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Abstract 
Transcript levels are a critical determinant of the proteome and hence cellular function. Because 
the transcriptome is an outcome of the interactions between genes and their products, we 
reasoned it might be accurately represented by a subset of transcript abundances. We develop 
a method, Tradict (transcriptome predict), capable of learning and using the expression 
measurements of a small subset of 100 marker genes to reconstruct entire transcriptomes. By 
analyzing over 23,000 publicly available RNA-Seq datasets, we show that Tradict is robust to 
noise and accurate, especially for predicting the expression of a comprehensive, but 
interpretable list of transcriptional programs that represent the major biological processes and 
cellular pathways. Coupled with targeted RNA sequencing, Tradict may therefore enable 
simultaneous transcriptome-wide screening and mechanistic investigation at large scales. Thus, 
whether for performing forward genetic, chemogenomic, or agricultural screens or for profiling 
single-cells, Tradict promises to help accelerate genetic dissection and drug discovery. 

 
Introduction  

As the critical determinant of the proteome 
and therefore cellular status, the transcriptome 
represents a key node of regulation for all life1. 
Transcriptional control is managed by a finely tuned 
network of transcription factors that integrate 
environmental and developmental cues in order to 
actuate the appropriate responses in gene 
expression2–4. Importantly, the transcriptomic state 
space is constrained. Pareto optimality suggests that 
no gene expression profile or phenotype can be 
optimal for all tasks, and consequently, that some 
expression profiles or phenotypes must come at the 
expense of others5,6. Furthermore, across all major 
studied kingdoms of life, cellular networks 
demonstrate remarkably conserved scale-free 
properties that are topologically characterized by a 
small minority of highly connected regulatory nodes 
that link the remaining majority of sparsely 
connected nodes to the network7–9. These theories 

suggest that the effective dimension of the 
transcriptome should be far less than the total 
number of genes it contains. If true to a large enough 
extent, it may be possible to faithfully compress and 
prospectively reconstruct the entire transcriptomes 
using only a small, carefully chosen subset of it.  

Indeed, previous studies have exploited this 
reduced dimensionality to perform gene expression 
imputation for microarray data for missing or 
corrupted values10–12.  Others have extended these 
intuitions to predict expression from probe sets 
containing a few hundred genes13,14.  However, 
prediction accuracies have been modest and usually 
limited to 4,000 target probes/genes. Recently, 
several studies examined the transcriptomic 
information recoverable by shallow sequencing 
especially as it applies to single-cell experiments15–18. 
Jaitin et al. (2014) and Pollen et al. (2014) 
demonstrated that only tens of thousands of reads 
are required per cell to learn and classify cell types 
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ab initio16,18. Heimberg et al. (2016) extended these 
findings and demonstrated that the major principal 
components of a typically sequenced mouse bulk or 
single-cell expression dataset may be estimated with 
little error at even 1% of the depth15. Though these 
approaches advance the notion of strategic 
transcriptome undersampling, they only recover 
broad transcriptional states and are restricted to 
measuring only the most abundant genes. During 
sample preparation -- arguably the most expensive 
cost of a multiplexed sequencing experiment -- 
shallow sequencing-based approaches still utilize 
protocols meant for sampling the entire 
transcriptome and thus consume more resources 
than necessary. Furthermore, given that the 
expression of even the most abundant genes is 
highly skewed, sequencing effort is wastefully 
distributed compared to an approach that chooses 
which genes to measure more wisely. Finally, it is 
still not clear from sample sizes and biological 
contexts previously studied whether the low 
dimensionality of the transcriptome may be 
leveraged unconditionally (or nearly so) across 
organism and application. 

In this work, we introduce Tradict 
(transcriptome predict), a novel, robust-to-noise, and 
probabilistically sound algorithm for inferring the 
transcriptome using only the expression 
measurements of a single, context-independent, 
machine-learned subset of 100 marker genes. Using 
a transcriptionally representative sampling of over 
23,000 publicly available, transcriptome-wide RNA-
Seq datasets for Arabidopsis thaliana and Mus 
musculus, we train Tradict to prospectively 
reconstruct gene expression, and to predict, with a 
striking degree of accuracy, the expression of a 
comprehensive, but quickly interpretable collection of 
transcriptional programs that represent the major 

biological processes and pathways of the cell. Our 
work demonstrates the development and large-scale 
application of a multivariate count/non-negative data 
model, and highlights the power of directly modeling 
the expression of transcriptional programs in a 
supervised manner. We believe that Tradict, coupled 
with targeted RNA sequencing19–22, can rapidly 
illuminate biological mechanism and improve the 
time and cost of performing large forward genetic, 
breeding, or chemogenomic screens, accurately 
profiling single-cells, and performing gene 
expression based clinical diagnostics.  

 
Results 
 
Assembly of a comprehensive training collection 
of transcriptomes  

We attempted to download all available 
Illumina sequenced publicly deposited RNA-Seq 
samples (transcriptomes) on NCBI’s Sequence Read 
Archive (SRA). Among samples with at least 4 
million reads, we successfully downloaded and 
quantified the raw sequence data of 3,621 and 
27,450 transcriptomes for A. thaliana and M. 
musculus, respectively. After stringent quality 
filtering, we retained 2,597 (71.7%) and 20,847 
(76.0%) transcriptomes comprising 225 and 732 
unique SRA submissions for A. thaliana and M. 
musculus, respectively. An SRA  ‘submission’ 
consists of multiple, experimentally linked samples 
submitted concurrently by an individual or lab. We 
defined 21,277 (A. thaliana) and 21,176 (M. 
musculus) measurable genes with reproducibly 
detectable expression given our tolerated minimum 
sequencing depth and mapping rates (see 
Supplemental Information “Materials and Methods” 
for further information regarding data acquisition, 
transcript quantification, quality filtering, and 

Figure 1. The primary drivers of variation in our training transcriptome collection are developmental stage and tissue. a) A. 
thaliana, b) M. musculus. Also shown are plots of PC3 vs. PC1 to provide another perspective. 
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expression filtering). We hereafter refer to the 
collection of quality and expression filtered 
transcriptomes as our training transcriptome 
collection.  

In order to assess the quality and 
comprehensiveness of our training collection, we 
performed a deep characterization of the expression 
spaced spanned by these transcriptomes. We found 
that the transcriptome of both organisms was highly 
compressible and that the primary drivers of variation 
were tissue and developmental stage (Figure 1a-b, 
Figure S1), with many significant, biologically 
realistic trends within each cluster (Supplemental 
Note 1). We additionally examined the distribution of 
submissions across the expression space, compared 
inter-submission variability within and between 
tissues, inspected expression correlations among 
genes with well-established regulatory relationships, 
and assessed the evolution of the expression space 
across time. These investigations revealed our 
training collection is of high and reproducible 
technical quality, reflective of known biology, and 
stable (Supplemental Note 1, Figures S2-S4). Given 

additionally the diversity of tissues, genetic 
perturbations, and environmental stimuli represented 
in the SRA, these results, taken together, suggest 
that our training collection is an accurate and 
representative sampling of the transcriptomic state 
space that is of experimental interest for both 
organisms. 
	
  
Tradict - algorithm overview 
 Given a training sample of transcriptomes, 
Tradict encodes the transcriptome into a single 
subset of globally representative marker genes and 
learns their predictive relationship to the expression 
of a comprehensive collection of transcriptional 
programs (e.g. pathways, biological processes) and 
to the rest of the transcriptome. Tradict’s key 
innovation lies in using a Multivariate Normal 
Continuous-Poisson (MVN-CP) hierarchical model to 
model marker latent abundances -- rather than their 
measured, noisy abundances -- jointly with the 
expression of transcriptional programs, and 
ultimately, the latent abundances of the remaining 
non-marker genes in the transcriptome. In so doing, 

Figure 2. Tradict’s algorithmic workflow. a) During encoding the transcriptome is first quantitatively summarized in terms of a 
collection of a few hundred, biologically comprehensive transcriptional programs. These are then decomposed into a subset of marker 
genes using an adaptation of the Simultaneous Orthogonal Matching Pursuit algorithm, and a Multivariate Normal Continuous-Poisson 
hierarchical model is used as a predictive model to capture covariance relationships between markers, transcriptional programs, and all 
genes. b) During decoding, Tradict predicts the expression of transcriptional programs and all genes in the transcriptome using only 
expression measurements of the marker genes. c) The Multivariate Normal Continuous-Poisson hierarchy enables Tradict to efficiently 
model statistical coupling between the non-negative expression measurements typical of sequencing. This is done by assuming that 
associated with each observed, noisy TPM measurement, there is an unmeasured, denoised latent abundance the logarithm of which 
comes from a Multivariate Normal distribution over all genes and transcriptional programs. 
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Tradict is able to 1) efficiently capture covariance 
structure within the non-negative, right-skewed 
output typical of sequencing experiments, and 2) 
perform robust inference of gene set and non-marker 
expression even in the presence of significant noise.   
 Figure 2 illustrates Tradict’s general workflow. 
Estimates of expression are noisy, especially for low 
to moderately expressed genes. Given samples are 
often explored unevenly and that the a priori 
abundance of each gene differs, the level of noise in 
a gene’s measured expression for a given sample 
varies, but it can be estimated. Therefore, during 
training, Tradict first learns the log-latent, denoised 
abundances for each gene in every sample in the 
training collection using the lag transformation23. It 
then collapses this latent transcriptome into a 
collection of predefined, globally comprehensive 
collection of transcriptional programs that represent 
the major processes and pathways of the cell related 
growth, development, and response to the 
environment (Supplemental Tables 3-4). In this work, 
we focus on creating a Gene Ontology derived panel 
of transcriptional programs, in which the first 
principal component of all genes contained within an 
appropriately sized and representative GO term is 
used to define the similarly named transcriptional 
program24,25. The expression values of these 
programs are then encoded using an adapted 
version of the Simultaneous Orthogonal Matching 
Pursuit into a small subset of marker genes selected 
from the transcriptome26,27. Tradict finally stores the 
mean and covariance relationships between the log-
latent expression of the selected markers, the 
transcriptional programs, and the log-latent 
expression of the remaining non-marker genes at the 
Multivariate Normal layer of the underlying MVN-CP 
hierarchical model for use in future decoding (Figure 
2a).  
 Prospectively, only the expression of these 
marker genes needs to be measured and the 
expression of transcriptional programs and/or the 
rest of the transcriptome can be inferred as needed. 
During this process of decoding, Tradict first utilizes 
an iterative Bayesian updating algorithm to learn the 
log-latent abundances associated with each 
measured maker for every sample. Though a simply 
a consequence of proper inference of our model, this 
denoising step adds considerable robustness to 
Tradict’s predictions. Tradict then uses the 
covariance relationships learned during training to 
formulate a prediction for the expression of 
transcriptional programs and the most likely 
expression values for all remaining non-marker 
genes (Figure 2b).  
 

Tradict prospectively predicts unseen 
transcriptomes and transcriptional programs 
with robust accuracy 

An SRA submission consists of multiple, 
experimentally linked samples submitted 
concurrently by an individual or lab. Consequently, 
high intra-submission prospective prediction 
accuracy is most indicative of a method’s 
performance.  

To more completely understand Tradict’s 
prospective predictive performance, we performed 
20-fold cross validation on the training transcriptome 
collections for both A. thaliana and M. musculus and 
evaluated Pearson correlation coefficients (PCC) 
between predicted and actual expression for each 
fold when the remaining 95% of folds were used for 
training. To make this experiment as reflective of 
reality as possible, folds were divided by submission 
so that samples from the same set of experiments 
would not appear both in training and test sets. 
Because submissions to the SRA span a broad array 
of biological contexts, the total biological signal 
contained in the test set exceeds that of what would 
be expected for typical application, which in turn 
would lead to overly optimistic estimates of 
prediction accuracy. To therefore evaluate intra-
submission accuracy, PCC calculations were 
performed on ‘submission-adjusted’ expression 
values in which each submission’s mean expression 
was subtracted from the expression values of all 
associated samples.  

Figures 3a and 3c illustrate that the 
reconstruction performance for transcriptional 
programs in both organisms is strikingly accurate 
across all collected submissions. Quantitatively 
speaking, the average intra-submission PCCs for 
transcriptional programs are 0.94 and 0.93 for A. 
thaliana and M. musculus, respectively. This is 
despite lower, but still accurate prediction 
performance on gene expression (Figures 3b and 
3d). Intuitively, this because transcriptional programs 
are measured as linear combinations of the log-
latent TPMs of the genes that comprise them, 
effectively smoothing over the orthogonal noise 
present in each gene’s expression prediction.  

Gene expression prediction error was 
negatively correlated with mean expression (ρ = -
0.496 A. thaliana, ρ = -0.607 M. musculus; 
Spearman correlation) consistent with the findings of 
Donner et al. 2012. Similarly, for transcriptional 
programs, prediction error was negatively correlated 
with the mean expression of genes (ρ = -0.325 A. 
thaliana, ρ = -0.577 M. musculus; Spearman 
correlation) and the number of genes (ρ = -0.545 A. 
thaliana, ρ = -0.5826 M. musculus; Spearman 
correlation) contained within each program 
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(Supplemental Tables 3-4). We did not find any 
transcriptional programs with relatively low (PCC < 
0.9) prediction accuracy that were not composed of a 
few or lowly expressed genes. 

We additionally found Tradict’s performance 
to be superior to several baselines. These include 
two approaches developed in Donner et al. (2012) 
for microarray14, and a version of Tradict that uses 
the 100 most abundant genes as it’s selected 
markers (Figure S5a, Supplemental Note 2). The 
latter baseline examines the utility of simple shallow 
sequencing. We additionally found Tradict’s 
predictions were highly robust to noise (Figure S5b, 
Supplemental Note 2) -- a consequence of its 
probabilistic framework, in which training and 
prediction is performed in the space of denoised 
latent abundances. 
 
Case studies reveal the power of predicting and 
studying predefined transcriptional programs 
 To demonstrate how Tradict may be applied 
in practice, we focused on two case studies related 
to innate immune signaling -- one performed using 
bulk A. thaliana seedlings (detailed below), and the 
other using primary immune M. musculus cell lines 
(detailed in Supplemental Note 3; Figure S6). We 
trained Tradict on our full collection of training 
transcriptomes for each organism to produce two 

organism-specific Tradict models. Each was based 
on the selection of 100 markers learned from the full 
training transcriptome collection (Supplemental 
Tables 5-6) that we assert are globally 
representative, and context-independent. The case 
study samples do not, of course, appear in the 
collection of training transcriptomes. 
 
Tradict accurately predicts temporal 
transcriptomic expression patterns for a diverse 
panel of A. thaliana immune signaling mutants 
under different hormone perturbations - The 
hormones salicylic acid (SA) and jasmonic acid (JA) 
play a major, predominantly antagonistic regulatory 
role in the activation of plant defense responses to 
pathogens. Yang et al. (2016) investigated the effect 
of a transgenically expressed bacterial effector, 
HopBB1, on immune signaling in A. thaliana28. In 
their study, they performed a time course 
experiment, treating plants with MeJA (a JA 
response inducer), BTH (an SA mimic and SA 
response inducer), or mock buffer and monitored the 
transcriptome of bulk seedlings at 0 hr, 1 hr, 5 hr, 
and 8 hr post treatment. These experiments included 
several immune signaling mutants with differing 
degrees of response efficiency to MeJA and BTH 
treatment. Among other findings, they conclude that 
HopBB1 enhances the JA response, thereby 

Figure 3. Tradict prospectively predicts unseen transcriptomes with robust accuracy. Tradict’s prospective prediction accuracy 
during 20-fold cross validation of the entire training collection for both organisms. a) Heatmaps illustrating test-set reconstruction 
performance of all transcriptional programs for A. thaliana. b) Density plots of predicted vs. actual test-set expression for all genes (left) 
and transcriptional programs (right) for A. thaliana, after controlling for inter-sumbission biological signal. The intra-submission 
expression of each gene and transcriptional program was z-score transformed to make their expression comparable. c & d) Same as a 
& b, but for M. musculus.  
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repressing the SA response and facilitating 
biotrophic pathogen infection. 

We asked to what extent strategic 
undersampling of the transcriptome and application 
of Tradict could quantitatively recapitulate the 
findings of Yang et al. (2016). Given Tradict’s near 
perfect accuracy on predicting the expression of 
transcriptional programs, we took a top down, but 
hypothesis driven approach to our analysis which 
first examined the expression of all transcriptional 
programs. Figure 4a illustrates the actual and 
predicted expression of all transcriptional programs 

in A. thaliana as a function of time and treatment. 
Here, Tradict reconstructs the expression of all 
transcriptional programs with an average PCC of 
0.91.  

Recall that the genes participating in each of 
our transcriptional programs are pre-defined, in this 
work, by a carefully chosen, interpretable, but 
maximally representative set of GO biological 
processes. Therefore, given the goals of this study, 
we next examined the expression of the “response to 
jasmonic acid” and “response to salicylic acid” 
transcriptional programs. Figure 4b shows the 

Figure 4. Tradict accurately predicts transcriptional responses across time in response to hormone perturbation in an A. 
thaliana innate immune signaling dataset. After being trained on the full A. thaliana training transcriptome collection, the selected set 
of 100 globally representative and context-independent markers were used to predict the expression of transcriptional programs and all 
genes for the transcriptomes presented in Yang et al. (2016).  a) Actual vs. predicted heatmaps for the expression of all 150 
transcriptional programs in A. thaliana across genotype, time, and hormone treatment. b) Predicted vs. actual expression of i) the JA 
response transcriptional program, and ii) the genes involved in the JA response program. c i-ii) Same as b, but for the SA response 
transcriptional program. d) Hypothesis free, differential transcriptional program expression analysis as performed on the actual 
expression of transcriptional programs vs those predicted by Tradict. Blue circles represent the actual and orange represent the 
predicted. All heatmaps are clustered in the same order across time, treatment, genotype, and between predicted and actual. 
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expression behavior for the “response to jasmonic 
acid” transcriptional program across all the 
genotypes and time points upon MeJA treatment. 
More specifically, part (i) shows that the predicted 
expression and actual expression are qualitatively 
and quantitatively in agreement, both in magnitude 
and rank across the different genotypes. For 
example, as expected, coi1-16, which cannot sense 
JA, does not respond to the MeJA stimulus, while 
wildtype Col-0 does. However, even more subtle 
expression dynamics are captured by Tradict’s 
predictions. For example, eds16-1 and npr1-1 -- 
slightly and strongly impaired SA responders, 
respectively -- are slightly and strongly hyper-
responsive to MeJA, respectively -- just as expected 
from the JA-SA antagonism. Furthermore, as 
demonstrated in Yang et al. (2016), the 
35S::HopBB1 transgenic line exhibits a prolonged 
and sustained JA response for both the actual and 
predicted expression for this transcriptional program. 
Part (ii) of Figure 4b illustrates the expression of all 
the MeJA responsive genes in this transcriptional 
program. Again Tradict’s predictions are in good 
agreement with actuality, achieving a PCC of 0.72, 
and it’s visually clear that the expression magnitude 
of these genes positively correlates with the 
registered expression magnitude of the “response to 
jasmonic acid” transcriptional program. Figure 4c 
parts (i) and (ii) are presented in the same light as 
Figure 4b, but are instead illustrated for the SA 
response transcriptional program and constituent 
genes under BTH treatment. Again predictions 
match actuality, and the observed trends make 
biological sense29. 

In order to illustrate Tradict’s use in 
hypothesis-free investigation, we performed a 
differential transcriptional program expression 
analysis for transcriptional programs affected by 
MeJA or BTH treatment (Figure 4d, see Methods). 
Differentially expressed transcriptional programs 
based on Tradict’s predictions versus actual 
measurements were highly concordant and 
biologically reasonable.  Transcriptional programs 
differentially expressed with respect to MeJA 
treatment included “response to bacterium,” “defense 
response to fungus”, “response to wounding,” and 
“response to jasmonic acid” as expected.  
Transcriptional programs differentially expressed 
with respect to BTH treatment included various 
abiotic stress responses, “defense response to 
fungus”, “response to jasmonic acid” (via 
antagonism), and “response to salicylic acid,” again, 
as expected.  
 
 
 

Discussion 
Tradict is an accurate, robust-to-noise 

algorithm for high fidelity transcriptome 
reconstruction given the expression measurements 
of a small, machine-learned subset of 100 marker 
genes. Given the comprehensiveness, stability, and 
exponentially growing size of the training datasets 
we have assembled from publicly available sources, 
the 100 markers Tradict learns are likely to be 
predictive independent of most contexts and 
applications. Furthermore, Tradict’s ability to near 
perfectly model the expression of a biologically 
comprehensive, but interpretable list of annotated 
transcriptional programs enables one to rapidly 
generate hypotheses and dissect mechanism. 
 When coupled with target RNA sequencing, 
we believe Tradict can enable transcriptome-wide 
screening cheaply at scale. Commercial19,20 and non-
commercial21,22 methods exist for targeted RNA 
sequencing in a multiplexed manner, and they are 
able to measure the expression of 10’s-100’s of 
genes with accuracy, making their use compatible 
with Tradict. Nevertheless, we see improvements in 
these approaches that could increase multiplexibility 
and reduce cost. More specifically, we estimate that 
Tradict coupled with a time and resource efficient 
targeted RNA-sequencing protocol could bring the 
cost of obtaining actionable transcriptome-wide 
information for thousands to tens of thousands of 
samples to close to $1 a sample (Supplemental Note 
4). 
 This scale is exactly what is needed for many 
high-throughput profiling and screening applications. 
Many single-cell experiments now profile thousands 
of cells, and instead of using shallow sequencing 
(Figure S5), these investigations may benefit from a 
more targeted effort to query easier-to-measure, but 
statistically informative transcripts. Tradict could then 
use these measurements to generate predictions 
about the status of all transcriptional programs in the 
cell. With respect to screening, forward genetic 
screens in most eukyarotic organisms require 
assaying 103-104 mutants. Small molecule, or more 
generally chemogenomic, drug screens often require 
screening thousands of molecules against multiple 
cell lines in multiple conditions. Though in these 
cases the screen is made cheap and scalable by 
monitoring an easily selectable phenotype, new 
phenotyping architectures must be developed and 
optimized for each new screen (e.g. reporter lines, 
imaging hardware/software). Given the ubiquity of 
RNA, a transcriptome-wide screening approach does 
not suffer from such a drawback. 

Furthermore, and more importantly, though 
quickly interpretable, the phenotype being screened 
for is usually a uni-dimensional datum that offers little 
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immediate insight into mechanism. In contrast, using 
Tradict to help perform transcriptome-wide screening 
could strongly couple the process of hypothesis 
generation and mechanistic investigation. Here, we 
argue that the scalable monitoring of the expression 
of a comprehensive list of just a few hundred 
transcriptional programs affords just the right 
balance of nuance and interpretability. 
Consequently, this efficient investigation, largely 
facilitated by Tradict, could greatly accelerate the 
pace of genetic dissection, breeding, and drug 
discovery. 
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Code availability 
A MATLAB implementation of Tradict is available at 
https://github.com/surgebiswas/tradict.  All code to 
perform data downloads, analysis, and generate 
figures are available at 
https://github.com/surgebiswas/transcriptome_compr
ession. Note that in order to make Tradict open-
source and reach a wider audience we are 
developing user-friendly, unit tested R-package of 
Tradict that will be made available before publication. 
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