortex	and	the	cog-
nitive	striatum	such	that	the	decision	made	at	the	cog-
nitive	level	can	be	used	to	bias	the	decision	at	the	motor
level. Hebbian	learning	(HL) occurs	just	after	a	motor
action	has	been	selected	and	carried	out	and	modifies
the	connections	(LTP) between	the	cognitive	cortex	and
the	associative	cortex. It does	not	depend on	reward
but	 only	 on	 the	 actual	 cognitive	 and	motor	 choices.
It	 is	 to	 be	 noted	 that	 the	 cortical	 selection	 (resulting
from	lateral	competition	in	the	cortex)	 is	slower	than
the	cortico-basal	selection	(see	Fig 4)	such	that	the	cor-
tex	is	initially	driven	by	the	basal	ganglia	output	(GPi),
hence	it	learns	from	the	statistics	provided	by	the	BG
selection.

Lesion

Lesion	 in	 the	model	 is	made	 through	 the	 removal	of
all	 the	connections	between	 the	motor	 (resp. cogni-
tive)	GPi	and	the	motor	(resp. cognitive)	thalamus	(red
crosses	on	Fig 4). This	prevents	any	communication
from	the	basal	ganglia	to	the	model	but	keep	intact	the

communication	from	the	cortex	to	the	basal	ganglia.

Data	analysis

For	statistic	analyses, unless	stated	otherwise, data	are
shown	as	 the	mean ± standard	deviation. We	used
the	multi-way	repeated	measures	analysis	of	variance
(ANOVA) to	examine	relations	between	session	(n=25),
periods	(beginning: 25	first; end: 25	last	trials), sessions
(Control	or	Protocol	1	or	Protocol	2). Post-hoc	com-
parisons	were	conducted	by	using	Bonferroni	 for	 the
simulations	but	Kruskal-Wallis	for	the	data	(non	para-
metric	analysis)	when	the	ANOVA showed	significant
differences. Significance	was	set	at	P<0.001.

Model

The	ANOVA revealed	a	significant	difference	between
the	different	simulation	conditions	(F=90.87; DF=349;
p<0.001). Bonferroni	 post-hoc	 analysis	 (P<0.001)
showed	 that	 beginning	of	 control	 period	was	 signifi-
cantly	different	to	all	other	condition	except	beginning
of	D1	in	protocol	1	(BD1-P1), beginning	of	D1	in	pro-
tocol	2	(BD1-P2)	and	end	of	D1	protocol	2	(ED1-P2).
More	specifically, this	shows	that	there	is	a	significant
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difference	 in	performance	between	 the	end	of	day	1
and	the	start	of	of	day	2	for	protocol	2	and	no	differ-
ence	between	end	of	day2	and	start	of	day	3.

Monkeys

The	ANOVA revealed	a	significant	difference	between
the	different	simulation	conditions	(F=28.18; DF=117;
p<0.001). Kruskall-Wallis	post-hoc	analysis	(P<0.001)
showed	that: beginning	of	control	period	was	signifi-
cantly	different	to	all	other	condition	except	beginning
of	D1, protocol	1	(BD1-P1), beginning	of	D1, protocol
2	(BD1-P2), and	end	of	D1, protocol	2	(ED1-P2). More
specifically, this	shows	that	there	is	a	significant	differ-
ence	in	performance	between	the	end	of	day	1	and	the
start	of	of	day	2	for	protocol	2.

Discussion

These	 experimental	 results	 clearly	 demonstrate	 that
Hebbian	and	reinforcement	learning	can	be	explicitly
dissociated	by	inactivating	the	output	of	the	basal	gan-
glia	while	preserving	the	learning	of	the	stimuli	value
in	 a	 two-arm	 bandit	 task. It	 suggests	 that	 a	 behav-
ioral	 decision	 results	 from	both	 the	 cooperation	 (ac-
quisition)	and	competition	(expression)	of	two	distinct
but	 entangled	memory	 systems. To	understand	 such
hypothesis, it	 is	 important	 to	consider	how	 the	basal
ganglia	 forms	a	 series	of	 parallel	 loops	 (motor, asso-
ciative, limbic)	with	the	cortex	and	the	thalamus	[33].
In	higher	order	mammals	such	as	primates, the	over-
all	process	starts	 in	the	sensory	cortex, where	stimuli
are	 encoded, and	 ends	 up	 preferentially	 in	 the	mo-
tor	cortex	 from	where	an	actual	action	 is	 sent	 to	 the
medullar	motor	neurones. Accordingly, in	 the	previ-
ous	versions	of	our	model	[25], the	cortex	was	consid-
ered	as	a	single	 input/output	excitatory	 layer	without
intrinsic	dynamic	properties	other	 than	 the	 I/O func-
tion	of	the	populations. We	then	added	a	thalamic	loop

which	allowed	positive	feedback	but	the	different	chan-
nels/populations	were	still	independent	[13, 26]. This
limited	autonomy	is	reasonable	to	mimic	non-mammal
vertebrate	3-layers	dorsal	mantle	(aka	pallium), but	it
was	 too	 rudimentary	 for	 the	more	complex	architec-
ture	of	the	6-layers	mammal	cortex	[34]. The	latter	is
remarkable	for	its	organization	in	functional	columns
that	are	able	to	provide	themselves	positive	feedback
and	to	exert	lateral	inhibition	on	their	neighbors. This
architecture	grants	the	cortex	with	dynamic	properties
that	are	far	beyond	what	we	were	able	to	capture	with
our	previous	versions	of	 the	model: the	balance	be-
tween	activation	and	inhibition	allowed	to	toggle	into
various	states	that	could	be	segregated	enough	to	trig-
ger	different	decisions	[35]. We	therefore	decided	to
add	a	cortical	module	encompassing	these	properties
(see	Fig 4 and	method	section). We	also	grant	it	with
the	capacity	to	perform	Hebbian	learning	based	on	the
consensual	hypothesis	 that	 this	property	 is	 shared	by
most	of	the	cortical	structures	[36–40].

This	 new	model	 captures	 the	 very	 essence	of	 ani-
mal	behavior	 in	our	 two-armed	bandit	 like	 task	 [28]
and	provides	also	a	non-intuitive	prediction	about	the
occurring	of	covert	learning	in	the	striatum	while	the
output	of	the	BG is	disrupted	(Fig 2 & 3). An	upgraded
version	of	our	original	task	(Fig 1)	allowed	us	to	con-
firm	this	prediction	in	2	animals	(Fig 2). It	also	elegantly
solves	an	old	paradox	about	the	absence	of	behavioral
effect	of	BG surgical	disruption/lesion	in	movement	dis-
orders: decision	making	and	pre-learned	motor	task	are
not	altered	while	learning	of	new	paradigm	should	be
disrupted	(for	discussion	see	[28]).

Most	 of	 the	 literature	 about	 habits	 stems	 from	 ro-
dent	 research. It	 stands	 that	 goal	 directed	behaviors
and	habits	 rely	on	2	different	 systems	 that	competed
in	order	to	generate	a	behavior	in	response	to	a	given
stimulus	[41]. Probably	influenced	by	the	triune	brain
theory	[42], still	pregnant	in	experimental	psychology
despite	it	has	been	refuted	by	evolution	biologists	[43,
44], this	model	stands	that	the	prefrontal	cortical	terri-
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tories, belonging	only	to	the	mammals, are	supposed	to
perform	the	“noble	task”: the	goal	oriented	behavior,
while	the	BG,	which	appeared	earlier	in	the	evolution
stored	the	“low	level”	task: the	habits. The	data	sup-
porting	this	hypothesis	are	indeed	very	clear	concern-
ing	the	need	of	an	intact	basal	ganglia	system	in	order
to	develop	habits, but	much	 less	concerning	 the	 fact
that	they	are	need	to	perform	in	a	habitual	way	[45]. In
fact, there	is	also	a	growing	body	of	evidences	showing
that	learning	occurred	first	in	the	BG and	then	is	sec-
ondary	transferred	to	the	cortex	[7, 46, 47]. Our	model
provides	a	plausible	architecture	to	the	latter	hypothe-
sis.

Beside	 conciliating	diverging	 view, our	hypothesis
has	also	the	advantage	of	being	more	ecological	by	sav-
ing	cognitive	resources. The	dual	theory	needs	a	com-
parative	mechanism/structure	 that	 arbitrates	 between
goal	 oriented	 and	 habitual	 behaviors, while	 our	 ar-
chitecture	is	based	on	cooperative/competitive	parallel
mechanisms	that	are	entangled	and	adjust	themselves
without	the	need	for	an	umpire.

It	may	worth	notice	that	our	model	shares	similari-
ties	with	the	so-called	standard	theory	of	systems-level
memory	consolidation	 in	which	the	prefrontal	cortex
needs	the	hippocampus	in	order	to	create	new	mem-
ory	 traces, but	once	 they	are	consolidated, the	 latter
disengages	itself	and	the	former	is	able	to	retrieve	re-
motes	memories	alone	[48, 49]. We	believe, that	the
two	main	memory	systems	(i.e. episodic	and	procedu-
ral)	share	similar	mechanisms	is	a	good	index	of	plau-
sibility	for	ecological	reasons	(but	certainly	not	a	proof
per	se).

Despite	 this	 promising	 start, our	model	 needs	 fur-
ther	 experiments	 to	 be	 confirmed. It	 is	 nevertheless
interesting	 to	notice	 that	 it	 reverses	 the	old	 idea	 that
automatism	is	a	sub-cortical	feature. Ad	variance	with
the	 other	 vertebrates, the	 cortex	 of	 mammals	 (espe-
cially	the	primates)	is	both	the	main	sensory	input	and
motor	 output	 structure. The	 fact	 that	 automatic	 in-
put/output	association	occurred	there, bypassing	a	long

sub-cortical	journey	and	therefore	saving	cognitive	re-
sources	is	another	strong	ecological	argument. If	our
model	 is	 confirmed	 by	 further	 experiments, it	 opens
new	questions	such	as: i)	 is	 it	a	mammal	specificity?
ii)	a	primate	specificity? iii)	how	such	automatisms	are
implemented	or	even	are	 they	 implemented	 in	other
vertebrates? Whatever	the	answers, we	are	confident
that	we	planted	here	the	last	nail	in	the	coffin	of	this
good	old	triune	brain	theory…	Shall	it	rest	in	peace.

Appendix

Model	 description. The	 source	 code	 for	 the	model
as	well	 as	 all	 the	 scripts	 for	 running	 each	of	 the	 ex-
periments	 are	 available	 from https://github.com/
rougier/basal-ganglia. We	provide	below	the	tab-
ular	description	of	the	model	as	following	the	prescrip-
tion	of	[50].
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A Model	Summary
Populations Twelve: Cortex	(motor, associative	&	cognitive), Striatum	(motor, associative	&	cognitive),

GPi	(motor	&	cognitive), STN (motor	&	cognitive), Thalamus	(motor	&	cognitive)
Topology –
Connectivity one	to	one, one	to	many	(divergent), many	to	one	(convergent)
Neuron	model Dynamic	rate	model
Channel	model –
Synapse	model Linear	synapse
Plasticity Reinforcement	learning	rule
Input External	current	in	cortical	areas	(motor, associative	&	cognitive)
Measurements Firing	rate

B Populations
Name Elements Size Threshold (h) Noise Initial	state
Cortex	motor Linear	neuron 1× 4 -3 1.0% 0.0
Cortex	cognitive Linear	neuron 4× 1 -3 1.0% 0.0
Cortex	associative Linear	neuron 4× 4 -3 1.0% 0.0
Striatum	motor Sigmoidal	neuron 1× 4 0 0.1% 0.0
Striatum	cognitive Sigmoidal	neuron 4× 1 0 0.1% 0.0
Striatum	associative Sigmoidal	neuron 4× 4 0 0.1% 0.0
GPi	motor Linear	neuron 1× 4 +10 3.0% 0.0
GPi	cognitive Linear	neuron 4× 1 +10 3.0% 0.0
STN motor Linear	neuron 1× 4 -10 0.1% 0.0
STN cognitive Linear	neuron 4× 1 -10 0.1% 0.0
Thalamus	motor Linear	neuron 1× 4 -40 0.1% 0.0
Thalamus	cognitive Linear	neuron 4× 1 -40 0.1% 0.0
Values	(Vi) Scalar 4 – – 0.5
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C Connectivity
Source Target Pattern Weight Gain Plasticity
Cortex	motor Thalamus	motor (1, i) → (1, i) 1.0 0.4 -
Cortex	cognitive Thalamus	cognitive (i, 1) → (i, 1) 1.0 0.4 -
Cortex	motor STN motor (1, i) → (1, i) 1.0 1.0 -
Cortex	cognitive STN cognitive (i, 1) → (i, 1) 1.0 1.0 -
Cortex	motor Striatum	motor (1, i) → (1, i) 0.5 1.0 -
Cortex	cognitive Striatum	cognitive (i, 1) → (i, 1) 0.5 1.0 (F1)
Cortex	motor Striatum	associative (1, i) → (∗, i) 0.5 0.2 -
Cortex	cognitive Striatum	associative (i, 1) → (i, ∗) 0.5 0.2 -
Cortex	associative Striatum	associative (i, j) → (i, j) 0.5 1.0 -
Thalamus	motor Cortex	motor (1, i) → (1, i) 1.0 1.0 -
Thalamus	cognitive Cortex	cognitive (i, 1) → (i, 1) 1.0 1.0 -
GPi	motor Thalamus	motor (1, i) → (1, i) 1.0 -0.5 -
GPi	cognitive Thalamus	cognitive (i, 1) → (i, 1) 1.0 -0.5 -
STN motor GPi	motor (1, i) → (1, i) 1.0 1.0 -
STN cognitive GPi	cognitive (i, 1) → (i, 1) 1.0 1.0 -
Striatum	cognitive GPi	cognitive (i, 1) → (i, 1) 1.0 -2.0 -
Striatum	motor GPi	motor (i, 1) → (i, 1) 1.0 -2.0 -
Striatum	associative GPi	motor (∗, i) → (1, i) 1.0 -2.0 -
Striatum	associative GPi	cognitive (i, ∗) → (i, 1) 1.0 -2.0 -
Cortex	motor Cortex	motor (1, i) → (1, ∗) 1.0 -0.5 -
Cortex	cognitive Cortex	cognitive (1, i) → (1, ∗) 1.0 -0.5 -
Cortex	associative Cortex	associative (i, j) → (∗, ∗) 1.0 -0.5 -
Cortex	motor Cortex	associative (1, i) → (∗, i) 1.0 0.01 -
Cortex	associative Cortex	cognitive (i, ∗) → (i, 1) 1.0 0.01 -
Cortex	cognitive Cortex	associative (i, 1) → (i, ∗) 1.0 0.025 (F2)
Cortex	associative Cortex	motor (∗, i) → (1, i) 1.0 0.025 -

D1	Neuron	Model
Name Linear	neuron
Type Rate	model
Membrane	Potential τdV /dt = −V + Isyn + Iext − h

U = max(V, 0)
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D2	Neuron	Model
Name Sigmoidal	neuron
Type Rate	model
Membrane	Potential τdV /dt = −V + Isyn + Iext − h

U = Vmin − (Vmax − Vmin)/

(
1 + e

Vh−V

Vc

)

E Synapse
Name Linear	synapse
Type Weighted	sum
Output IBsyn =

∑
A∈sources(GA→BWA→BUA)

F1	Plasticity
Name Reinforcement	learning
Type Delta	rule
Delta ∆WA→B = α× PE × UB

PE = Reward− Vi

α = 0.004 if PE < 0 (LTD), α = 0.005 if PE > 0 (LTP)
∆Vi = β × PE, β = 0.0125

F2	Plasticity
Name Hebbian	learning
Type Hebb	rule
Delta ∆WA→B = α× UA × UB , α = 0.00025

G Input
Type Cortical	input
Description A trial	is	preceded	by	a	settling	period	(500ms)	and	followed	by	a	reset	period. At	time t = 0,

two	 shapes	are	presented	 in	cortical	 cognitive	area	 (Iext = 7 at {i1, i2})	 at	 two	different
locations	in	cortical	motor	area	(Iext = 7 at {j1, j2})	and	the	cortical	associate	area	is	updated
accordingly	(Iext = 7 at {i1, i2} × {j1, j2}).

Timing
Trial	start Stimulus	onset Stimulus	offset Reset

-500ms 0 2500	ms 3000	ms

H Measurements
Site Cortical	areas
Data Activity	in	cognitive	and	motor	cortex

Cortico-striatal	weights
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I Environment
OS OSX 10.11	(El	Capitan)
Language Python	3.5.1	(brew	installation)
Libraries Numpy	1.10.2	(pip	installation)

Cython	0.23.4	(pip	installation)
Matplotlib	1.5.0	(pip	installation)
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