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Abstract

We are rapidly approaching the point where we have sequenced millions of human genomes.

There is a pressing need for new data structures to store raw sequencing data and efficient

algorithms for  population  scale  analysis.  Current  reference based data formats  do not  fully

exploit the redundancy in population sequencing nor take advantage of shared genetic variation.

In  recent  years,  the  Burrows-Wheeler  transform  (BWT)  and  FM-index  have  been  widely

employed  as  a  full  text  searchable  index  for  read  alignment  and  de  novo  assembly.  We

introduce the concept of a population BWT and use it to store and index the sequencing reads

of 2,705 samples from the 1000 Genomes Project. A key feature is that as more genomes are

added, identical  read sequences are increasingly observed and compression becomes more

efficient. We assess the support in the 1000 Genomes read data for every base position of two

human reference assembly versions, identifying that 3.2 Mbp with population support was lost in

the transition from GRCh37 with 13.7 Mbp added to GRCh38. We show that the vast majority of

variant  alleles  can be uniquely  described by overlapping 31-mers and show how rapid and

accurate SNP and indel genotyping can be carried out across the genomes in the population

BWT. We use the population BWT to carry out non-reference queries to search for the presence

of  all  known viral  genomes,  and discover  human T-lymphotropic  virus  1  integrations  in  six

samples in a recognised epidemiological distribution. (249 words)

2

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2016. ; https://doi.org/10.1101/060186doi: bioRxiv preprint 

https://doi.org/10.1101/060186
http://creativecommons.org/licenses/by-nc/4.0/


Introduction

Recent years have seen the number of whole human genomes sequenced continue to increase

dramatically through large scale population and medical sequencing projects such as the 1000

Genomes  Project  (The  1000  Genomes  Project  Consortium  2015),  UK10K  (The  UK10K

Consortium 2015), and GoNL (The Genome of the Netherlands Consortium 2014). The scale up

of human population sequencing has enabled us to detect sequence variants down to extremely

low minor allele frequencies (The 1000 Genomes Project Consortium 2015), explore variation in

ancient human lineages and isolated populations (Raghavan et al. 2015), and use genomics to

discover  rare  disease  causing  mutations(Katsanis  and  Katsanis  2013).  Current  predictions

estimate that we will have sequenced 1M human genomes in the near future (Stephens et al.

2015), which will present formidable informatics scaling challenges.

The sequencing data produced by current high throughput sequencing technologies consists of

paired reads on the order of a hundred base pairs along with their base qualities with the vast

majority of aligned data currently stored in the SAM/BAM format (Li et al. 2009). The SAM/BAM

format, originally developed by the 1000 Genomes Project (1000GP), requires on the order of

one byte per base pair with the vast majority of the space being taken by the base qualities (Hsi-

Yang Fritz et al. 2011). Recently, the CRAM format has been proposed  (Hsi-Yang Fritz et al.

2011) and  adopted  by  the  Global  Alliance  for  Genomics  and  Health  consortium

(https://genomicsandhealth.org/)  to  provide  a  more  sustainable  foundation  for  exploring

strategies  for  controlled  loss  of  base  qualities,  a  strategy that  can result  in  more accurate

genotyping (Ochoa et al. 2016; Yu et al. 2015). One key innovation of the CRAM format is to

only  store the differences in  individual  sequencing  reads relative  to the reference genome.

Furthermore, when one considers that the vast majority of variants per individual are shared

amongst  multiple  individuals  (The  1000  Genomes  Project  Consortium  2015),  there  is  also

significant duplication of non-reference sequences.

In parallel,  there is increasing interest in methods for rapid searching of large collections of

sequencing reads from many individuals. Iqbal et al. (2012) developed the Cortex assembler for

representing  sequencing  reads  from  multiple  samples  using  coloured  de  Bruijn  graphs  for

genome assembly and reference-free variant identification (Iqbal et al. 2012). Applications that

were presented include variant calling from a single high-coverage genome, detection of novel

sequence from a population not present in the reference, and genotyping of simple and complex

variants highly divergent from the reference. However, the implementation only scaled to around
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10 human genomes on standard hardware, orders of magnitude lower than what is required.

Recently, Bloom filters in the form of Sequence Bloom Trees (SBTs) were used to build highly

compressed partial text indexes given a large set of input sequences and demonstrate rapid

sequence searches with low memory requirements (Bloom 1970; Solomon and Kingsford 2016).

An SBT structure  was constructed from 2,652 RNA-seq experiments,  requiring  200 GB.  In

recent years, the Burrows-Wheeler Transform (BWT) and FM-index have been widely employed

to build full-text indexes for read alignment  (Langmead et al. 2009; Li and Durbin 2009), read

error correction (Li 2015), and de novo genome assembly (Simpson and Durbin 2011). The key

features of using a BWT structure to index sequencing reads is that it is inherently reference-

free, full-text, compressed, and coupled with the FM-index enables rapid sequence searches of

arbitrary k-mer sizes across the entire set of sequences without rebuilding the index for different

values of k.

In this paper, we explore the use of the BWT structure and FM-index to build a full-text index of

the sequencing reads from 2,705 individuals across 26 populations from the 1000GP (The 1000

Genomes  Project  Consortium  2015).  We  show  that  there  exists  significant  duplication  of

sequence across the populations and how the data can be reduced to a small fraction of unique

sequences. A key property of this strategy is that as more whole human genomes are added,

the growth rate of the total size of the structure decreases, since each new genome only adds a

small  fraction  of  new unique  sequences.  We use  the  structure  to  carry  out  a  single  base

resolution comparative analysis of two recent versions of the human reference assembly, using

the  BWT  to  determine  the  population  support  at  every  position.  We  also  show  how  the

population BWT can be used to carry out rapid and accurate SNP and indel genotyping across

the entire population, and how the reference free nature of the structure enables rapid searching

for non-reference sequences such as viral sequences.
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Results

Data processing and BWT construction

Figure 1 gives an overview of the data processing strategy. We begin with the whole-genome

low  coverage  and  exome  sequencing  reads  from  the  final  phase  of  the  1000GP  (2,705

individuals over 26 populations) consisting of approximately 87 Tbp and 922 billion reads (The

1000  Genomes Project  Consortium 2015).  We used  a  combination  of  examining  the  base

qualities for each read and querying the sequences against  a pre-constructed Cortex graph

(Iqbal et al. 2012) to carry out error correction and removal of poor quality reads (see Methods).

This resulted in a set of 734 billion unchanged reads, 85 billion corrected reads, and 103 billion

reads that could not be corrected and were discarded. We took advantage of the reference

strand labelling in the Cortex de Bruijn graph (obtained by labelling nodes during a traversal  of

the reference sequence) to reverse complement read sequences with a clear reverse strand

orientation  with  respect  to  the  reference  genome (see  methods).  We normalised  the  read

lengths by trimming to 73 or 100 bp depending on whether the original read sequence was

greater than 100 bp. For each resulting read, we used a key-value pair database (RocksDB,

http://rocksdb.org/) to record the read groups, number of corrected bases, and number of bases

greater than Q20 using the read sequence as the key. We next sorted the 53 billion sequence

keys  reverse  lexicographically  and  constructed  the  BWT  structure.  The  53  billion  unique

sequences  (keys)  produced  an  average  of  15.45  reads  for  each  key.  In  Figure  1d,  we

benchmarked the total size of the BWT using both the uncorrected and corrected reads with

increasing numbers of  individuals  (using the reads from a 5Mbp region on chr20).  The plot

shows  that  using  the  uncorrected  reads,  the  BWT continues  to  linearly  increase  in  size,

independent of the sort order. Reverse lexicographic sorting order (RLO) performed an order of

magnitude better than lexicographic order (LO). The effect of error correction of the reads can

be observed with the total BWT around two orders of magnitude larger with uncorrected reads.

With  error  correction  and  RLO  sorting,  the  total  size  of  the  BWT begins  to  plateau  from

approximately 1,500-2,000 genomes. The final size of the BWT for the entire dataset was 464

GB (split over 16 smaller BWTs based on read prefix in order to load into system memory over

multiple servers, Supplementary Table 1) and the corresponding RocksDB metadata database

was 4.75 TB (0.09 bytes per bp). The resulting population BWT server can be queried for exact

matches to  arbitrary length  k-mer  sequences  and return  either  the  count  of  matching read

sequences,  the  matching  read  sequences,  or  the  matching  read  sequences  with  sample

metadata (Supplementary Figure 1). We benchmarked the query completion time for 100,000 k-

mer queries for the different types of server responses and k values (Supplementary Table 2),
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finding that for smaller values of k returning matching read counts was the fastest primarily due

to the network time required for transferring large quantities of read sequences. At larger values

of k where less matching reads are found, the difference between requesting read counts and

full matching read sequences is considerably reduced. In the remainder of the paper, we call the

resulting population BWT the 1000GP BWT or where unambiguous just the BWT.

Population support for human reference assemblies and variation

We first used the population BWT to assess the direct support in the 1000GP read data for

every base of two recent versions of the human reference assembly (GRCh37 and GRCh38)

and support for the SNP and short indel variants called by the 1000GP. We extracted all forward

strand 31-mers contained in both reference assemblies and queried the population BWT for

reads matching these 31-mers. Finally, we also generated all 31-mers contained in the reads

stored  in  the  BWT Read  Server.  The  vast  majority  of  reference  31-mers  (Figure  2a)  are

supported by the 1000GP BWT (99.97%) and mostly shared between both assemblies (99.41%)

with 0.07% of GRCh37 31-mers lost from the change from GRCh37 to GRCh38 with 0.49%

gained in GRCh38. We further queried the 1000GP BWT for all 31-mers generated by the SNP

and indel variants found by the 1000GP (The 1000 Genomes Project Consortium 2015). Figure

2b shows the intersections of these four 31-mer sets. Considering the reference genomes and

the 1000GP variant 31-mers, the vast majority of 31-mers were either reference (solid black

outline) or variant specific (dotted outline) and supported by the 1000GP BWT (overlap with the

red  ellipse).  Figure  2c  shows  the  amount  of  sequence  gained  or  lost  over  four  functional

categories based on the GENCODE human genome annotation (Harrow et al. 2012). When the

31-mers  are  converted  into  reference  genome  regions,  3.1Mbp  (1.6M  31-mers,  0.07%)  of

sequence that has population BWT support was lost in the transition from GRCh37 to GRCh38

but roughly 7.5 times (13.6Mbp) more was gained (10.5M 31-mers, 0.49%). We examined the

read coverage for the regions in GRCh37 that do not contain 31-mer support from the 1000GP

BWT. The vast majority of these regions are 50-60bp (Supplementary Figure 2), with more than

70%  (89%  and  73.7%  for  GRCh37  exclusive  regions  and  those  shared  with  GRCh38,

respectively) overlapping at least one variant. 65% and 39% (for GRCh37 exclusive regions and

those shared with GRCh38, respectively) overlap a locus for which GRCh37 contains the minor

allele or an error. Interestingly, the majority of the unsupported GRCh38 sequence is located in

the new synthetic centromeric regions (CTM, Figure 2c: 242 Kbp) although 2.8 Mbp of the new

centromere  is  supported.  The  amount  of  coding  sequence  without  population  support  in

GRCh37 consists of 9.2 kbp in 203 protein coding genes and 4.6 Kbp in 123 genes for GRCh38
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(Supplementary Table 4), reflecting the flipping of bases to the major allele. Interestingly, there

were 12 protein coding genes that contain unsupported 31-mers only found in GRCh38.

Reference-free population genotyping

Figure 2b shows that the majority (97%) of 31-mers derived from 1000GP variation catalogue

are distinct from the reference genome. Furthermore, we determined that 99% of these 1000GP

variant 31-mers not found in the references are locus specific (no other combination of variants

in either the same or a different locus in the GRCh37 assembly generates the identical 31-mer),

Figure 3a. The 31-mers shared between the reference genomes and the variants are likely to be

in regions containing repeats longer than 31bp, which were still callable in the 1000GP by using

the untrimmed longer reads or read pair information. Informed by this analysis, we developed a

simple SNP and indel genotyping strategy based on querying the population BWT for k-mer

sequences to test for read support of the reference and alternative allele for every individual.

We tile across each genotyping site with overlapping k-mers upstream and downstream of the

site, and query the population BWT for exact matching reads. We assign a genotype to each

sample by recording how many of the reads from the sample match best to the reference or

alternative allele (see Methods).

For  SNPs,  we benchmarked the approach using the Illumina Infinium BeadChip  Omni2.5-8

genotypes in the 1000GP exome regions as a truth set. We initially evaluated the effect different

values of k have on the population BWT genotyping accuracy using all chromosome 20 sites,

finding that k=34 produced the lowest non-reference discordance (Supplementary Table 3). We

genotyped all  of  the Omni chip positions in  the 1000GP exome regions with single sample

calling  using  GATK HaplotypeCaller,  Samtools/BCFtools,  and  the  1000GP population  BWT.

Figure  3b  shows  that  the  population  BWT genotyping  compares  favourably  to  GATK  and

Samtools across the allele frequency spectrum. The overall non-reference discordance rate is

slightly higher for the population BWT genotyping (1.82%) compared to the GATK (0.81%) and

Samtools (0.73%). For heterozygous SNPs, the population BWT approach is more accurate

than the two reference based callers (discordance rate of 2% vs. 2.17% for GATK, and 3.41%

for Samtools). The proportion of sites genotyped was greater than 99% for all three approaches,

Figure 3d.

We developed  a similar  approach for  indel  genotyping  by testing  reference and alternative

alleles by dense k-mer tiling across the indel site (see methods), querying the population BWT

with the resulting k-mers, and assigning a genotype to each individual based on the matching
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reads returned (see methods). For indels, we use the Genome in a Bottle (GIAB) consortium

gold standard indel genotypes for NA12878 for evaluation (Zook et al. 2016). Initially, we tested

the  effect  different  values  of  k  have  on  genotyping  accuracy  using  chromosome 20  sites,

determining that k=25 produced the most accurate genotypes (Supplementary Table 3).  We

genotyped  the  indels  with  GATK  HaplotypeCaller,  Samtools/BCFtools,  and  the  1000GP

population  BWT (see  methods).  The  indel  genotyping  accuracy  varied  widely  between  the

callers. GATK produced the lowest non-reference discordance (1.26%), followed by the 1000GP

population BWT (8.61%), and Samtools (13.49%), Figure 3c. This is not so surprising since the

GIAB indel  calls  are largely  derived from GATK genotypes and there is  often poor  overlap

between indel discovery tools (Narzisi et al. 2014).

Non-reference queries

As the population BWT is a full text index of the read sequences, irrespective of whether they

align to the reference genome or not, it enables rapid testing of hypothesis driven queries. We

sought to assess the proportion of sequences of viral origin contained in the 1000GP reads. An

earlier study using 150 individuals from the 1000GP, found evidence for 0.13% of reads coming

from  non-human  DNA  (Tae  et  al.  2014).  To  expand  this  to  the  full  set  of  samples,  we

downloaded 257,943 viral sequences from the CoreNucleotide division of GenBank and used

the Kraken classifier (Wood and Salzberg 2014) to define a set of 102.6M virus specific 31-mers

(Figure 4a) (see methods). We queried the 1000GP population BWT with these 31-mers initially

for  read counts (to  remove very highly  abundant  low complexity  sequences),  then returned

matching read sequences, and finally queried the metadata database for sample information.

The population BWT queries were run in under two days, with the sample metadata retrieval

taking seven days (see methods). The most prevalent source of non-human sequences is the

Herpesviruses, including Epstein-Barr virus, used in the creation of the Lymphoblastoid cell lines

(LCLs) that were the DNA source for many of the 1000GP samples.  The distribution of the

number of EBV matching reads largely follows the documented DNA source in the 1000GP

(Figure 4b), with a few notable exceptions which are likely misclassified as being from blood.

The DNA that is recorded as being of unknown origin appear to be almost entirely from LCLs,

having a similar  distribution of EBV reads as the documented LCL derived samples.  Of the

viruses identified (excluding EBV), 69 occur in at least one sample at greater than 10 reads, and

14 at greater than 100 reads (Supplementary Figures 2-7).

Figure 4c gives the species source for the most frequently found sequences per individual for

four  particular  population  groups  (see  Supplementary  Figs.  3-8  for  all  populations).

8

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2016. ; https://doi.org/10.1101/060186doi: bioRxiv preprint 

https://doi.org/10.1101/060186
http://creativecommons.org/licenses/by-nc/4.0/


Enterobacteria phage phiX174, the Illumina library spike-in sequence, is also prevalent across

all of the populations at greater or equals 100 reads in 605 samples. Adenovirus C is reported to

be present  in  almost  all  populations  worldwide  (Garnett  et  al.  2002),  however  our  analysis

shows  that  it  is  almost  completely  absent  several  populations  (e.g.  Gambian  in  Western

Divisions in the Gambia, and Esan in Nigeria, in Figure 4). The absence of adenovirus in some

groups  and  high  levels  in  other  groups  suggests  differences  in  the  sample  preparation

(Adenovirus C is often used as a recombinant vector for cell culture reagents (Luo et al. 2007)

or differences in adenovirus in these populations.

One interesting finding is the presence of Human T-lymphotropic virus 1 (HTLV-1) reads found

in six individuals (Figure 4c and Table 2). HLTV-1 can integrate into the genome and is known to

have infected human populations for thousands of years with the virus being transferred from

mother to child,  through sexual contact, or contaminated blood products  (Derse et al. 2007;

Verdonck et al. 2007). The known epidemiological distribution spans areas of southern Japan

(Satake,  Yamaguchi,  and  Tadokoro  2012),  sub-Saharan  Africa,  the  Caribbean,  and  South

America where more than 1% of the general population is infected (Verdonck et al. 2007). For

the most part,  carriers remain asymptomatic but HTLV-1 infection has been associated with

exceptionally severe diseases, such as adult T-cell leukaemia/lymphoma (Takatsuki 2005) and

an  inflammatory  disease  of  the  central  nervous  system  called  HTLV-1-associated

myelopathy/tropical spastic paraparesis  (Gessain et al. 1985; Lezin et al. 2005). The 31-mer

querying method identified six samples from five populations with potential HTLV-1 integrations.

For  those  individuals,  we  also  aligned  the  entire  original  read  set  to  a  reference  genome

containing GRCh38 and a HTLV-1 consensus sequence, confirming the presence of HTLV-1 in

these genomes and slightly increasing the HTLV-1 read support for each sample (Table 2). The

populations in which we detected HTLV-1 presence largely follow the known epidemiological

distribution  with  HTLV-1 positive  samples  from Africa and South American populations,  and

were sequenced at six different centres. We did not observe HTLV-1 in any Japanese samples

(reported HTLV-1 prevalence of 0.66% and 1.02% (Satake et al. 2012)) although Japan has had

HTLV-1 population screening in place since 1986 (Inaba et al. 1989). 

Discussion

In this paper, we show how BWT indexes can be used for efficient compression and indexing of

large collections of sequencing reads from thousands of individuals. Unlike traditional reference

based alignment approaches, the population BWT has a sub-linear growth as more individuals
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are included in the structure. However, this is dependant on the sequencing data having a low

error rate so that the majority of new sequences observed in each individual represent true

genetic variation. One of the main difficulties of using the 1000GP data with this approach is that

most individuals were sequenced to low coverage (7-8x). For error correction, we used a Cortex

de Bruijn graph that was built from these reads and was error-cleaned by removing tips (short

contigs unconnected at one end) and unitigs which were at low frequency in all populations. The

fraction of error corrected reads was quite low (9.2%) since our error correction strategy was

deliberately conservative as we wanted to avoid removing true genetic variation. It is still notable

that the resulting population BWT contains over thirty-five times more 31-mers than are present

in the reference genomes and the SNP and indel variants (Figure 2a). It has been suggested

that existing variation catalogs fail to account for 35-68% of some types of structural variation

and 25% of short indels (Gordon et al. 2016). Therefore, unaccounted genetic variants, variants

located in inaccessible regions of the genome, and non-human sequences could contribute to

these novel 31-mers. Our virus sequence analysis only accounted for 102M 31-mers in the

population BWT, therefore it is more likely that these novel 31-mers are due to remaining errors

in  the sequencing  reads.  One could  perform more  stringent  error  correction  to  reduce  the

sequencing errors at a cost of removing true low frequency variants. More recent approaches to

per-sample read error correction are most effective with comparatively high sequencing depth

(30-50x) per sample (Li 2015; Simpson and Durbin 2011). Therefore, we envisage that as the

cost of human sequencing continues to decrease and higher depth sequencing becomes the

norm, the population BWT could be an efficient storage medium for indexing large collections of

human samples.

The most significant storage saving in this approach comes from discarding the base qualities

after base error correction is carried out. It remains an open question as to what proportion of

base  qualities  need  to  be  retained  for  accurate  variant  discovery  and  genotyping,  with

increasing evidence showing that discarding or quantile binning of base qualities does not have

a detrimental effect  (Ochoa et al. 2016; Yu et al. 2015). However, many applications of next-

generation sequencing (e.g. clinical sequencing) rely on highly accurate identification of novel

rare  variants.  One alternative  approach  to  completely  discarding  base qualities  could  be a

controlled loss of base qualities. For example, there could be an iterative process of population

BWT  construction  where  genomes  are  continually  added.  Initially  with  few  genomes,  the

majority of the sequencing reads will contain novel k-mers and as more genomes are added, we

will observe the same k-mers in multiple individuals across the population. One could envisage

an approach where base qualities are only maintained for reads that support novel kmers with

10

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2016. ; https://doi.org/10.1101/060186doi: bioRxiv preprint 

https://doi.org/10.1101/060186
http://creativecommons.org/licenses/by-nc/4.0/


these k-mers being constantly queried against the BWT for increasing population read support

with the goal of eventually discarding these base qualities as increasing support is observed in

the population. One could employ the BEETL-fastq BWT based data structure to create a side

structure of compressed and searchable indexes of read sequences including base qualities

(Janin, Schulz-Trieglaff, and Cox 2014).

One of the limitations of this approach is that this implementation of a population BWT does not

maintain read pair information. In our SNP and indel genotyping, read pair information could be

incorporated into the genotyping strategy to derive more accurate genotypes. Read pairs would

be particularly useful for structural variant discovery and genotyping as most existing structural

variation detection algorithms use a combination of split  reads and read pairs for supporting

evidence (Keane et al. 2014; Layer et al. 2014). In our virus analysis, efficient retrieval of read

pairs would enable more rapid localisation of the HTLV-1 viral integrations by avoiding the need

to realign the full original read set. For SNP and indel discovery, retrieval of read pairs would

enable local haplotype assembly and phasing of discovered variants which could aid correct

alignment  of  highly  variable loci  into a variation graph  (Church et  al.  2015), especially  with

library technologies that conserve long range phase information (Putnam et al. 2016; Zheng et

al. 2016). Recording read pair information could significantly increase the amount of metadata

required  from  just  basic  sample  level  information  to  knowledge  of  every  unique  read  pair

combination or sets of reads from the same molecule. The ability to store and efficiently retrieve

all  of  the read pairs  of  a sample  could  enable  the use of  the population  BWT as a highly

compressed, searchable, and scalable archival format for sequencing data.

One of the benefits of choosing the BWT and FM-index as the underlying data structure is that

the construction process does not constrain the length of possible k-mer queries. In de Bruijn

based approaches such as Cortex (Iqbal et al. 2012) and SBT (Solomon and Kingsford 2016),

the k-mer must be fixed at the time of index construction. In the SNP and indel genotyping, the

genotyping accuracy varied depending on the k-mer. The length of the k-mer used to assess an

individual site can be affected by the number of mutations in the local region, where smaller,

more densely sampled k-mers could potentially produce more accurate genotypes in regions of

high mutation rates. Using dynamic k-mer queries for genotyping and the incorporation of read

pair information are potential avenues for further improving genotyping accuracy.

Using whole-genome sequencing reads to classify reads into taxonomic groups has become the

basis for metagenomic analysis  (Gilbert and Dupont 2011). We used a metagenomics k-mer
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classification  approach to detect  evidence for  non-human sequences in  the 1000GP reads.

Several studies that have cautioned against over interpretation of unexpected sequences found

in sequencing reads due to possibility of laboratory kit or reagent contamination  (Lusk 2014;

Salter et al. 2014). For these reasons, our finding of evidence for low levels of HTLV-1 in several

1000GP  samples  should  be  treated  with  caution.  On  the  one  hand,  the  epidemiological

distribution of the samples found to contain HTLV-1 fits the known pattern, we can localise many

of the putative integrations using read pairs (Table 2),  and the samples were sequenced at

multiple different centres. However, we cannot rule out possibility of kit or reagent contamination

without further laboratory validation of the results.
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Methods

Sequencing data

The  sequencing  reads  were  downloaded  in  fastq  format  from  the  1000GP  ftp  site  and

correspond  to  the  phase  3  sequencing  data  freeze

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/20130502.phase3.analysis.sequence.index)

consisting  of  2,574 in  total  and 2,535 of  these with  both  low coverage whole-genome and

exome sequencing (The 1000 Genomes Project Consortium 2015).

Error correction

Read  error  correction  was  carried  out  using  the  Cortex  software  (Iqbal  et  al.  2012)

(https://github.com/iqbal-lab/cortex). Briefly, Cortex is a de novo De Bruijn graph assembler that

allows simultaneous assembly of multiple samples and variants to be called without reliance on

mapping of reads to a reference genome. We used the Cortex graph that contains a merge of

all  of  the  populations  in  the  1000GP

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130718_phase3_samples_cortex_

graphs/phase.all_pops.ctx)  (see  Supplementary  Methods  of  (The  1000  Genomes  Project

Consortium 2015)). The Cortex graph was loaded into memory, and then the reference genome

(GRC37) was parsed, annotating each kmer with the direction in which it was seen (forward,

reverse or both). If a read was less than 73bp in length or contained any character other than

ACGT, it was discarded. If all of the base qualities for a read were greater than or equal to Q20,

the read was kept  without  correction.  Correction was seeded by finding a 31-mer  of  Q>20

bases, and extending greedily by shifting one base at a time. On shifting and meeting a Q<20

base, if there was precisely one single-base correction of a Q<20 base which changed a kmer

absent from the Cortex graph to a kmer present in the Cortex graph, this change was made. If

all of the kmers in a read were annotated consistently with the read coming from the reverse

strand of the reference genome (i.e.  either unannotated, or annotated as being seen in the

reverse strand of the reference), the corrected read was reverse-complemented and printed in

the forward direction, otherwise it was printed in the same orientation as the input data. This

was done purely to improve compression in the BWT. Finally, read sequences were trimmed to

two reads lengths:  73 and 100bp.  If  a corrected read was greater than 100bp,  then it  was

trimmed to 100bp; if a read was between 73bp and 100bp in length, it was trimmed to 73bp; and

if a read was less than 73bp, it was discarded.  For base error correction, we used a modified

version of error_correction.c from Cortex (https://github.com/wtsi-svi/cortex@fc26874).
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Read deduplication and metadata

The error correction process output the read sequence (in forward orientation), the read name,

the number of corrected bases during and the number of low quality (<Q20) bases. Corrected

read sequences were sorted in Reverse Lexicographic Order (RLO) with duplicates removed.

For each unique read sequence in the final read set, we stored the read groups (2 bytes), and

the number of corrected bases (1 byte) and the number of low quality bases (1 byte).  This

information was stored in a RocksDB (v2.6) with the unique read sequences as keys.

BWT and FM-index construction

The reads were split into 16 partitions based on the last two base pairs in the read sequence

(see Supplementary Table 1) with the reads for each partition sorted in reverse lexicographic

order. Then we used SGA v0.10.13 (Simpson and Durbin 2011) to construct the BWT string for

each read collection. SGA outputs BWT strings in Run-Length Encoding (RLE) with each byte

representing a continuous run of the same character. The first three bits of a byte encode the

five different characters (i.e. ACGT$). The last five bits of the same byte encode the number of

the runs for that character up to the length of 31. The cumulative size of the run-length encoded

BWTs on disk was 464GB.

The Burrows-Wheeler Transform renders an important property Last-to-First (column) mapping,

i.e. the ith occurrence of character X in the last column corresponds to the ith occurrence of X in

the first column. The FM-index (Ferragina and Manzini 2000), based on BWT and LF mapping,

allows for fast query of a pattern and locate every occurrence of the searched pattern. We built

an index structure based on the Run-Length Encoded BWT string. With such index, we were

able to search for a kmer, extend to the full read from matched location and get the full read

sequence  in  linear  time.  The  implementation  of  this  index  can  be  found  at

https://github.com/wtsi-svi/ReadServer.

System setup

We set up a server to allow fast query of a given k-mer and return information about the number

of matched reads, the matched read sequences, and for each matched read, the list of samples

that the read was derived from. To achieve high throughput and fast response, we created a

message queue based application server that sends k-mer sequence requests to the 16 BWTs

across four physical servers (Supplementary Figure 1). Each machine has four applications and

each application has a BWT partition and its associated index structure loaded in memory (total

memory required: 561GB). The hardware of these four machines are varied. One machine has
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32 (logical)  cores with 256GB RAM. The other three machines have 20 (logical)  cores and

188GB RAM. All machines run on Ubuntu 12.04LTS system.

Reference genome analysis

We generated 31-mer sets for GRCh37 and GRCh38 by extracting 31-mers starting on every

position (forward strand) in both assemblies for all autosomes and gonosomes. Any 31-mers

containing  IUPAC ambiguity  codes  were  discarded.  The  31-mers  were  queried  against  the

population BWT to check for support in the 1000GP read set (forward and reverse orientation).

The  population  BWT 31-mers  (used  in  Figure  2a  and  2b)  were  generated  from  the  final

corrected set of read sequences.

1000 Genomes variant 31-mers

For each individual in 1000GP, we created a maternal and paternal genome by substituting the

phased variants and generated 31-mers that  overlap with every non-reference position.  We

excluded unphased, non-diploid (except gonosomal hemizygous), or conflicting variants (e.g.

SNPs in  regions  which  are  also  called  as  being  deleted  on  the same chromosome copy),

variants for which the exact coordinates could not be determined, reference alleles where an

individual  chromosome copy was contradictory (e.g.  a  region genotyped as reference for  a

deletion  that  also contains  another  non-reference variant)  and filtered reference alleles  that

collided  with each other  by discarding all  downstream reference loci  within  the overlapping

region. In total,  0.16% of the variants were excluded.  For each of the resulting haploblocks

every contained 31-mer was generated and queried against the Population BWT.

SNP genotyping

We  used  the  1000GP  Illumina  Omni  chip  data  produced  at  the  Broad  institute

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20131122_broad_omni/Omni25_gen

otypes_2141_samples.b37.v2.vcf.gz) for the list of gold standard SNP genotypes. There were

1668 samples in the Omni chip genotypes that were included in the phase 3 1000GP freeze.

Genotyping was carried out with the population BWT, by generating a reference and alternate

allele using 99bp of flanking sequence for each site. We tiled each allele sequence with 34-mers

with a step of 10bp. We queried the population BWT with the 34-mers and carried out a local

Smith-Waterman alignment (match +1, mismatch penalty -4, gap open penalty -6, gap extension

penalty -1) of the returned reads onto the reference and alternate allele, excluding divergent hits

(if only mismatches, then allow maximum of three mismatches, otherwise allow a maximum of

one indel  and eight  points penalty).  Using the number of  reads supporting the reference or
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alternative alleles, we assigned a genotypes according to Table 1. Finally, we output a new VCF

file with the population BWT determined genotypes.

Indel genotyping

We dowloaded a recent version of the Genome in a Bottle (GIAB) NA12878 variant set (v2.18,

ftp://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv2.18/NISTIntegratedCalls_14dat

asets_131103_allcall_UGHapMerge_HetHomVarPASS_VQSRv2.18_all_nouncert_excludesimpl

erep_excludesegdups_excludedecoy_excludeRepSeqSTRs_noCNVs.vcf.gz)  and  filtered  it  to

include only monoallelic indels. We then used Samtools/bcftools v1.1 (samtools mpileup -gut

DP,DV,DP4,SP,DPR,INFO/DPR  -EQ  0  -p  -b  [NA12878_BAM_FOFN]  -f  [GRCh37_REF]  -l

[NA12878_VARIANTS_BED]  |  bcftools  call  -mf  GQ,GP  -O  z)  and  GATK  v3.5  (java7  -jar

-Xmx28G  GenomeAnalysisTK.jar  -R  [GRCh37_REF]  -I  [NA12878_BAM_LIST]  -L

[NA12878_VARIANT_INTERVALS_BED]  -T  HaplotypeCaller  -stand_call_conf  4

--genotyping_mode GENOTYPE_GIVEN_ALLELES --output_mode EMIT_ALL_SITES --alleles

[NA12878_VARIANTS_VCF]) (intervals are the indel start & end position padded by 150bp) to

call and/or genotype those variants based on NA12878 low coverage and exome sequencing

data. The Samtools/Bcftools calls were subsequently left normalized as we did not specify the

alleles during the genotyping stage. The GATK results did not require this step. For population

BWT genotyping, we generated a reference and alternate sequence for each indel by adding

100bp of flanking sequence to either the reference or alternate allele. We then generated 25-

mers (1bp step) from these sequences and queried the population BWT for matching reads. Any

25-mer with greater than 100,000 matches or with a homopolymer length greater than 14bp

were excluded. We further generated flanking sequences between 100-200bp upstream and

downstream of each variant.  If  a 25-mer from these regions was found in any of the reads

returned from the BWT we considered that as evidence that the corresponding read is either

pointing away from the variant or too far away to overlap it and hence discarded the read. All

remaining reads were collapsed into a non-redundant read set and aligned against both the

reference and alternative alleles using exonerate v2.2.0 (--model ungapped --dnawordlen 25

--percent 90 --bestn 1). Alignment hits were subsequently filtered for reads that reach at least

2nt from the flank into the variant locus. Each valid read was then assigned to either reference

or alternative allele based on the highest alignment score, with reads with equal scores being

discarded. Finally, the full sample metadata was retrieved and the indels genotyped per sample

using the read count thresholds in Table 1.
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Viral genome analysis

We  downloaded  257,943  viral  sequences  from  the  CoreNucleotide  division

(http://www.ncbi.nlm.nih.gov/nuccore/  on  20/02/2015)  of  GenBank  (search  string:

"((((((txid10239[Organism])  AND 2000[SLEN]:300000[SLEN])))))  NOT patent").  We generated

the  virus  taxon-specific  31-mers  using  Kraken  v0.10.5-beta  (Wood  and  Salzberg  2014) by

generating  a  database  containing  fully  assembled  virus  ("kraken-build  --download-library

viruses"),  bacteria  ("kraken-build  --download-library  bacteria"),  and  plasmid  ("kraken-build

--download-library  plasmids"),  and  the  GRCh38  human  reference  assembly  ("kraken-build

--download-library human") (built on 16/03/2015). We used this Kraken database to classify the

virus sequences downloaded from GenBank. Of the 257,943 input sequences, 244,656 (94.8%)

could be classified, 243,123 (94.3%) as viruses covering 4093 of 5808 virus taxa (70.5%). From

the  Kraken  output  files,  we  extracted  102,655,127  taxon-specific  31-mers.  We queried  the

population BWT with these 31-mers, returning counts for the number of matching reads (query

time 2d3h48'26" CPU time, 2d16h5'7" wall  clock time using 80 threads). Of the 102.6M 31-

mers, 435,799 from 886 taxa had matches in the Population BWT. 1,369 of the 31-mers match

very large numbers  of  reads (>100,000),  indicating  that  these contain  little  information and

match repetitive or low complexity sequences, were discarded. We subsequently did full read

sequence retrieval queries for the remaining 434,430 31-mers (0d5h2'19" CPU time, 0d5h9'22"

wall clock time, using 10 threads). All reads returned from the population BWT were collapsed

into a non-redundant  set of sequences per taxon ID resulting in a final size of 113,193,726

reads.

Although we can be sure that each read contains at least one taxon specific 31-mer, this could

be due to one or more sequencing errors in the 31-mer. Therefore, we reclassified the reads by

short  read  alignment  to  the  genome  sequences  using  Smalt  v0.7.5.1

(http://www.sanger.ac.uk/science/tools/smalt-0),  which  enabled  us  to  examine  the  relative

alignment score of matches to assess the classification.  Based on the alignment results we

chose a threshold of 75% of the maximum alignment score per read and included only reads

that exceeded this threshold when aligning to a virus genome while staying below for any other

kind of target sequence (human, bacteria, or plasmid). Each read fulfilling these criteria was

then assigned to the virus it aligned best to. In case of equal best matches to different virus

genomes one was chosen at random. Using this filter,  107,234,569 reads (94.7%) could be

assigned to a virus covering 289 virus taxa. To assign samples, we queried the population BWT

metadata database for sample information per read (total run time was 7d17h25'32" CPU time,

8d0h42'13" wall clock time).
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For  the samples  found to contain  HTLV-1,  we downloaded  the original  fastq files  from the

1000GP ftp site  (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/)  and aligned all  of  the

reads using bwa mem v0.7.12 to a reference genome containing GRCh38 + HTLV-1. Table 2

gives the relative read counts for reads found to contain HTLV-1 from the BWT queries and

alignment of the reads (no minimum mapping quality or length threshold for hits).
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Data Access
All  of  the sequencing data  used in  this  study is  available  from the 1000GP site  under  the

accessions  given  in

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/20130502.phase3.sequence.index.  The

collection  of  software  used  to  build  the  population  BWT  server  is  available  on  Github

(https://github.com/wtsi-svi/ReadServer).
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Figures and Tables

Figure  1: (a)  Sequencing  reads  from  2,705  individuals  (low  coverage  whole-genome  and

exome sequencing) from 26 populations comprising a total of 922 billion reads (87.1 Tbp) used

for the 1000GP population BWT. Reads were first error corrected using a Cortex graph (Iqbal et

al.  2012).  The error  corrected reads were then trimmed to either 100 bp or 73 bp,  unique

sequences identified on the forward strand, quality values discarded and the metadata stored in

a separate database. This resulted in 4.9 Tbp consisting of 53 billion non-redundant reads. (b)

Sequences were sorted by reverse lexicographic order to build the population BWT. Different

sorting orders were tested for their effect on the BWT size using the 1000GP reads aligned to a

5 Mbp region.

Figure 2: (a) 31-mer intersection of two human reference assemblies (GRCh37 and GRCh38)

and the 1000GP population BWT (b) 31-mer intersection of two human reference assemblies,

1000GP population BWT, and all 31-mers generated from the 1000GP phase 3 SNP and indel

variants  (The 1000 Genomes Project  Consortium 2015). 31-mers shared between reference

sets and variant set (white numbers) make up for approximately 3% of each data set and almost

all (99.998%) are supported by the 1000GP population BWT. (c) A breakdown of the regions on

the two human assemblies with and without 1000GP population BWT support that is shared or

exclusive to either genome build (all numbers are kbp), in four functional categories. CTM refers

to the centromeric sequence.

Figure 3: (a) Intersection of the human reference assembly 31-mers and the 1000GP SNP and

indel variant 31-mers. The percentages in brackets give the proportion of these 31-mers that are

locus specific (no other combination of variants in either the same or a different locus in the

GRCh37 assembly generates the identical 31-mer). 96.1% of all 31-mers generated based on

1000GP variants are locus specific and exclusive to the variants set with 91.8% containing a

single  alternative allele.  (b)  SNP genotyping  of  the 1000GP samples  at  Illumina Omni chip

exome-only sites by 31-mer querying of the BWT compared to single sample calling with GATK

HaplotypeCaller (v3.5) and Samtools (v1.1). Dots indicate genotype concordance for variants at

different allele frequencies. (c) Genotype discordance rates for SNPs (Omni exome-only: 80,973

sites, all samples) and indels (Genome in a Bottle (Zook et al. 2016) exome in NA12878: 654

sites). (d) Sensitivity of each method expressed as the fraction of total genotypes for which a

genotype call was made.
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Figure 4: (a) Reference genomes (Human, bacteria, plasmids, and viruses) were downloaded

using Kraken’s (Wood and Salzberg 2014) built-in routines and a Kraken database generated.

GenBank was queried for all virus sequences and the resulting sequence set classified using

Kraken to identify taxon specific 31-mers which were used to query the population BWT for

matching reads. Retrieved read sequences were re-classified by alignment to the viral genomes

stored in the Kraken database. Finally, sample metadata was retrieved for the final read set. (b)

Notched boxplot showing the distribution of human herpesviruses (including EBV) read counts

stratified by documented DNA source. Not-overlapping notches indicate a significant difference

of the medians at the 5% level.  (c) The populations for which at least one sample contains

greater than 10 HTLV-1 reads (black bars) and other virus taxa with greater than 99 reads (red

bars) in at least one sample are shown (for all populations, see Supplementary Figs. 3-8) (d)

World map showing HTLV-1 prevalence in different countries (adapted from  (Verdonck et al.

2007)) with 1000GP populations that show signal for this virus highlighted.

Supplementary Figure 1: Server diagram where each grey box represents a physical machine.

The  web  server  application  that  handles  k-mer  requests  is  Mongoose

(https://github.com/cesanta/mongoose)  and  communication  within  the  server  is  via  ZeroMQ

(https://github.com/zeromq). Users send k-mers and the type of output (matching read counts,

matching read sequences, or matching reads with sample metadata). The output is returned in

JSON format.

Supplementary Figure 2: Analysis of not supported regions in GRCh37. (a) Size distribution of

regions covered by unsupported reference 31-mers (light  green: exclusive to GRCh37, dark

green: shared with GRCh38) (b) Bar plot showing the fraction of unsupported regions in the

GRCh37  reference  assembly  containing  high  or  low  allele  frequency  variants.  Significance

testing was based on selecting 1,000 random regions from the genome.

Supplementary Figures 3-8: Viral sequences found in the 1000GP population BWT, one figure

per continent. Individuals are represented on the x-axis. Only virus taxa with greater than 10

reads (black  bars)  in  at  least  one sample  are  shown.  Samples  are  ordered by  population,

source (blood: pink, LCL: dark green, unknown: light green), and total virus load (sum of read

counts per virus and sample).
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Supplementary Table 1:  The 16 population BWT partitions, based on sequence suffix. Total

number of sequences, length, BWT size, index size, and memory usage are given.

Supplementary Table 2: 1000GP population BWT server performance comparison for different

values of k returning either matching read counts, matching read sequences, or read meta-data

running on the internal network at the Wellcome Trust Sanger Institute.

Supplementary Table 3:  Results for 1000GP population BWT SNP and indel genotyping for

different size k-mers for all chromosome 20 sites compared to the 1000GP Illumina Omni chip

and Genome in a Bottle (indels, NA12878), respectively.

Supplementary  Table  4:  Genes  overlapped  by  not  supported  31-mers  in  GRCh37  and/or

GRCh38. Only genes were selected for which a region annotated as CDS in GENCODE 19 (for

GRCh37) and/or GENCODE 23 (for GRCh38) was hit by a 31-mer.
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Tables

Table 1: The population BWT SNP genotype assignment scheme. 'N' is number of reference 

supporting reads and 'M' number of alternative allele supporting reads, '.' means unknown 

genotype, '0' is the reference allele, and '1' is the first alternative allele.

Table 2: The population and sample identifiers for the individuals found to contain evidence for 

HTLV-1 viral integrations. The read count columns indicate the number of viral reads by 

searching the population BWT and by re-alignment of all of the sequencing reads from the 

individuals to a GRCh38 + HTLV-1 reference genome.

23

Read counts

Population Sample Centre BWT Alignment Unique integrations

ACB HG02325 Broad institute 1 2 n/a

CLM HG01357 Illumina, BCM 224 282 8

ESN HG03370 WUGSC, WTSI 40 92 2

GWD HG02675 Broad institute 104 123 3

PEL HG01918 BGI 19 32 n/a

PEL HG01917 BGI 21 34 2

Constraint Genotype

N=0, M=0 ./.

N>0, M=0 0/0

N=0, N>0 1/1

(N / M) < 0.125 1/1

(N / M) > 8 0/0

0.125 < (N / M) < 8 0/1
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