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Abstract 24	
  
Transcript levels are a critical determinant of the proteome and hence cellular function. 25	
  
Because the transcriptome is an outcome of the interactions between genes and their 26	
  
products, it may be accurately represented by a subset of transcript abundances. We 27	
  
developed a method, Tradict (transcriptome predict), capable of learning and using the 28	
  
expression measurements of a small subset of 100 marker genes to predict 29	
  
transcriptome-wide gene abundances and the expression of a comprehensive, but 30	
  
interpretable list of transcriptional programs that represent the major biological 31	
  
processes and pathways of the cell. By analyzing over 23,000 publicly available RNA-32	
  
Seq datasets, we show that Tradict is robust to noise and accurate. Coupled with 33	
  
targeted RNA sequencing, Tradict may therefore enable simultaneous transcriptome-34	
  
wide screening and mechanistic investigation at large scales.  35	
  

 36	
  
Introduction  37	
  

As the critical determinant of the proteome and therefore cellular status, the transcriptome 38	
  
represents a key node of regulation for all life1. Transcriptional control is managed by a finely tuned 39	
  
network of transcription factors that integrate environmental and developmental cues in order to actuate 40	
  
the appropriate responses in gene expression2–4. Importantly, the transcriptomic state space is 41	
  
constrained. Pareto efficiency constraints suggest that no gene expression profile or phenotype can be 42	
  
optimal for all tasks, and consequently, that some expression profiles or phenotypes must come at the 43	
  
expense of others5,6. Furthermore, across all major studied kingdoms of life, cellular networks 44	
  
demonstrate remarkably conserved scale-free properties that are topologically characterized by a small 45	
  
minority of highly connected regulatory nodes that link the remaining majority of sparsely connected 46	
  
nodes to the network7–9. These theories suggest that the effective dimension of the transcriptome 47	
  
should be far less than the total number of genes it contains. If true to a large enough extent, it may be 48	
  
possible to faithfully compress and prospectively summarize entire transcriptomes by measuring only a 49	
  
small, carefully chosen subset of it.  50	
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Indeed, previous studies have exploited this reduced dimensionality to perform gene expression 51	
  
imputation for microarray data for missing or corrupted values10–12.  Others have extended these 52	
  
intuitions to predict expression from probe sets containing a few hundred genes13,14.  However, 53	
  
prediction accuracies have been modest and usually limited to 4,000 target probes/genes. Recently, 54	
  
several studies examined the transcriptomic information recoverable by shallow sequencing especially 55	
  
as it applies to single-cell experiments15–18. Jaitin et al. (2014) and Pollen et al. (2014) demonstrated 56	
  
that only tens of thousands of reads are required per cell to learn and classify cell types ab initio16,18. 57	
  
Heimberg et al. (2016) extended these findings and demonstrated that the major principal components 58	
  
of a typically sequenced mouse bulk or single-cell expression dataset may be estimated with little error 59	
  
at even 1% of the depth15. Though these approaches advance the notion of strategic transcriptome 60	
  
undersampling, they only recover broad transcriptional states and are restricted to measuring only the 61	
  
most abundant genes. During sample preparation -- arguably the most expensive cost of a multiplexed 62	
  
sequencing experiment -- shallow sequencing-based approaches still utilize protocols meant for 63	
  
sampling the entire transcriptome and therefore consume more resources than necessary. 64	
  
Furthermore, given that the expression of even the most abundant genes is highly skewed, sequencing 65	
  
effort is wastefully distributed compared to an approach that chooses which genes to measure more 66	
  
wisely. Finally, it is still not clear from sample sizes and biological contexts previously studied whether 67	
  
the low dimensionality of the transcriptome may be leveraged unconditionally (or nearly so) across 68	
  
organism and application. 69	
  

In this work, we introduce Tradict (transcriptome predict), a robust-to-noise and probabilistically 70	
  
sound algorithm, for inferring gene abundances transcriptome-wide, and predicting the expression of a 71	
  
transcriptomically comprehensive, but interpretable list of transcriptional programs that represent the 72	
  
major biological processes and pathways of the cell. Tradict makes its predictions using only the 73	
  
expression measurement of a single, context-independent, machine-learned subset of 100 marker 74	
  
genes. Importantly, Tradict’s predictions are formulated as posterior distributions over unmeasured 75	
  
genes and programs, and therefore simultaneously provide point and credible interval estimates over 76	
  
predicted expression. Using a representative sampling of over 23,000 publicly available, transcriptome-77	
  
wide RNA-Seq datasets for Arabidopsis thaliana and Mus musculus, we show Tradict prospectively 78	
  
models program expression with striking accuracy. Our work demonstrates the development and large-79	
  
scale application of a probabilistically reasonable multivariate count/non-negative data model, and 80	
  
highlights the power of directly modeling the expression of a comprehensive list of transcriptional 81	
  
programs in a supervised manner. Consequently, we believe that Tradict, coupled with targeted RNA 82	
  
sequencing19–24, can rapidly illuminate biological mechanism and improve the time and cost of 83	
  
performing large forward genetic, breeding, or chemogenomic screens.  84	
  

Figure 1. The primary drivers of variation in our training transcriptome collection are developmental stage and tissue. 
a) A. thaliana, b) M. musculus. Also shown are plots of PC3 vs. PC1 to provide another perspective. 
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 85	
  

Results 86	
  
 87	
  
Assembly of a comprehensive training collection of transcriptomes  88	
  

We downloaded all available Illumina sequenced publicly deposited RNA-Seq samples 89	
  
(transcriptomes) on NCBI’s Sequence Read Archive (SRA). Among samples with at least 4 million 90	
  
reads, we successfully downloaded and quantified the raw sequence data of 3,621 and 27,450 91	
  
transcriptomes for A. thaliana and M. musculus, respectively. After stringent quality filtering, we 92	
  
retained 2,597 (71.7%) and 20,847 (76.0%) transcriptomes comprising 225 and 732 unique SRA 93	
  
submissions for A. thaliana and M. musculus, respectively. An SRA  ‘submission’ consists of multiple, 94	
  
experimentally linked samples submitted concurrently by an individual or lab. We defined 21,277 (A. 95	
  
thaliana) and 21,176 (M. musculus) measurable genes with reproducibly detectable expression given 96	
  
our tolerated minimum sequencing depth and mapping rates (see Supplemental Information “Materials 97	
  
and Methods” for further information regarding data acquisition, transcript quantification, quality filtering, 98	
  
and expression filtering). We hereafter refer to the collection of quality and expression filtered 99	
  
transcriptomes as our training transcriptome collection.  100	
  

In order to assess the quality and comprehensiveness of our training collection, we performed a 101	
  
deep characterization of the expression spaced spanned by these transcriptomes. We found that the 102	
  
transcriptome of both organisms was highly compressible and that the primary drivers of variation were 103	
  

Figure 2. Tradict’s algorithmic workflow. a) During training, the transcriptome is first quantitatively summarized in terms of a 
collection of a few hundred, biologically comprehensive transcriptional programs. These are then decomposed into a subset of 
marker genes using an adaptation of the Simultaneous Orthogonal Matching Pursuit algorithm. A Multivariate Normal 
Continuous-Poisson hierarchical model is used as a predictive model to capture covariance relationships between markers, 
transcriptional programs, and all genes. b) During prediction, Tradict predicts the expression of transcriptional programs and 
all genes in the transcriptome using the expression measurements of the marker genes. c) The Multivariate Normal 
Continuous-Poisson hierarchy enables Tradict to efficiently model statistical coupling between the non-negative expression 
measurements typical of sequencing experiments. This is done by assuming that associated with each observed, noisy TPM 
measurement, there is an unmeasured (denoised), latent abundance the logarithm of which comes from a Multivariate Normal 
distribution over all genes and transcriptional programs. 
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tissue and developmental stage (Figure 1a-b, Figure S1), with many biologically realistic trends within 104	
  
each cluster (Supplemental Analysis 1). We additionally examined the distribution of submissions 105	
  
across the expression space, compared inter-submission variability within and between tissues, 106	
  
inspected expression correlations among genes with well-established regulatory relationships, and 107	
  
assessed the evolution of the expression space across time. These investigations revealed our training 108	
  
collection is of high and reproducible technical quality, reflective of known biology, and stable 109	
  
(Supplemental Analysis 1, Figures S2-S4). Given additionally the diversity of tissues, genetic 110	
  
perturbations, and environmental stimuli represented in the SRA, these results, taken together, suggest 111	
  
that our training collection is an accurate and representative sampling of the transcriptomic state space 112	
  
that is of experimental interest for both organisms. 113	
  
	
  114	
  
Tradict - algorithm overview 115	
  
 Given a training transcriptome collection, Tradict encodes the transcriptome into a single subset 116	
  
of globally representative marker genes and learns their predictive relationship to the expression of a 117	
  
comprehensive collection of transcriptional programs (e.g. pathways, biological processes) and to the 118	
  
rest of the genes in the transcriptome. Tradict’s key innovation lies in using a Multivariate Normal 119	
  
Continuous-Poisson (MVN-CP) hierarchical model to model marker latent abundances -- rather than 120	
  
their measured, noisy abundances -- jointly with the expression of transcriptional programs and the 121	
  
abundances of the remaining non-marker genes in the transcriptome. In so doing, Tradict is able to 1) 122	
  
efficiently capture covariance structure within the non-negative, right-skewed output typical of 123	
  
sequencing experiments, and 2) perform robust inference of gene set and non-marker expression even 124	
  
in the presence of significant noise.   125	
  
 Figure 2 illustrates Tradict’s general workflow. Estimates of expression are noisy, especially for 126	
  
low to moderately expressed genes. Given samples are often explored unevenly and that the a priori 127	
  
abundance of each gene differs, the level of noise in a gene’s measured expression for a given sample 128	
  
varies, but it can be estimated. Therefore, during training, Tradict first learns the log-latent, denoised 129	
  
abundances for each gene in every sample in the training collection using the lag transformation25. It 130	
  
then collapses this latent transcriptome into a collection of predefined, comprehensive collection of 131	
  
transcriptional programs that represent the major processes and pathways of the cell related growth, 132	
  
development, and response to the environment (Supplemental Tables 3-4). In this work, we focus on 133	
  
creating a Gene Ontology derived panel of transcriptional programs, in which the first principal 134	
  
component of all genes contained within an appropriately sized and representative GO term is used to 135	
  
define an accordingly named transcriptional program26,27. The expression values of these programs are 136	
  
then encoded using an adapted version of the Simultaneous Orthogonal Matching Pursuit algorithm 137	
  
into a small subset of marker genes selected from the transcriptome28,29. Tradict finally stores the mean 138	
  
and covariance relationships between the log-latent expression of the selected markers, the 139	
  
transcriptional programs, and the log-latent expression of the remaining non-marker genes at the 140	
  
Multivariate Normal layer of the MVN-CP hierarchical model (Figure 2a).  141	
  
 Prospectively, only the expression of these marker genes needs to be measured and the 142	
  
expression of genes and/or transcriptional programs can be inferred as needed. During prediction, 143	
  
Tradict uses the observed marker measurements as well as their log-latent mean and covariance 144	
  
learned during training, to estimate -- via MCMC sampling -- the posterior distribution over the log-latent 145	
  
abundances of the markers30. Though a simply a consequence of proper inference of our model, this 146	
  
denoising step adds considerable robustness to Tradict’s predictions. From this estimate, Tradict uses 147	
  
covariance relationships learned during training to estimate the conditional posterior distributions over 148	
  
the remaining non-marker genes and transcriptional programs (Figure 2b).  From these distributions, 149	
  
the user can derive point estimates (e.g. posterior mean or mode), as well as measures of confidence 150	
  
(e.g. credible intervals). A complete description of the entire algorithm can be found in the “Tradict 151	
  
algorithm” section of the Materials and Methods in the Supplemental Information. 152	
  
 153	
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 154	
  

 155	
  
Tradict prospectively predicts gene and transcriptional program expression with superior and 156	
  
robust accuracy 157	
  

To understand Tradict’s prospective predictive performance, we performed 20-fold cross 158	
  
validation on the training transcriptome collections for both A. thaliana and M. musculus and evaluated 159	
  
Pearson correlation coefficients (PCC) between predicted and actual expression for each fold when the 160	
  
remaining 95% of folds were used for training. To make this experiment as reflective of reality as 161	
  
possible, folds were divided by submission so that samples from the same set of experiments would not 162	
  

Figure 3. Tradict prospectively predicts gene and transcriptional program expression with superior and robust 
accuracy. Tradict’s prospective prediction accuracy during 20-fold cross validation of the entire training collection for both 
organisms. a) Heatmaps illustrating test-set reconstruction performance of all transcriptional programs for A. thaliana. Shown 
is the reconstruction performance for all samples in our transcriptome collection when they were in the test-set. b) Density 
plots of predicted vs. actual test-set expression for all genes (left) and transcriptional programs (right) for A. thaliana, after 
controlling for inter-sumbission biological signal. The intra-submission expression of each gene and transcriptional program 
was z-score transformed to make their expression comparable. c & d) Same as a & b, but for M. musculus. e) Comparison of 
Tradict’s performance vs. several baselines: SR (structured regression), LWA (locally weighted averaging), and Tradict 
Shallow-Seq. f) A posterior predictive check illustrating the concordance between Tradict’s posterior predictive distribution and 
the distribution of test-set expression values for genes (left) and transcriptional programs (right).  Plotted is the percent of test-
set observations contained within a credible interval vs. the size of the credible interval.  A unique credible interval is derived 
for each gene/program. The “x=y” line is illustrated as a dotted black line. Shaded error bands depict the sampling distribution 
of this analysis across test-sets from a 20-fold cross validation on the A. thaliana dataset.  
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appear both in training and test sets. Because submissions to the SRA span a broad array of biological 163	
  
contexts, the total biological signal contained in any given test set likely exceeds that of what would be 164	
  
expected for typical application, which in turn would lead to overly optimistic estimates of prediction 165	
  
accuracy. We therefore evaluated intra-submission accuracy, in which PCC calculations are performed 166	
  
on ‘submission-adjusted’ expression values. To do this, for each gene and program, each test-set 167	
  
submission’s mean expression was subtracted from the expression values for all samples associated 168	
  
with that submission. In effect, this regresses out between-submission effects, and allows us to assess 169	
  
Tradict’s predictive performance one experiment at a time, as one would do in practice. 170	
  

Figures 3a and 3c illustrate that the reconstruction performance for transcriptional programs in 171	
  
both organisms is strikingly accurate across all collected submissions. Quantitatively speaking, the 172	
  
average intra-submission PCCs for transcriptional programs are 0.94 and 0.93 for A. thaliana and M. 173	
  
musculus, respectively. This is despite lower prediction performance on gene expression (Figures 3b 174	
  
and 3d). Intuitively, this is because transcriptional programs are measured as linear combinations of the 175	
  
log-latent TPMs of the genes that comprise them, effectively smoothing over the orthogonal noise 176	
  
present in each gene’s expression prediction.  177	
  

We also found Tradict’s performance to be superior to several baselines. These include two 178	
  
successful approaches developed in Donner et al. (2012) for microarray14, and a version of Tradict that 179	
  
uses the 100 most abundant genes as its selected markers (Figure 3e, Figure S5, Supplemental 180	
  
Analysis 2). The former baselines rely on structured regression (SR) and locally weighted averaging 181	
  
(LWA), linear/parametric and non-parametric methods, respectively. The latter baseline examines the 182	
  
utility of simple shallow sequencing by using the most abundant genes as markers for Tradict (see 183	
  
Supplemental Analysis 2 for a more detailed description).  Figure 3e illustrates test-set intra-submission 184	
  
performance of each method as a function of the number of markers entered into the model. LWA 185	
  
demonstrates the quickest performance gain, but then saturates after 10 markers. This is likely 186	
  
because a non-linear kernel based approach makes the most efficient use of a few markers, but is 187	
  
adversely impacted by the curse of dimensionality as more markers are added. The parametric 188	
  
methods (Tradict, SR) navigate this dimensionality increase more efficiently and ultimately realize 189	
  
better performance for a still reasonable number of markers. Tradict outperforms SR and Tradict 190	
  
Shallow-Seq, ultimately obtaining a PCC between predicted and actual expression of 0.71 for genes 191	
  
and 0.96 for transcriptional programs. This suggests Tradict’s probabilistic framework is more 192	
  
reasonable than SR’s and that Tradict’s marker selection is more optimal than picking the most 193	
  
abundant genes. We additionally found Tradict’s predictions were robust to noise in the form of low 194	
  
sequencing depth and/or corrupt marker measurements (Figure S5 and S10, Supplemental Analysis 2 195	
  
and 5), which we attribute to its probabilistic framework, in which training and prediction are performed 196	
  
in the space of denoised latent abundances.  197	
  

To further assess the validity of Tradict’s modeling assumptions, we examined how Tradict’s 198	
  
posterior predictive distribution matched the distribution of test-set gene and program expression 199	
  
values. Specifically, we performed a posterior predictive check in which we asked what percent of test-200	
  
set gene or program expression values fall within an X% credible interval, where a unique interval is 201	
  
defined for each gene/program30. If Tradict’s posterior predictive distribution is reasonable then X% of 202	
  
the true expression values should fall within this interval for any X. Figure 3f illustrates the results of this 203	
  
analysis as performed on disjoint test-sets from a 20-fold cross validation on the A. thaliana dataset. On 204	
  
average, the X% credible interval captures X% of test-set observations for any choice of X. The 205	
  
posterior predictive distribution for transcriptional programs may be slightly too wide at moderate 206	
  
interval sizes (30-70%), which would make Tradict more conservative (higher type II error rate) than it 207	
  
should be. However, in practice it is accurate (p-value = 0.24, t-test) for larger, more standard interval 208	
  
sizes (e.g. 95%).  We conclude that Tradict’s probabilistic modeling assumptions capture unseen data 209	
  
well. 210	
  

We next characterized Tradict’s limitations through error, power, program annotation robustness 211	
  
analyses, and a timing and memory analysis (Supplemental Analysis 3-4). These analyses revealed 212	
  
that training-set expression variance and mean abundance correlated positively with both program and 213	
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gene expression prediction performance (Supplemental Analysis 3.I, Supplemental Tables 3-4). 214	
  
Combined with program size as another predictor, these variables could account for most of the error 215	
  
(60% of total variance) in program expression prediction. A power analysis revealed that for both A. 216	
  
thaliana and M. musculus, 1,000 samples -- comprising approximately 100 submissions -- is sufficient 217	
  
for optimum performance (Supplemental Analysis 3.II). An examination of how gene-to-program mis-218	
  
annotation rates influence predictive performance revealed that program expression prediction 219	
  
perfromance was robust up to a 20% mis-annotation rate and that gene expression prediction 220	
  
performance was completely robust to any level of mis-annotation. The latter result is a consequence of 221	
  
a statistical decoupling between gene and program expression prediction (Supplemental Analysis 3.III). 222	
  
Finally, Tradict’s training time and peak memory requirements scaled linearly with training set size, and 223	
  
increased 0.26 seconds and 1.1 Mb per sample. Prediction time was limited by MCMC sampling from 224	
  
the conditional posterior distributions of gene and program expression, and required 3.1 seconds per 225	
  
sample on average (Supplemental Analysis 4). Taken together, we conclude that the causes of 226	
  
Tradict’s errors are well understood and intuitive, and that Tradict’s sample requirements are 227	
  
reasonable, especially for major model organisms (Supplemental Table 5, Supplemental Analysis 3.II). 228	
  
Furthermore, Tradict is robust to noisily defined transcriptional programs, and its computational 229	
  
requirements scale well to large datasets.  230	
  
 231	
  
Case studies reveal the power of predicting and studying transcriptional program expression 232	
  
 To demonstrate how Tradict may be applied in practice, we focused on two case studies related 233	
  
to innate immune signaling -- one performed using bulk A. thaliana seedlings (detailed below), and the 234	
  
other using primary immune M. musculus cell lines (detailed in Supplemental Analysis 5; Figure S10). 235	
  
We trained Tradict on our full collection of training transcriptomes for each organism to produce two 236	
  
organism-specific Tradict models. Each was based on the selection of 100 markers learned from the 237	
  
full training transcriptome collection (Supplemental Tables 7-8) that we assert are globally 238	
  
representative, and context-independent. The case study samples do not, of course, appear in the 239	
  
collection of training transcriptomes. 240	
  

 241	
  
Tradict accurately predicts temporal expression patterns for a diverse panel of A. thaliana 242	
  
immune signaling mutants under different hormone perturbations - The hormones salicylic acid 243	
  
(SA) and jasmonic acid (JA) play a major, predominantly antagonistic regulatory role in the activation of 244	
  
plant defense responses to pathogens. Yang et al. (2016) investigated the effect of a transgenically 245	
  
expressed bacterial effector, HopBB1, on immune signaling in A. thaliana31. In their study, they 246	
  
performed a time course experiment, treating plants with MeJA (a JA response inducer), BTH (an SA 247	
  
mimic and SA response inducer), or mock buffer and monitored the transcriptome of bulk seedlings at 0 248	
  
hr, 1 hr, 5 hr, and 8 hr post treatment. These experiments included several immune signaling mutants 249	
  
with differing degrees of response efficiency to MeJA and BTH treatment. Among other findings, they 250	
  
conclude that HopBB1 enhances the JA response, thereby repressing the SA response and facilitating 251	
  
biotrophic pathogen infection. 252	
  

We asked to what extent strategic undersampling of the transcriptome and application of Tradict 253	
  
could quantitatively recapitulate the findings of Yang et al. (2016). Given Tradict’s near perfect accuracy 254	
  
on predicting the expression of transcriptional programs, we took a top down, but hypothesis driven 255	
  
approach to our analysis which first examined the expression of all transcriptional programs. Figure 4a 256	
  
illustrates the actual and predicted expression of all transcriptional programs in A. thaliana as a function 257	
  
of time and treatment. Here, Tradict reconstructs the expression of all transcriptional programs with an 258	
  
average PCC of 0.91.  259	
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Recall that the genes participating in each of our transcriptional programs are pre-defined, in 260	
  
this work, by a carefully chosen, interpretable, but maximally representative set of GO biological 261	
  
processes. Therefore, given the goals of this study, we next examined the expression of the “response 262	
  
to jasmonic acid” and “response to salicylic acid” transcriptional programs. Figure 4b shows the 263	
  
expression behavior for the “response to jasmonic acid” transcriptional program across all the 264	
  
genotypes and time points upon MeJA treatment. More specifically, part (i) shows that the predicted 265	
  
expression and actual expression are qualitatively and quantitatively in agreement, both in magnitude 266	
  
and rank across the different genotypes. For example, as expected, coi1-16, which cannot sense JA, 267	
  
does not respond to the MeJA stimulus, while wildtype Col-0 does. However, even more subtle 268	
  
expression dynamics are captured by Tradict’s predictions. For example, eds16-1 and npr1-1 -- slightly 269	
  

Figure 4. Tradict accurately predicts transcriptional responses across time in response to hormone perturbation in an 
A. thaliana innate immune signaling dataset. After being trained on the full A. thaliana training transcriptome collection, the 
selected set of 100 globally representative and context-independent markers were used to predict the expression of 
transcriptional programs and all genes for the transcriptomes presented in Yang et al. (2016).  a) Actual vs. predicted 
heatmaps for the expression of all 150 transcriptional programs in A. thaliana across genotype, time, and hormone treatment. 
b) Predicted vs. actual expression of i) the JA response transcriptional program, and ii) the genes involved in the JA response 
program. c i-ii) Same as b, but for the SA response transcriptional program. d) Hypothesis free, differential transcriptional 
program expression analysis as performed on the actual expression of transcriptional programs vs those predicted by Tradict. 
Blue circles represent the actual and orange represent the predicted. All heatmaps are clustered in the same order across 
time, treatment, genotype, and between predicted and actual. 
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and strongly impaired SA responders, respectively -- are slightly and strongly hyper-responsive to 270	
  
MeJA, respectively -- just as expected from the JA-SA antagonism. Furthermore, as demonstrated in 271	
  
Yang et al. (2016), the 35S::HopBB1 transgenic line exhibits a prolonged and sustained JA response 272	
  
for both the actual and predicted expression for this transcriptional program. Part (ii) of Figure 4b 273	
  
illustrates the expression of all the MeJA responsive genes in this transcriptional program. Again 274	
  
Tradict’s predictions are in good agreement with actuality, achieving a PCC of 0.72, and it’s visually 275	
  
clear that the expression magnitude of these genes positively correlates with the registered expression 276	
  
magnitude of the “response to jasmonic acid” transcriptional program. Figure 4c parts (i) and (ii) are 277	
  
presented in the same light as Figure 4b, but are instead illustrated for the SA response transcriptional 278	
  
program and constituent genes under BTH treatment. Again predictions match actuality, and the 279	
  
observed trends make biological sense32. 280	
  

In order to illustrate Tradict’s use in hypothesis-free investigation, we performed a differential 281	
  
transcriptional program expression analysis for transcriptional programs affected by MeJA or BTH 282	
  
treatment (Figure 4d, see Methods). Differentially expressed transcriptional programs based on 283	
  
Tradict’s predictions versus actual measurements were highly concordant and biologically reasonable.  284	
  
Transcriptional programs differentially expressed with respect to MeJA treatment included “response to 285	
  
bacterium,” “defense response to fungus”, “response to wounding,” and “response to jasmonic acid” as 286	
  
expected.  Transcriptional programs differentially expressed with respect to BTH treatment included 287	
  
various abiotic stress responses, “defense response to fungus”, “response to jasmonic acid” (via 288	
  
antagonism), and “response to salicylic acid,” again, as expected.  289	
  
 290	
  
Discussion 291	
  

Tradict is an accurate, robust-to-noise method for predicting the expression of a comprehensive, 292	
  
but interpretable list of transcriptional programs that represent the major biological processes and 293	
  
pathways of the cell. Given the comprehensiveness, stability, and exponentially growing size of the 294	
  
training datasets we have assembled from publicly available sources, and as evidenced by our cross 295	
  
validation experiments, which were performed over thousands of samples deposited over the span of 296	
  
six years, the 100 markers Tradict learns are likely to be predictive independent of most contexts and 297	
  
applications. As illustrated through our case studies, examining the expression of these predicted 298	
  
transcriptional programs makes intuitive sense and provides a neat summary of underlying gene 299	
  
expression patterns.  300	
  

Tradict additionally provides expression predictions for all genes in the transcriptome. Though 301	
  
its current gene expression prediction accuracy is less than ideal for more sensitive applications, 302	
  
Tradict’s performance is superior to previous efforts and is improving logarithmically in the number of 303	
  
samples. We attribute Tradict’s performance gains over previous methods first to improved 304	
  
measurement technology. Previous methods were developed for microarray, a substantially more noisy 305	
  
technology than RNA-Sequencing10–14. Consequently, training efficiency was lower as well as 306	
  
measurement accuracy of true expression, thus leading to modest prediction accuracy. By contrast, 307	
  
Tradict is meant to interface with sequencing based readouts of gene expression, a data type that is 308	
  
popular and proliferating exponentially as the time and price of sequencing continues to fall. Second, 309	
  
we believe Tradict’s probabilistic framework goes a step beyond previous efforts by modeling marker-310	
  
gene and marker-program relationships not at the level of measured abundances, which are noisy, but 311	
  
at the level of latent abundances. Working in this denoised space naturally improves accuracy and 312	
  
affords robustness. 313	
  

Taken together, we believe that Tradict coupled with target RNA sequencing can enable 314	
  
transcriptome-wide screening cheaply and at scale. Well-established commercial19,20 and non-315	
  
commercial21,33 methods exist for targeted RNA sequencing in a multiplexed manner, and they are able 316	
  
to measure the expression of 10’s-100’s of genes with accuracy, making their use immediately 317	
  
compatible with Tradict. One method in particular, RASL-Seq22–24, does so cheaply with high precision 318	
  
and multiplexibility by directly probing total RNA and making efficient use of dual-indexing. We estimate 319	
  
that Tradict coupled with a time and resource efficient targeted RNA-sequencing protocol such as 320	
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RASL-Seq could bring the cost of obtaining actionable transcriptome-wide information simultaneously 321	
  
for thousands to tens of thousands of samples to close to $1 per sample. 322	
  
 This scale could greatly benefit high-throughput breeding and screening applications. Forward 323	
  
genetic screens in most eukyarotic organisms require assaying 103-104 mutants. Small molecule, or 324	
  
more generally chemogenomic, drug screens often require screening thousands of molecules against 325	
  
multiple cell lines in multiple conditions. Agricultural screens -- whether for breeding or field 326	
  
phenotyping -- also require measuring thousands of individuals. Though in these cases a screen is 327	
  
made cheap and scalable by monitoring an easily selectable phenotype, new phenotyping architectures 328	
  
must be developed and optimized for each new screen (e.g. reporter lines, imaging hardware/software). 329	
  
Given the ubiquity of RNA, a transcriptome-wide screening approach would not suffer from such a 330	
  
drawback. Furthermore, and more importantly, though quickly interpretable, the phenotype being 331	
  
screened for is usually a uni-dimensional datum that offers little immediate insight into mechanism. In 332	
  
contrast, using Tradict to help perform transcriptome-wide screening could couple the process of 333	
  
hypothesis generation and mechanistic investigation. Here, we argue that the scalable monitoring of the 334	
  
expression of a comprehensive list of just a few hundred transcriptional programs affords an attractive 335	
  
balance of nuance and interpretability. Consequently, this efficient investigation, largely facilitated by 336	
  
Tradict, could greatly accelerate the pace of genetic dissection, breeding, and drug discovery. 337	
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