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Abstract

Background: The human gut contains approximately 1014 bacteria, belonging to
hundreds of different species. Together, these microbial species form a complex
food web that can break down food sources that our own digestive enzymes
cannot handle, including complex polysaccharides, producing short chain fatty
acids and additional metabolites, e.g., vitamin K. The diversity of microbial
diversity is important for colonic health: Changes in the composition of the
microbiota have been associated with inflammatory bowel disease, diabetes,
obestity and Crohn’s disease, and make the microbiota more vulnerable to
infestation by harmful species, e.g., Clostridium difficile. To get a grip on the
controlling factors of microbial diversity in the gut, we here propose a multi-scale,
spatiotemporal dynamic flux-balance analysis model to study the emergence of
metabolic diversity in a spatial gut-like, tubular environment. The model features
genome-scale metabolic models of microbial populations, resource sharing via
extracellular metabolites, and spatial population dynamics and evolution.

Results: In this model, cross-feeding interactions emerge readily, despite the
species’ ability to metabolize sugars autonomously. Interestingly, the community
requires cross-feeding for producing a realistic set of short-chain fatty acids from
an input of glucose, If we let the composition of the microbial subpopulations
change during invasion of adjacent space, a complex and stratifed microbiota
evolves, with subspecies specializing on cross-feeding interactions via a
mechanism of compensated trait loss. The microbial diversity and stratification
collapse if the flux through the gut is enhanced to mimic diarrhea.

Conclusions: In conclusion, this in silico model is a helpful tool in systems
biology to predict and explain the controlling factors of microbial diversity in the
gut. It can be extended to include, e.g., complex food source, and
host-microbiota interactions via the gut wall.

Keywords: flux-balance analysis with molecular crowding; dynamic multi-species
metabolic modeling; intestinal microbiota; multiscale modeling; compensated
trait loss; microbial communities

Background
The human colon is a dense and diverse microbial habitat, that contains hundreds of

microbial species [1]. These species together form a food web that breaks down com-

plex polysaccharides into monosaccharides and these monosaccharides into short

chain fatty acids (SCFAs). The diversity and composition of the intestinal micro-

biota is correlated with a human health and disease [2]. The composition of the
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microbiota is correlated with obesity and inflammatory bowel disease [3] microbial

diversity is lower in obese then in lean individuals [4], and patients with diarrhea-

predominant irritable bowel syndrome show large temporal shifts in the composition

of the micobiota [5]. Metabolic interactions are probably the most important source

of bacterial diversity in the colon [6]. The main food sources entering the colon are

non-degraded polysaccharides, including resistant starch and cellulose, oligosaccha-

rides, proteins and simple sugars [7]. In addition to these exogenous sources of

sugar, the colon wall secretes mucins, which are an important food source [7] for

the microbiota.

In paper we ask what mechanisms are responsible for the diversity of the gut mi-

crobiota. The structured environments and and diversity of undigested food sources

(e.g., complex polysaccharides, e.g., found in food fibers) found in the gut have

been shown to sustain diverse microbial communities [2, 8], but interestingly di-

verse ecosystems can already arise in an unstructured environment with only one

primary resource [9, 10, 11, 12, 13]. In long-term evolution experiments of E. coli

in glucose-limited continuous culture, such emergence could be attributed to cross-

feeding interactions, in which one population degrades the primary food source

into a secondary food source, thus creating a niche for the second population [12].

Mathematical modeling can help understand under what conditions cross-feeding

in microbial communities can emerge and drive diversification of the population.

In their isologous diversification model, Kaneko and Yomo [14, 15] studied sets of

identical, chaotically oscillating metabolic networks that exchange metabolites via

a common, shared medium. Although small populations of oscillators will easily

synchronize with one another, larger populations will break up in specialized, syn-

chronized sub-populations. A number of authors asked when such specialization and

cross-feeding becomes evolutionary beneficial. Cross-feeding can evolve if there ex-

ists a trade-off between uptake efficiency of the primary and secondary food source

[16], if a trade-off between growth rate and yield [17], or, in absence of metabolic

trade-offs, if the enzymatic machinery required to metabolize all available nutri-

ents is so complex that distribution of enzymes across species in conjunction with

cross-feeding becomes the more probable, ’easier’ evolutionary solution [18].

These initial theoretical and computational models included simplified or con-

ceptual models of metabolism. More recently, it has become feasible to construct

dynamical models of microbial communities based on genome-scale metabolic net-

work models (reviewed in Ref. [19]). In these models, multiple species of bacteria

interact with one another by modifying a common pool of metabolites. These mod-

els are based on (static optimization-based) dynamic flux-balance analysis (dFBA)

[20], coupling the optimization-based flux-balance analysis (FBA) approach to mod-

eling intracellular metabolism, with an ordinary-differential equation model (ODE)

for the metabolite concentrations in the substrate. These community models more

closely approximate microbial metabolism than the initial, more abstract models,

such that the results can be compared directly to experimental observations. For

example, Tzamali and coworkers [21] used multispecies dFBA to compare the per-

formance of metabolic mutants of E. coli in batch monoculture versus its perfor-

mance in co-culture with an alternative mutant. Their model predicted co-cultures

that were more efficient than their constituent species. Louca and Doebeli [22] pro-

posed methodology to calibrate the bacterial models in such dynamic multispecies
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FBA approaches to data from experimental monocultures. By coupling these cali-

brated dynamics models of isolated strains of E. coli, the framework could repro-

duce experimentally observed succession of an ancestral monoculture of E. coli by

a cross-feeding pair of specialists. Because these models assume direct metabolic

coupling of all species in the model via the culture medium, the model best ap-

plies to well-mixed batch culture systems or chemostats. The more recent coupled

dynamic multi-species dFBA and mass transfer models [23, 24, 25, 19], or briefly,

spatial dFBA (sdFBA) models are more suitable for modeling the gut microbiota.

These spatial extensions of the multispecies dFBA approach couple multiple dFBA

models to one another via spatial mass transport models (based on numerical solu-

tions of partial-differential equations), such that bacteria can exchange metabolites

with their direct neighbors.

In order to explore whether and under which circumstances a diverse microbial

community can arise from a single food source in the gut, here we extended the

sdFBA approac to develop a multiscale model of collective, colonic carbohydrate

metabolism and bacterial population dynamics and evolution in a gut-like geome-

try. To this end, we combined spatial models of population dynamics with genome-

scale metabolic models for individual bacterial species and a spatial mass transport

model. In addition to the sdFBA approaches, we extended the model with an “evo-

lutionary” component, in order to allow for unsupervised diversification of the mi-

crobial communities. We inoculate the metabolic system with a meta-population of

bacteria containing a set of available metabolic pathways. When, depending on the

local availability of nutrients, the bacterial population expands into its local neigh-

borhood the metapopulation gains or looses metabolic pathways at random. We

find that spatially structured, microbial diversity emerges spontaneously emerge in

our model on a single resource. This diversity depends on interspecies cross-feeding

interactions.

Results
A full multiscale model of the metabolism of the human gut would need to include

around 1014 individual bacteria belonging to hundreds of bacterial species, for which

in most cases genome-scale metabolic models are unavailable. We thus necessarily

took a more coarse-grained approach, while retaining biological realism by using

realistic genome-scale metabolic network models. We first asked to what extent

cross-feeding can emerge in large communities of interacting and diversified bacte-

ria, such as those found in the colon, using a dynamic-species metabolic modeling

(DMMM) approach [21, 26, 19], which is an extension of the dynamic flux-balance

analysis (dFBA) method [27, 20]. We next asked to what extent spatially diversi-

fied microbial communities can emerge in a tube-like environment, if the microbial

communities are allowed to specialize to the local availability of metabolites.

Construction of metabolic model representing a subset of the gut microbiota

We first constructed a hypothetical, but biologically-realistic “supra-organism”

model [3, 28], called “metabacterium” here, that represents a sample of the gut

microbial community in a single metabolic network model. For this preliminary, ex-

plorative study we extended a genome-scale metabolic model of Lactobacillus plan-

tarum [29], a resident of the colon and a probiotic strain, with four key metabolic
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Figure 1 A. Simplified scheme of central carbon metabolism of the genome-scale metabolic
model. 1) Glycolysis. 2) lactate fermentation. 3) Propionate fermentation. 4) Acrylate pathway. 5)
Pyruvate dehydrogenase. 6) Pyruvate formate-lyase. 7) Butyrate fermentation. 8) Acetate
fermentation. 9) Acetogenesis via Wood-Ljungdahl pathway. 10) Ethanol fermentation. 11)
butyryl-CoA:acetate-CoA transferase. B. Metabolite dynamics over time. At time 0 only glucose is
available.

pathways of the intestinal microbial community: (1) propionate fermentation, (2)

butyrate fermentation, (3) the acrylate pathway and (4) the Wood-Ljungdahl path-

way. The model of L. plantarum is suitable for FBA [29] and for FBAwMC [30];

in future versions of our framework this network can be replaced by metabolic net-

work models derived metagenomic data [3] as they become available. The current,

simplified network contains 674 reactions (Supplementary File 1), and compares

well with consensus metabolic networks of carbohydrate fermentation in the colon

[31, 32]. For a schematic overview of the key pathways including in the metabolic

network, see Figure 1A.

The uptake and excretion rates of genome-scale metabolic networks can be calcu-

lated using constraint-based modeling. To represent diauxic growth, i.e., by-product

secretion as a function of extracellular metabolite concentrations, we used an ex-

tension of FBA called Flux Balance Analysis with Molecular Crowding (FBAwMC)

[33]. As an additional, physiologically-plausible constraint FBAwMC assumes that

only a finite number of metabolic enzymes fits into a cell, with each enzyme hav-

ing a maximum metabolic turnover, Vmax. For each reaction, FBAwMC requires

a crowding coefficient, defined as the enzymatic volume needed to reach unit flux

through that reaction. Each reaction is assigned a “crowding coefficient”, a measure

of the protein cost of a reaction: Enzymes with low crowding coefficients have small

molecular volume or catalyse fast reactions. Given a set of maximum input fluxes,

FBAwMC predicts the optimal uptake and excretion fluxes as a function of the

extracellular metabolite concentrations.

FBAwMC predicts diauxic growth and the associated by-product secretion in

micro-organisms including E. coli, Saccharomyces cerevisiae [34], and L.plantarum [30].

As FBAwMC optimizes growth rate, not growth yield as in standard FBA, it pre-

dicts a switch to glycolytic metabolism at high glucose concentrations at which

faster metabolism is obtained with suboptimal yield. Its accurate prediction of

diauxic growth together with by-product secretion as a function of extracellular

metabolite concentrations make FBAwMC a suitable method for a microbial com-

munity model.
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Metabolic diversity causes cross-feeding in a well-mixed system

To study the extent of cross-feeding emerging already from a non-evolving metabolic

community of “metabacteria”, we first set up a simulation of 1000 interacting

metapopulations, where each subpopulation was initiated with a set of crowding

coefficients selected at random from an experimentally determined distribution of

crowding coefficients of Escherichia coli [34, 30], for lack of similar data sets for

L. plantarum. The simulation was initiated with pure glucose. We then performed

FBAwMC on all 1000 metapopulations optimizing for ATP production rate. This

yielded 1000 sets of metabolic input and output fluxes, Fi, and growth rates, µi for

all 1000 metapopulations. These were used to update the extracellular concentra-

tions, ~M and metapopulation sizes, Xi, by performing a single finite-difference step

of [21, 26]

d ~M

dt
=
∑
i

Xi
~Fi (1)

and

dXi

dt
= µiXi. (2)

with a timestep ∆t = 0.1 h. After updating the environment in this way, we per-

formed a next time simulation step.

Figure 1B shows how, in the simulation, the metabacteria modified the environ-

ment over time. The secondary metabolites that were produced mostly are acetate,

butyrate, carbon dioxide, ethanol, formate, lactate and propionate. This compares

well with the metabolites that are actually found in the colon [35] or in an in vitro

model of the colon [36]. To test to what extent this result depends on the ability

of the individual FBAwMC models to represent metabolic switching and overflow

metabolism [33, 30], we also simulated the model using standard flux-balance anal-

ysis [37]. In this case, all glucose was converted into ethanol, whereas lactate and

propionate did not appear in the simulation (Additional Figure 1). We also studied

whether any of the single-species simulations could also provide so many metabo-

lites. Out of 100 single-species simulations none produced as many or more excreted

metabolite species than the interacting set of species.

Quantification of cross-feeding

Most of the metabolites were only transiently present in the medium, ~M , suggesting

that the metabolites were re-absorbed and processed further by the bacteria. To

quantify the amount of such cross-feeding in the simulations, we defined a cross-

feeding factor, C(i), with i a species identifier. Let

Fup,tot(i, j) ≡
∫ tmax

t=0

B(n, t)Fup(i, j, t)dt

Fex,tot(i, j) ≡
∫ tmax

t=0

B(n, t)Fex(i, j, t)dt (3)

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 20, 2016. ; https://doi.org/10.1101/059956doi: bioRxiv preprint 

https://doi.org/10.1101/059956


Van Hoek and Merks Page 6 of 25

be the total amount of metabolite j that species i consumes and excretes during

the simulation. B(i, t) here equals the biomass of species i at time t. The amount

of carbon species i gets via cross-feeding then equals,

C(i) =
∑
j

cC(j)max(Fup,tot(i, j)− Fex,tot(i, j), 0)− 6Fup,tot(i, glucose). (4)

Here, cC(j) is the molar amount of carbon atoms per mol metabolite j (e.g.,

cC(glucose) = 6). If species i during the fermentation consumes more of metabolite

j than it has produced, species i has cross-fed on metabolite j. We subtract the

amount of glucose from the sum, because glucose is the primary food source that

is present at the start of the simulation. Now we can calculate the total amount

of carbon the population acquires via cross-feeding, relative to the total amount of

carbon taken up by the population

Crel =

∑
i C(i)∑

i

∑
j cC(j)Fup,tot(i, j)

. (5)

If Crel = 0, there is no cross-feeding. In that case, every species only consumes

glucose as carbon source or only consumes as much carbon from other metabolites

as it has secreted itself. Conversely, if Crel = 1 all carbon the species has consumed

during the simulation is from non-glucose carbon sources the species has excreted

itself. For the whole simulation Crel = 0.39±0.02, indicating that 39% of all carbon

consumed by the bacteria comes from cross-feeding. Cross-feeding was largest on

lactate, CO2, acetate, ethanol, formate and propionate. In the original L. plantarum

model we also find cross-feeding, but only on lactate and acetaldehyde (Additional

Figure 2). Taken together, in agreement with previous computational studies that

showed cross-feeding in pairs of interacting E. coli [21], these simulations show that

cross-feeding interactions occur in coupled dynamic FBAwMC models.

Spatially explicit, evolutionary model

The well-mixed simulations showed that cross-feeding appears in populations of

interacting super-organism metabolic networks. However, this does not necessarily

imply microbial diversity, because it is possible that the same metabacterium se-

cretes and reabsorbs the same metabolites into the substrate, in which case there

would be no true cross-feeding. Furthermore, the previous section did not make clear

whether cross-feeding will be ecologically stable under conditions where subpopu-

lations of the supra-organisms are lost. In a spatially explicit model, cross-feeding

possibly arises more easily and is more easy to detect, as different metabolic func-

tions can be performed at different locations [38]. We therefore developed a spatially

explicit, multiscale evolutionary model of gut microbial metabolism. We initiate the

simulation with a population of metapopulations of bacteria that can perform all

metabolic functions, just as in the well-mixed simulation. We then let the systems

evolve and study if meta-populations of bacteria with specific metabolic roles evolve.
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Figure 2 Setup of the simulation model of a metabolizing gut microbial community. The model
represents a community of growing subpopulations of genetically identical bacteria. (A) The
metabolism of each population is modeled using a genome scale metabolic network model. (B)
Based on extracellular metabolite concentrations, the genome scale model predicts the growth
rate (r) of the subpopulation and the influx and efflux rates of a subset of 115 metabolites. These
are used as derivatives for a partial-differential equation model describing the concentrations of
extracellular metabolites, ∂ci(~x, t)/∂t = Fi(~x) +D∇2c(~x, t), where (C) the metabolites diffuse
between adjacent grid sites, ~x. (D) The population is represented on a two-dimensional, tube-like
structure, with periodic inputs of glucose. (E) To mimic advection of metabolites through the gut,
the concentrations are periodically shifted to the right, until they (F) exit from the end of the
tube. (G) The bacterial populations hop at random to adjacent grid sites; to mimic adherence to
the gut wall mucus bacterial populations are not advected, unless indicated otherwise. (H) Once
the subpopulation has grown to twice its original size, it divides into an empty spot in the same
lattice size at which time the metabolic network is mutated. (I) Two subpopulations can live on
one grid point; with yellow indicating presence of one subpopulation, and green indicating the
presence of two subpopulations. (Structural formulas: Licensed under Public domain via
Wikimedia Commons; “Alpha-D-Glucopyranose” by NEUROtiker, also licenced under public
domain via Wikipedia Commons)

Model description

Figure 2 sketches the overall structure of our model. The model approximates the

colon as the cross-section of a 150 cm long tube with a diameter of 10 cm. The

tube is subdivided into patches of 1 cm2, each containing a uniform concentration

of metabolites, and potentially a metapopulation of gut bacteria (hereafter called

“metabacterium”) (Figure 2A). Each metabacterium represents a small subpopula-

tion (or ’metapopulation’) of gut bacteria with diverse metabolic functions, and is

modeled using a metabolic network model containing the main metabolic reactions

found in the gut microbiota, as described above (Figure 1A). Based on the local

metabolite concentrations, ~c(~x, t), the metabolic model delivers a set of exchange

fluxes Fi,n and a growth rate, µ(~x), which is assumed to depend on the ATP produc-

tion rate (Figure 2B; see Methods for detail). The metabolites diffuses to adjacent

patches using Fick’s law (Figure 2C), yielding

d~c(~x, t)

dt
= ~F (~x, t)B(~x, t) +D

∑
~i∈NB(~x)

L
(
~c(~i, t)− ~c(~x, t)

)
, (6)

with ~F (~x, t) the flux of metabolites between the medium and the metabacterium, the

sum running over the four nearest neighbors, NB(~x), and L = 1 cm the interface
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length between two adjacent patches. The local density of metabacteria, B(~x) is

given by

dB(~x, t)

dt
= µ(~x, t)B(~x, t). (7)

To mimic meals, a pulse of glucose of variable magnitude enters the tube once

every eight hours (Figure 2D). The metabolites move through the tube via a sim-

plified model of advection: At regular intervals, all metabolites are shifted one patch

(Figure 2E). Metabolites continuously leave the tube at the end through an open

boundary condition. To mimic peristaltic movements that locally mix the gut con-

tents together, metabacteria randomly hop to adjacent lattice sites (Figure 2G) and

leave the gut only via random hops over the open boundary condition (Figure 2F).

In a subset of simulations, accelerated bowel movements are simulated by advect-

ing the metabacteria together with the metabolites. To a first approximation, the

boundaries are impermeable to the metabolites, a situation reflecting many in vitro

models of the gut microbiota (reviewed in Ref.[39]); later versions of the model will

consider more complex boundary conditions including absorption of metabolites

[40].

When the local biomass in a patch, B(~x, t), has grown to twice its original value,

the metapopulation expands into the second position on the grid point (Figure 2H).

To mimic a local carrying capacity, the metapopulation does not spread out or grow

any further if both positions in the patch are occupied. In the visualizations of the

simulations, full patches are shown in green, singly occupied patches are shown

in yellow, and empty patches are shown in black (Figure 2I). During expansion,

changes in the relative abundance of species may enhance or reduce the rate of

particular reactions, or even delete them from the metapopulation completely. Sim-

ilarly, metabolic reactions can be reintroduced due to resettling of metabolic species,

e.g., from the gut wall mucus [41]. To mimic such changes in species composition

of the metapopulation, during each expansion step, we delete enzymes from the

metabolic network at random, reactivate enzymes at random, or randomly change

crowding coefficients such that the metapopulation can specialize on one particular

reaction or become a generalist.

The crowding coefficients, as they appear in the flux-balance analysis with molec-

ular crowding (FBAwMC) method that we used for this model, give the minimum

cellular volume filled with enzymes required to generate a unit metabolic flux; they

are given by the Vmax of the enzyme and enzyme volume [33]. Equivalently, in our

metapopulation model, the crowding coefficient of a reaction is the minimum in-

tracellular volume averaged over all bacteria in the patch that must be filled with

enzymes in order to generate a unit flux through the reaction. It depends on the

density of the enzyme in the bacteria and also on the corresponding values of Vmax.

Because the Vmax of a reaction can differ orders of magnitudes between species (see

for example the enzyme database BRENDA [42]), the evolutionary dynamics in our

model could drive the metabacteria to reduce all crowding coefficients concurrently,

producing a highly efficient generalist. To introduce a biologically more realistic

trade-off between metabolic rate and cost in terms of volume, we therefore included

an experimentally observed trade-off between growth rate and growth yield among
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Figure 3 Screenshot of the spatially explicit model. The proximal end of the colon is on the left,
the distal end on the right. Thus, food flows from left to right. (A) Cells on the grid. At maximum
2 cells can be on the same grid point. Yellow:one cell present, green: 2 cells present. (B) Glucose
concentration. Black: low concentrations, white: high concentrations. (C) Formate concentrations.
In total, 115 extracellular metabolites are taken into account in the model.

micro-organisms [43, 44]: Micro-organisms that grow fast have low growth yield and

vice versa. We take this trade-off into account explicitly by assuming a maximal

growth rate given the carbon uptake rate of the cells. This trade-off prevents the

metabacteria from growing infinitely fast by mutating their crowding coefficients.

As an initial condition, we distribute metabacteria over the grid, each contain-

ing all available metabolic reactions, i.e., each metabacterium initially contains all

bacterial “species” that the complete metabacterium represents. To reflect variabil-

ity in the relative abundances of the bacterial species in each metabacterium the

crowding coefficients are drawn at random from an experimental distribution as

described above (Figure 2A).

Evolution of diversity due to metabolic cross-feeding

To evaluate the behavior of our model, we performed ten independent simulations.

These show largely similar phenomenology; therefore we will first describe the pro-

gression of one representative simulation in detail, and then discuss differences with

the other simulations. Figure 4A shows the average number of metabolic reactions

present in the metabacteria over time in the simulation. At t = 0 all metabacteria

still have all 674 reactions, but over time the number of available reactions gradually

drops to below 200. This reduction of the number of metabolic genes could indi-

cate a homogenous population specialized, e.g., on fermentation of glucose where

in which most of the metabolic network is not used. An alternative explanation is

that each of the metapopulation retains a subset of the full network, an indication

of cross-feeding. The amount of cross-feeding will likely change over the tube: The

metabacteria in the front have direct access to glucose, whereas the metabacteria

further down in the tube may rely on the waste-products of those in front. We

therefore determined a temporal average of the cross-feeding factors, Crel (Eq. 5),

at each position in the tube over t = 3500 to t = 4000, a time range at which most

genes have been lost. The first observation to note is that in the spatial evolutionary

simulations, the average cross-feeding factor Crel has a higher value than in the well-

mixed simulations. In this particular simulation, the spatial average cross-feeding

factor at t = 4000 is Crel = 0.65 ± 0.09, compared with Crel = 0.39 ± 0.02 in the

well-mixed case (n = 10). The cross-feeding factor for individual cells (C(i), Eq. 4),

showed large population heterogeneity. As Figure 4B shows, the cross-feeding factor
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Figure 4 Outcome of the evolutionary simulations. (A) population average and standard deviation
of the number of enzymatic reactions (“genome size”) over time. (B) Population average and
standard deviation of the cross-feeding factor Cn as a function of the position in the colon. The
averages and standard deviation are over the vertical dimension and are calculated over the final
part of the simulation, from 3500 hours until 4000 hours. For the graphs of the other simulations,
see Additional Figure 3.

in the tube front is close to 0, indicating the presence of primary glucose consumers,

while cross-feeding slowly increases towards the distal end until it almost reaches

1, indicating complete cross-feeding. Thus in the proximal end the bacteria rely

mostly on the primary food source, while near the distal end cells of the tube rely

on cross-feeding. This observation is consistent for all simulations (see Additional

Figure 3).

Emergence of metabolic stratification

We next investigated the mechanism by which such cross-feeding emerges in the sim-

ulation. Additional Figure 4 plots the metabolite concentrations over evolutionary

time for the simulation of Figure 4. In this particular simulation, the concentra-

tions of formate and lactate initially rise rapidly, after which they drop gradually.

The butyrate concentrations increase over evolutionary time. In all simulations, the

metabolite concentrations change gradually, but not necessarily following the same

temporal pattern.

Figure 5 shows the spatial distribution of a set of key metabolites averaged over

2000 h to 4000 h of the representative simulation. Interestingly, the flow of metabo-

lites through the colon in interaction with the bacterial population creates a spa-

tially structured, metabolic environment. The proximal end is dominated by the

primary carbon source glucose (Figure 5A), with the peak in the average glucose

concentration due to the periodic glucose input. Further down in the tube we find

fermentation products, including lactate and ethanol, whereas the distal end con-

tains high levels of acetate and CO2, showing that the metabacteria convert the

glucose into secondary metabolites. Among these secondary metabolites, the levels

of acetate (Figure 5B), ethanol (Figure 5E), formate (Figure 5F), lactate (Fig-

ure 5G) and propionate (Figure 5H) drop towards the distal end off the tube, so

they are further metabolized by the metabacteria. In this particular simulation, bu-

tyrate and CO2 are not consumed and their concentrations increase monotonically

towards the end. The small drop at the very distal end is caused by the metabolite

outflow. The profiles of the other simulations were consistent with this represen-

tative simulation (Additional Figure 5). In all simulations, the proximal end was
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Figure 5 Average metabolite concentrations along the colon. Average are taken over the second
half of the simulation (2000hrs-4000hrs). (A) Glucose. (B) Acetate. (C) Butyrate. (D) CO2. (E)
Ethanol. (F )Formate. (G) Lactate. (H) Propionate.

dominated by glucose. Further towards the end of the tube, zones of fermentation

products developed as in the representative simulation, but the precise location of

each product was different and not all products were present. Most notably, in two

out of ten simulations, butyrate was absent and in two other simulations proprion-

ate was absent. Also, in three out of ten simulations lactate was more confined to

the front of the tube (up to around 50 sites) than in the representative simulation.

Metabacteria specialize on local metabolic niches

These results demonstrate that the metabacteria spatially structure their metabolic

environment, generating a stratified structure of metabolic “niches” along the tube,

each offering a separate set of metabolites. Therefore, we next asked if this environ-

mental structuring gives rise to metapopulations uniquely adopted to the microen-

vironment. We took computational samples of all metabacteria found in the tube

between 3500 h and 4000 h, to average out the variations at the short timescale. We

tested the growth rate of these samples (consisting of on average n ≈ 1100 metabac-

teria) in six, homogenous metabolic environments, containing uniform concentra-

tions of pure (1) glucose, (2) acetate, (3) formate, (4) lactate, and (5) propionate,

and (6) a mixture of of CO2 and H2. Figure 6 shows the average and standard devi-

ation of the growth rates of the metabacteria in each of these six environments, as

a function of the position from which they were sampled from the tube. Strikingly,

the metabacteria near the distal end of the tube have lost their ability to grow on

glucose (Figure 6A), indicating that they have specialized on secondary metabolites,

including acetate (Figure 6B) and lactate (Figure 6E). Interestingly, in support of

the conclusion that the metabacteria specialize on the metabolic niches generated

by the population as a whole, the metabacteria sampled from the distal end on
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Figure 6 Average growth rates along the colon. Average are taken over the final part of the
simulations (3500-4000 hrs) All growth rates ar calculated in the presence of unlimited hydrogen
gas, water, sodium, ammonium, phosphate, sulfate and protons. (A) Growth rate on glucose. (B)
Growth rate on acetate. (C) Growth rate on CO2. (D) Growth rate on formate. (E) Growth rate
on lactate. (F )Growth rate on propionate.

average grow faster on acetate and lactate than the metabacteria sampled from the

front of the tube. Acetate and lactate are produced in the proximal colon and flow

to the distal part of the tube where the metabacteria can metabolize it; in the front

of the tube acetate and lactate concentrations are lower, such that neutral drift

effects can safely remove the corresponding metabolic pathways from the metabac-

teria. Remarkably, the metabacteria also grow on CO2, because of the presence of

hydrogen gas, that allows growth on CO2 via the Wood-Ljungdahl pathway [45].

To further characterize the alternative metabolic modes occurring in the model,

we clustered the population present at the end of the simulation t = 4000 h with

respect to their maximum growth rates in the six environments (Fig. 7). Clearly,

different metabolic “species” can be distinguished. One “species” can metabolize

glucose, a second “species” can metabolize most secondary metabolites and a third

“species” has specialized on acetate. Thus in our simulation model a number of

functional classes appear along the tube, each specializing on its own niche in the

full metabolic network.

Increased flux through the tube makes diversity collapse

From the results in the previous section, we conclude that the inherent spatial struc-

turing of the colon results in separate niches. This allows the population to diversify,

such that different “species” have different metabolic tasks. A recent population-

wide metagenomics study of stool samples from the Flemish and Dutch population

[46] showed that, among a range of life-style related factors and medicine use, the di-

versity of the human gut microbiota correlates strongest with the Bristol stool scale

(BSS), a self-assessed indicator of the “softness” of the stool. The analysis showed

that for softer stools (higher stool index, indicative of faster transit times [47]), the
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Figure 7 Hierarchical clustering of all cells present at the end of the simulation, with respect to
the growth rates on glucose, acetate, CO2, formate, lactate and propionate. Black indicates low
growth rate, red high growth rate. We used EPCLUST
(http://www.bioinf.ebc.ee/EP/EP/EPCLUST/) to perform the cluster analysis, with average
linkage and a euclidian distance metric.

diversity of the gut microbiota was reduced [48]. To investigate whether transit time

could also be correlated with reduced diversity in our model, we studied the effect of

increased fluxes through the tube (“diarrhea”), by assuming that the supra-bacteria

flow through the tube at the same rate as the metabolites do. Strikingly, the maxi-

mal growth rate of the cells has become independent of the position (Fig. 8). Again,

we clustered the population present at the end of the simulation with respect to

their maximum growth rates in glucose, acetate, H2 and CO2, formate, lactate and

propionate (Fig. 9). In contrast to the simulations without cell flow, the population

does practically not diversify. All supra-bacteria can grow on glucose, acetate and

H2 and CO2. Thus, our simulations suggest that increased transit times may con-

tribute to a reduction of microbial diversity, by reducing the spatial heterogeneity

in the gut and, consequently, the construction of ecological niches and cross-feeding

interactions.

Discussion
We have presented a coupled dynamic multi-species dynamic FBA and mass-

transfer model of the gut microbiota. We first studied a non-spatial variant of

the model, in order to determine to what extent cross-feeding can emerge in a

non-evolving, diverse population of metabacteria. The individual metabacteria in

this model contain the major carbohydrate fermentation pathways in the colon.

Starting from glucose as a primary resource, the model produced acetate, butyrate,

carbon dioxide, ethanol, formate, lactate and propionate. These fermentation prod-

ucts compared well with the short-chain fatty acids in the colon [35] or in an in vitro

model of the colon [36]. Interestingly, these fermentation products were found only

if the model was run with FBAwMC and not with standard FBA. This indicates

that the individual metabacteria must be able to exhibit diauxic shifts, which are

due to rate-yield metabolic trade-offs in FBAwMC [33, 30]. It has been argued that
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Figure 8 Average growth rates along the colon, when cells flowthrough the colon as fast as
metabolites. Average are taken over the final part of the simulations (3500-4000 hrs) All growth
rates ar calculated in the presence of unlimited hydrogen gas, water, sodium, ammonium,
phosphate, sulfate and protons. (A) Growth rate on glucose. (B) Growth rate on acetate. (C)
Growth rate on CO2. (D) Growth rate on formate. (E) Growth rate on lactate. (F )Growth rate
on propionate.

metabolic trade-offs in combination with mutational dynamics may already explain

population diversity, even in the absence of cross-feeding or spatial heterogeneity

[49]. This is an interesting finding, that may partly explain the microbial diversity in

the gut. However, it is known that cross-feeding interactions exist in the gut [50, 51]

and are likely to be an important factor in determining microbial diversity. Also,

the results depended on cross-feeding: In the non-spatial variant of the model, only

60% of the carbon consumed by the bacteria came directly from glucose, and single

metabacteria did not produce the same set of metabolites as found also in vitro and

in vivo. We next ran a spatial variant of the model in a gut-like environment, a tube

in which the metabolites diffuse and advect from input to output, and the bacteria

attach to the gut wall. This spatially explicit, sdFBA model was extended with

models of bacterial population dynamics, and ’mutation’ of the metabacteria due

to the gain and loss of pathways from the local population, e.g., to loss or gain of

species or horizontal gene transfer. In this model, a stratified structure of metabolic

niches formed, with glucose consumers in front, followed by strata inhabited by

secondary and tertiary consumers.

Interestingly, the metabacteria specialized to their metabolic niche: Metabacteria

sampled from the rear end of the tube could no longer grow on the primary resource

glucose (Figure 6A), and they grew better on the secondary metabolite lactate than

bacteria from the front did (Figure 6E). This specialization was mostly due to “gene

loss”, i.e., simplification of the metabolic networks. Interestingly, metabacteria with

reduced genomes did not have a growth advantage in our model, yet they lost

essential pathways required for metabolizing the primary resource. Such “trait loss

without loss of function due to provision of resources by ecological interactions” [52]
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Figure 9 Hierarchical clustering of all cells present at the end of the simulation with cell flow,
with respect to the growth rates on formate, CO2, propionate, lactate, glucose and acetate. Black
indicates low growth rate, red high growth rate. We used EPCLUST
(http://www.bioinf.ebc.ee/EP/EP/EPCLUST/) to perform the cluster analysis, with average
linkage and a euclidian distance metric.

is indicative of an evolutionary mechanism known as compensated trait loss [52].

Note, however, that because smaller metabacteria did not have a growth advantage

in our model, the gene loss in our model is due to drift. Hence it differs from the

Black Queen Hypothesis [53], which proposes that the saving of resources associated

with gene loss accelerate the evolution of compensated trait loss. An interesting

future extension of the model would consider the metabolic costs associated with

the maintenance of metabolic pathways.

The formation of metabolic niches and the observed compensated trait loss re-

quired that the metabacteria can maintain their approximate position in the gut-like

tube, e.g., by adhering to the gut wall or by sufficiently fast reproduction [48]. The

microbial diversification did not occur if the metabacteria moved along with the

flow of the metabolites, a situation resembling diarrhea. Microbial diversity is often

seen causative for diarrhea, e.g., because it facilitates colonization by pathogenic

species including Clostridium difficile [54]. Our model results suggest an additional,

inverse causation, where accelerated transit reduces microbial diversity. Experimen-

tal studies are consistent with the idea that transit speed is causative for reduced

diversity, but with a different mechanism: Microbiota sampled from softer stools

(i.e., higher BSS and faster transit time) have higher growth potential, suggesting

that faster transits favor fast growing species [48]. A second potential strategy to

preventing wash-out from the gut at high transit times is adherence to the gut wall

e.g., by the species of the P enterotype [48]. Thus these observations suggest that the

reduction of microbial diversity at fast transits is due to selection for fast growing

or adherent species. Our computational model suggests an alternative hypothesis,

namely that increased transit times reduce the potential for bacterial cross-feeding,

thus reducing the build-up of metabolic niches in the environment.

Our multiscale simulations demonstrated how cross-feeding can give rise to diverse

microbial ecosystems in a gut-like geometry, but of course our model is a simplifi-
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cation and lacks many key features of the gut microbiota and of the gut itself. The

metabacterium only contains a minimal subset of the metabolic pathways that are

found in the gut microbiota. Future versions of our model could extend the current

metabacterium model with additional metabolic pathways, e.g., methanogenesis or

sulfate reduction. Adding multiple pathways would increase the number of potential

cross-feeding interactions and improve the biological realism of the model. An al-

ternative route is to include multiple, alternative metabacteria, each representing a

functional group in the human gut microbiota [55]. This would allow us to compare

the metabolic diversification observed in our computational model with metage-

nomics data, or use the model to compare alternative enterotypes [56]. A further

simplification of this first study of our model, is that we have focused exclusively

on glucose metabolism. Future versions of the model will also consider lipid and

amino acid metabolism, allowing us to compare the effect of alternative “diets” and

consider the break-down of complex polysaccharides present in plant-derived food

fibers. Future extensions of this model will also include more complex interactions

with the gut wall, which is currently impenetrable as in some in vitro models of the

gut microbiota [57, 58]. Additional terms in Eq. 6 will allow us to study the effects

of SCFA from the gut lumen, and effects of the production of mucus by the gut

wall [59].

Methods
Metabolic model

We converted the genome-scale metabolic network of L. plantarum [29] to a stoichio-

metric matrix, S. Reversible reactions were replaced by a forward and a backward

irreversible reactions. Next, we added four metabolic pathways that are crucial in

carbohydrate fermentation in the colon, but are not present in the network: pro-

pionate fermentation, butyrate fermentation, the acrylate pathway and the Wood-

Ljungdahl pathway. We used the Kegg database (http://www.genome.jp/kegg) [60]

to add the necessary reactions. For the Wood-Ljungdahl pathway, we followed the

review paper [45]. Additional File 1 lists all reactions and metabolites of the genome-

scale model, in particular those that we added to the genome-scale metabolic net-

work of L. plantarum.

To calculate the fluxes through the metabolic network as a function of the ex-

tracellular environment, we used flux-balance analysis with molecular crowding

(FBAwMC) [33, 34]. FBAwMC assumes that all reactions through a are in steady

state:

d~x

dt
= S · ~f = 0, (8)

where ~x is a vector of all metabolites, ~f is a vector describing the metabolic flux

through each reaction in the network, and S is the stoichiometric matrix. FBAwMC

attempts to find a solution ~f of Eq. 8 that optimizes for an objective function under

a set of constraints ~flb ≤ ~f ≤ ~fub, with ~flb and ~fub the lower and upper bounds of

the fluxes. Furthermore, FBAwMC constrains the amount of metabolic enzymes in

the cell. This leads to the following constraint∑
aifi ≤ Vprot, (9)
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where ai ≡ Mvi

V bi
is the “crowding coefficient”, M the cell mass, V the cell volume, vi

the molar volume of the enzyme catalysing reaction i and bi is a parameter describ-

ing the proportionality between enzyme concentration and flux. For a derivation

of Eq. 9 see Ref. [33]. Vprot is a constant (0 ≤ Vprot ≤ 1) representing the vol-

ume fraction of macromolecules devoted to metabolic enzymes. We use a value of

Vprot = 0.2, equal to the value used in [30] for other bacteria.

The crowding coefficients are not known for every reaction in the metabolic

network. Therefore, following Vazquez and coworkers [34], crowding coefficients

were chosen at random from a distribution of known crowding coefficients for

E. coli based on published molar volumes (Metacyc [61]) and turnover numbers

(Brenda [42]). Both in the well-mixed simulations as in the spatially explicit simu-

lations, we allowed for unlimited influx of hydrogen gas, water, sodium, ammonium,

phosphate, sulfate and protons. To calculate the growth rate, we find a solution of

Eq. 8 that maximizes the rate of ATP production, given the crowding constraint

(Eq. 9). The growth rate, µ, then follows from an auxiliary, empirical biomass re-

action, which converts metabolic precursors into biomass (see Ref. [62] for a good

introduction to FBA).

Well-mixed model

Simulations of the well-mixed model are performed in Matlab, using the COBRA

Toolbox [63]. We use an approach similar to Ref. [21] to model a population of

cells in a well-mixed environment. We initiated 1000 cells with crowding coefficients

for all their reactions set according to the experimental distribution of E. coli (see

Section Metabolic model) We start with a total biomass concentration (B) of 0.01

gram dry weight/liter (gDW/l), divided equally over all 1000 metabacteria (i.e.,

∀i ∈ [1, 1000] : Bi(0) = 10−5 gr DW/l). At time t=0 we initiate the environment

with a glucose concentration of 1.0 mM. At every time-step, the maximal uptake

rate for each metabolite j is a function of its concentration, cj(t), as,

Fup,max(j) =
1

∆t

cj(t)∑1000
i=1 Bi(t)

. (10)

We then perform FBAwMC for all 1000 supra-bacteria and update the concentra-

tions of all metabolites that are excreted or taken up, as,

cj(t+ ∆t) = cj(t) + ∆t
1000∑
i=1

Fi,jBi (11)

FBAwMC yields a growth rate µi for each supra-bacterium i, which is used to

update the biomass as,

Bi(t+ ∆t) = Bi(t) + µiBi(t)∆t. (12)

This procedure is continued until the supra-bacteria have stopped growing.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 20, 2016. ; https://doi.org/10.1101/059956doi: bioRxiv preprint 

https://doi.org/10.1101/059956


Van Hoek and Merks Page 18 of 25

Initialisation

for(time<TIME_END)

if(time%TIME_FOOD_IN==1)
Add food in 
proximal end

for(every cell in grid)

Read in local concentrations

Perform FBAwMC

Update local environment: C[i]=C[i]-t*V*F[i]*CF

Update cell volume: V=V+t*V*mu

if(time%TIME_DRIFT==1)
Move metabolites (and 
possibly cells) one grid 
point to distal end

Perform diffusion step for metabolites 

for(every cell in grid)

Perform density dependent cell death

if(V>2&&slot empty on grid point)

Divide cell (V=V/2); 
Perform mutation ondaughter cell

Perform random walk for cells

Figure 10 Pseudocode of the spatially explicit computational model.

Spatially explicit, evolutionary model

For the spatially explicit simulations, we developed a C++ package to per-

form constraint-based modeling using the GNU Linear Programming Kit (GLPK,

http://www.gnu.org/software/glpk/) as linear programming tool. The multiscale,

computational model of the gut microbiota was also developed in C++. It describes

individual metabacteria, or “cells” living on a grid, each with its own genome-scale

metabolic network. Food enters the grid in one end, flows through the grid, diffuses

over the grid and is consumed by the cells. Uptake and excretion of metabolites is

calculated using the genome-scale metabolic network in each cell. The cells divide

proportional to the calculated ATP production rate and mutate upon division. We

simulate a total time of 4000 h (equivalent to 80000 time steps). A model descrip-

tion in pseudocode is given in Fig. 10. All parameters in the model are given in

Table 1.

Initialization

We initialize the grid with cells that have the same metabolic network as in the

well-mixed simulations. We choose the crowding coefficients for each reaction ran-

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 20, 2016. ; https://doi.org/10.1101/059956doi: bioRxiv preprint 

https://doi.org/10.1101/059956


Van Hoek and Merks Page 19 of 25

parameter value units comments
∆t 3.0 min
∆x 1.0 cm

grid length 150 grid sites
grid height 10 grid sites
TIME END 4000 hr

# slots per grid point 2
DENS MAX 1.0 g DW · l−1 see main text
initial density 50% assumed
TIME FOOD 8 hr assumed

FOOD IN 42 mmol assumed
Diffusion constant 700 µm2/s assumed (compare 900 µm2/s glucose in water)

P MOVECELL 0.05 assumed
DEATH BASAL 0.025 hr−1 assumed
DEATH DENS 2.0 hr−1 assumed
TIME DRIFT 15 min passage time of approximately 40 hrs

P CELL FLOW variable
UPTAKE HOST variable

µ DEL 0.002 assumed
µ BIRTH 0.0002 assumed
µ POINT 0.002 assumed

µ POINT STEP 0.2 assumed
Table 1 Parameters of the spatially explicit model.

domly. We allow maximally 2 cells to be present on each grid point. Thus, per

grid point there are two “slots” that can be empty or filled by a cell. At time t=0,

we initialize every slot of every grid point with a probability of 50% with a cell

with random crowding coefficients. Because of the modeled population size (in the

order of 1000 cells), each cell should be viewed as a metapopulation of bacteria

that is representative for the local composition of the intestinal microbiota: i.e, a

metabacterium.

Food dynamics

We assumed that food enters the colon every 8 hours. In this study we consider

glucose as the primary resource, because we want to focus on the bacterial diversity

that can result from a single resource. Thus we assume that polysaccharides are

already broken down to glucose. To allow for variability, we pick the amount of

food from a normal distribution with mean of 42 mmol and a relative standard

deviation of 20%. This mean value is chosen such that one the one hand all food

is consumed during passage through the gut and on the other hand it allows for a

sufficiently large population size (≈ 1000 metabacteria).

The glucose is consumed by the metabacteria, according to the metabolic net-

works. These network take into account 115 extracellular metabolites, whose dy-

namics are all modeled explicitly in the model. The majority of these metabolites

are never produced. Production and consumption for each metabolite is modeled

using

ci(t+ ∆t) = ci(t) + ∆t
2∑

n=1

(Fi,nVnDENS MAX/4.0) (13)

Thus, the concentration ci(t) of each metabolite i is updated each timestep ∆t

according to the calculated influx/efflux, Fi,n, and cell volume, Vn, of the cells

on the grid point (maximally 2). Fluxes in the metabolic network have unit

mmol · g DW−1 · h−1, where external metabolite concentrations are in mmol · l−1.
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To convert the fluxes to extracellular concentration changes, we therefore multi-

ply with DENS MAX; it is the maximum bacterial density in g DW · l−1, which

is estimated as explained in Table 1. The division by four is because there can

be at maximum 2 cells of volume 2 at one grid point. DENS MAX is the maxi-

mum local density of bacterial cells; it is used to calculate the change in metabolite

concentration based on the metabolite influx and efflux. If a grid point is fully oc-

cupied with two meta-bacteria the cell density at that point equals DENS MAX.

A high DENS MAX results in large changes in extracellular concentrations due to

exchange fluxes. We estimated DENS MAX using an estimated bacterial density of

1014 cells/l, an estimated bacterial cell size of 10−16 l/cell and a cellular density of

100 g DW/l, i.e., maxcelldensity = 1014 cells
l ∗ 10−16 l

cells ∗ 100 g DW
· lcell−1[64, 65].

To prevent negative concentrations, the uptake per time step ∆t is capped at

MAX UPTAKEi =
4.0ci

∆t ∗DENS MAX ∗ (V1 + V2)
. (14)

Each metabolite flows through the colon: Every 15 minutes, all metabolites are

shifted one grid point to the right. This results in a passage time of 37.5 hour,

similar to observed colonic transit times (e.g., 39 hrs in [66]). Every metabolite also

diffuses. We use a diffusion constant of 700 µm2/s for all metabolites, somewhat

slower than the diffusion constant of glucose in water.

Population dynamics

FBAwMC yields growth rate, µ, for each metabacterium i using an empirical, aux-

iliary reaction [62]. The volume of the metabacterium is then updated, as

Vi(t+ ∆t) = Vi(t) + Vi(t) ∗ µi ∗∆t. (15)

Cell death is taken into account in a density dependent way. This stabilizes the

population, making sure that the population does not grow too fast if too much

food is given or dies out if too little food is given. The death rate of a cell is

calculated as follows

DEATH RATE =

(
DEATH BASAL + DEATH DENS

TOTAL NEIGHBOURS

MAX NEIGHBOURS

)
, (16)

where TOTAL NEIGHBOURS is the total amount of neighbours and MAX NEIGHBOURS

the maximum amount of neighbours (17 in the centre of the grid, because there are

2 slots per grid point).

Next the metabacteria expand into the empty patch on the same grid point when

their volume exceeds a value of 2. The volume of the parent metabacterium is then

equally distributed over the two daughter metabacteria. During this expansion,

three types of “mutations” can occur:

(a) the complete deletion of a reaction, i.e., extinction of the species responsible

for this reaction, with probability µ DEL;

(b) the reintroduction of metabolic pathways, corresponding to the invasion of the

bacterium previously responsible for this pathway, with probability µ BIRTH;
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(c) the strengthening or weakening of one of the pathways, corresponding to the

relative growth or suppression of a bacterial species in the metapopulation,

with probability µ POINT.

To delete reaction (a) the maximal flux through that reaction is set to 0. To reintro-

duce a reaction (b), we release the constraint by setting it to a practically infinite

value (999999 mmol/gr DW hr). A point mutation (c) corresponds to a change of

the crowding coefficient (ai in Eq. 9) of that specific reaction, as

ai,new = ai,old ∗ 10step, (17)

In this way, the metabacteria specialize on certain reactions, i.e., by having only

one or a few bacterial species in the patch. step is selected at random from a normal

distribution with mean 0 and standard deviation µ POINT STEP . In this way,

if the crowding coefficient is large, the mutation step will be large as well. This is

necessary, because crowding coefficients are almost distributed log-normally [34, 30].

A possible non-physical side effect of this approach is that all crowding coefficients

evolve to a value of ai = 0, in which case the growth rates would no longer be

limited by enzymatic efficiency and volume of the patch. In reality, bacteria must

trade off growth rate and growth yield (see Figure 11 and Refs.[43, 44]). To take

this trade-off into account, we first calculate the total carbon uptake rate using

FBAwMC as described above. We then calculate the maximal allowed growth rate,

µmax belonging to that carbon uptake rate, using the empirical formula µmax =

1/3.9Gup (i.e., the black curve in Fig. 11). We cap the growth rate µ to the maximum

growth rate, µmax.

Cell movement

To model the cells’ random movement over the grid, we loop over all grid points in

random order. Every grid point has two “slots” that may or may not be occupied.

Each slot, whether it is occupied or not, has a probability of P MOVECELL to

exchange its position with a randomly chosen slot in a randomly chosen neighboring

grid point, but this only succeeds if that slot has not already moved this turn.

An advection algorithm is introduced to model the flow of bacteria along the tube,

with parameter P CELL FLOW determining the advection velocity relative to the

metabolite flux (see Section Food dynamics). At each metabolite flow step (once

every 15 minutes), with probability P CELL FLOW all the cells shift one grid point

to the right synchronously. I.e., for the default value P CELL FLOW=0 the cells

do not flow at all, whereas for P CELL FLOW=1 the cells flow at the same rate

as the metabolites. We performed simulations with P CELL FLOW ∈ {0, 0.5, 1}.
To mimic reentry of bacterial species from the environment, we assume periodic

boundary conditions: All cells that leave the distal end of the gut, enter into the

proximal end.
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Figure 11 Derivation of empirical formula for maximum growth rates as a function of the glucose
uptake rate. Green squares are data from yeast species [44]; blue squares represent data from
bacterial species [43]. The black, dashed curve is the maximum allowed growth yield given the

glucose uptake rate, Gup. The empirical function is 1
3.9Gup+2.8

and is designed such that all data

points lie below it.
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19. Zomorrodi, A.R., Segrè, D.: Synthetic Ecology of Microbes: Mathematical Models and Applications. J Mol

Biol. 428(Part B), 837–861 (2016)

20. Mahadevan, R., Edwards, J.S., Doyle, III, F.J.: Dynamic flux balance analysis of diauxic growth in Escherichia

coli. Biophys J. 83(3), 1331–1340 (2002)

21. Tzamali, E., Poirazi, P., Tollis, I.G., Reczko, M.: A computational exploration of bacterial metabolic diversity

identifying metabolic interactions and growth-efficient strain communities. BMC Syst Biol. 5, 167 (2011).

doi:10.1186/1752-0509-5-167

22. Louca, S., Doebeli, M.: Calibration and analysis of genome-based models for microbial ecology. eLife 4(e08208)

(2015). doi:10.7554/eLife.08208

23. Harcombe, W.R., Riehl, W.J., Dukovski, I., Granger, B.R., Betts, A., Lang, A.H., Bonilla, G., Kar, A., Leiby,
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Additional Files
Additional Figure 1 — AdditionalFigure1.pdf

Simulation of the non-spatial, extended L. plantarum model using standard flux-balance analysis (FBA). Metabolite

dynamics over time. The simulation is initialized with a pulse of glucose. Note that with standard FBA all 1000 cells

behave identically, because the crowding coefficients are not used

Additional Figure 2 — AdditionalFigure2.pdf

Simulation of the non-spatial, standard L. plantarum model using flux-balance analysis with molecular crowding

(FBA). Metabolite dynamics over time. The simulation is initialized with a pulse of glucose

Additional Figure 3 — AdditionalFigure3.pdf

Population average and standard deviation of the cross-feeding factor Ci as a function of the position in the colon

for all n = 10 runs. The averages and standard deviation are over the vertical dimension and are calculated over the

final part of the simulation, from 3500 hours until 4000 hours

Additional Figure 4 — AdditionalFigure4.pdf

Population averages of the metabolite concentrations over evolutionary time of the simulation in Figure 4

Additional Figure 5 — AdditionalFigure5.pdf

Average metabolite concentraties along the tube for all n = 10 simulations. The averages are taken over the second

half of the simulations, from 2000 hours to 4000 hours

0.1 Additional File 1 — AdditionalFile1.xls

Microsoft Excel File with all reactions and metabolites of the genome scale model of Lactobacillus plantarum [29],

extended with proprionate fermentation, butyrate fermentation, the acrylate pathway, and the Wood-Ljungdahl

pathway.
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