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SUMMARY  
 
Noncoding regulatory variants play a central role in the genetics of human diseases and in 
evolution. We measured allele-specific TF binding affinity of three liver-specific TFs between 
crosses of two inbred mouse strains to elucidate the regulatory mechanisms underlying 5 
transcription factor (TF) binding variations in mammals. Our results highlight the pre-
eminence of cis-acting variants on TF occupancy divergence. TF binding differences linked to 
cis-acting variants generally exhibit additive inheritance, while those linked to trans-acting 
variants are most often dominantly inherited. Cis-acting variants lead to local coordination of 
TF occupancies that decay with distance; distal coordination is also observed and may be 10 
modulated by long-range chromatin contacts. Our results reveal the regulatory mechanisms 
that interplay to drive TF occupancy, chromatin state, and gene expression in complex 
mammalian cell states.  
 
 15 
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INTRODUCTION 
 
Understanding how genetic variation propagates into differences in complex traits and disease 
susceptibility is a major challenge. Evolutionary studies have revealed examples of regulatory 
variants linked to different organismal phenotypes1. Genome-wide studies have also found 5 
that many common disease-associated genetic variants lie in regulatory sequences2–4 with 
genetic changes at local-regulatory elements leading to coordinated chromatin changes within 
constrained genomic domains5,6.  
 
A key determinant of transcriptional activation and spatiotemporal specificity is how strongly 10 
collections of transcription factors (TFs) bind to gene regulatory regions7–9. How transcription 
factor binding specificity and strength is shaped by cis- and trans-acting variation remains 
poorly understood10, and understanding the interplay between TF binding and the surrounding 
chromatin state is critical for determining phenotypic diversity. 
 15 
Cis-acting sequence changes substantially modulate TF occupancy11,12, but direct disruption 
of TF-DNA binding motifs is relatively rare13–19. This seemingly conflicting observation may 
be potentially explained by changes to surrounding chromatin state, long range TF-TF 
connectivity6 or cis-acting binding determinants near but outside the core binding motif20. 
 20 
Strategies used to dissect cis- and trans-acting mechanisms include QTL-based analyses and 
F1 crosses of genetically inbred organisms. QTL analysis correlates a measured trait (e.g. 
gene expression or TF binding intensity) with genetic variation. However, fully distinguishing 
between regulatory divergence in cis and in trans in eQTL and ChIP-QTL studies26 requires 
large numbers of genetically diverse samples to achieve statistical power27–30. Alternatively, 25 
the regulatory mechanisms can be revealed by analysis of the patterns of divergence occurring 
in F1 genetic hybrids; this approach has been used to analyze gene expression in yeast25,26, 
maize27, fruit flies21,22,28 and mouse29,30. 
 
To our knowledge, F1 hybrids have not been employed to comprehensively dissect TF 30 
binding differences in mammals. We created first-generation genetic hybrids from divergent 
mouse sub-species to dissect trans-acting mechanisms that affect both chromosomes equally 
due to a shared nuclear environment, from the allelic-specific differences caused by locally 
acting cis-directed mechanisms21–24. We further leveraged this strategy to interrogate the 
inheritance of TF binding occupancy, which reflects the selective pressures on TF binding31,32. 35 
 
By incorporating matched transcriptomic data from RNA-seq29, our results provide a 
comprehensive and quantitative overview of how different layers of regulatory variation 
intertwine to create tissue-specific transcriptional regulation. 
 40 
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RESULTS 
 
Identification of transcription factor binding events influenced by cis-acting variants 
using mouse reciprocal crosses  
 5 
In order to dissect the extent of cis and trans variation in TF occupancy variation, 
transcription factor binding site (TFBS) occupancy was mapped with six biological replicates 
using chromatin immunoprecipitation followed by sequencing (ChIP-seq) against three liver 
TFs (HNF4A, FOXA1, CEBPA) in inbred mouse sub-species C57BL/6J (BL6) and 
CAST/EiJ (CAST) and their F1 crosses (BL6xCAST and CASTxBL6) (Figure 1a, S1-3, 10 
Methods); all data are in ArrayExpress (E-MTAB-4089). The large number (~19M) of single 
nucleotide variants (SNVs) between two parental strains is comparable to that found in human 
populations38, and permits a substantial proportion of allele-specific TF binding to be 
measured.  
 15 
Approximately 60-70,000 regions in the genome are bound by each TF (Methods), and 
approximately 20% had one or more SNVs with sufficient sequencing coverage to permit 
quantitative allelic resolution of TF binding (Figure 1b). Of these TFBS, in ~3-6% of these 
cases, SNVs directly disrupt a binding motif. Most (ca. 62%) SNVs are found in regions 
bound by only one TF, 34% are found in regions bound by exactly two TFs, and 5% by all 20 
three TFs, and are highly reproducible (Figures 1c, S2).  
 
Cis and trans effects can be distinguished by the differences in binding affinities among F0 
parents and their F1 offspring, as cis-acting variation must remain allele-specific11,12,14,31,32 
(Figures S4a, S5). TFBS that had informative SNVs for allelic resolution were classified into 25 
four regulatory categories – conserved (non-differential), cis, trans, and cistrans (affected by 
variants acting both in cis and in trans) (Figure S4b) (Methods).  
 
Differences in TF binding occupancies between the two mouse strains were most frequently 
affected by cis-acting variation (44-49%), followed by cistrans (14-17%) and trans (8-13%); 30 
23-30% of TF binding was conserved despite the presence of one or more variants near the 
site of binding (Figure S4c). Proportions of TFBSs belonging to each of the four categories 
were similar between all TFs. As expected, there are fewer conserved locations when SNVs 
directly disrupt the bound motif (Figures S4c)21. The substantial signal originating from trans 
effects in the trans and cistrans categories was visualised by subtracting the F1 BL6:CAST 35 
ratio from the corresponding F0 ratio (Figure 1d). We validated our ChIP-seq measures of 
binding by independently performing allele-specific pyrosequencing (Figure S6). 
Approximately 40% of TFBS are regulated purely by cis-acting variation, compared with 
only 14% of liver-transcribed genes similarly regulated14.  
 40 
 
TF binding affinity is more strongly cis-driven than gene expression and is inherited 
additively 
 
To quantitate the effect size of cis-acting variation on TF occupancy, we compared TF 45 
binding between F0 and F1 individuals using Pearson’s correlation (Figures 2, S7, Methods). 
In the absence of noise, a correlation coefficient of zero indicates that cis and trans 
contributions are equal, whereas a correlation coefficient of one indicates the absence of trans 
effects. We find Pearson’s r for TF binding to be significantly larger than that for gene 
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expression (TF binding: r=0.92, 95% CI (0.915, 0.919), P<2.2e-16; expression: r=0.62, 95% 
CI (0.607, 0.631), P<2.2e-16) (see also SI S1).  
 
For lineage-specific TF binding locations, we constructed statistical models to test the extent 
of variation driven by cis versus cistrans regulation. If the divergence was purely due to 5 
variants regulated in cis, the binding strength in the F1 allele will be half that in the F0 mouse. 
If TF binding in the F1 mouse were also influenced by variants in trans, then these binding 
intensities would be either greater or less than half the level found in the parent (Methods). 
The vast majority (87%, 1056/1217) of lineage-specific TFBS were driven by cis variants 
(Figure 2c-d), while only 13% (161/1217) showed evidence of trans influence. Overall, 10 
lineage-specific sites are up to two times less likely to have contributions from trans variants 
 
Binding intensities influenced by cistrans-acting mutations can either be balanced by 
compensatory mutations acting in trans (the difference in binding intensities in F1 < than for 
F0) or further diversified (the difference in binding intensities in F1 > than for F0). Under 15 
complete neutrality, both should be equally favoured31. The frequency of compensatory 
versus diversifying effects is not significantly different at lineage-specific TFBSs (binomial 
test, P=0.6) (SI S2, Figure S8a), suggesting many of these TF binding events are neutral. In 
comparison, of the 2,563 cistrans-regulated CEBPA binding sites shared between alleles, 64% 
are compensatory and 36% diversifying (binomial test, P<2.2e-16), suggesting non-lineage-20 
specific TFBSs are more frequently subjected to selective forces. No lineage-specific TFBS 
affected by only trans-acting variants were observed (i.e. strain-specific in F0 but equally 
bound in F1). Our results strongly suggest that cis-directed variation either directly (e.g. 
modification of the binding motif) or indirectly (e.g. through remodelling of surrounding 
chromatin) play a required role in birth of TFBSs (SI S3, Figure S8b). 25 
 
We evaluated the potential regulatory activity of the TF binding by mapping the genome-wide 
locations of H3K4me3 (marking transcription initiation sites) and H3K27ac (marking 
potential enhancer activity)39 in F1 mouse livers  (Methods). At promoters, TF occupancy 
changes driven by cis and cistrans variations were underrepresented (All TFs; binomial test; 30 
cis: P=1.1e-6, odds ratio (OR)=0.8; cistrans: P=1.2e-8, OR=0.6), and conserved sites were 
overrepresented (P<2.2e-16, OR=1.7) (Figure 2b). Regions showing enhancer activity were 
enriched for conserved, and depleted for TFBSs that were directed by cis and cistrans variants 
(cis: P=3.4e-3, OR=0.8; cistrans: P=1.6e-6, OR=0.6; conserved: P=3.3e-8, OR=1.5).  
 35 
The stability of genomic occupancy at TFBSs was assessed by evaluating the TF occupancy 
in BL6 mice with a single allele deletion of Cepba or Hnf4a, which can reveal regulatory 
activity and gene expression with more direct TF dependency40. When TF expression was 
reduced, the change in TF occupancy level is greater for cis-directed variation compared to 
conserved binding (Figure S9). This suggests that TFBSs driven by cis variants are more 40 
prone to changes in TF expression while non-differentially bound TFBSs are buffered.  
 
TFBSs can be inherited in an additive versus non-additive manner for cis-driven and trans-
driven categories. Pure additive inheritance occurs when the combined occupancy of the F1 
alleles is equal to the sum of the two parental (BL6 and CAST) F0 alleles13,37,41. Pure 45 
dominant inheritance occurs when the total allelic occupancy in the F1 offspring is equal to 
that of either parent (Figure 2e). We fitted statistical models for both scenarios and evaluated 
them using Bayesian Information Criteria (BIC) (Methods).  
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Of the 2,382 TFBSs driven by cis variants (Methods), 72% (1,720) showed additive 
inheritance (of which 1,215 had BIC>2), whereas 28% (662) appeared dominant, which may 
reflect assignment errors (see Discussion).  In contrast, of 341 TFBSs driven in trans 74% 
(280) have dominant inheritance, whereas only 26% (61) were additive. Similar trends were 
observed for FOXA1 and HNF4A (Supplementary Data File). Under- or over-dominant 5 
TFBS inheritance appears rarely if at all (SI S4). 
 
In summary, variation in TF occupancy is strongly driven by cis-acting local variants, 
whereas TFBS affected by variation in trans are uncommon. Differing from Drosophila gene 
expression37, mammalian TFBSs are largely inherited additively, and trans-driven TFBSs are 10 
mostly dominantly inherited (Figure S10).  
 
 
Cis-influence on binding occupancy rapidly decays with distance 
 15 
Chromatin state can depend on distal functional elements located tens to hundreds of 
kilobases away5,6; we therefore asked what impact cis-acting variation has on TF occupancy 
at varying distances. 
 
We first confirmed that overlapping binding events from different TFs share cis-acting 20 
variants more often than expected by chance (Figure S11). We quantitated how strongly cis-
acting variants influence distant TF binding occupancies using a complementary strategy to 
Waszak et al. (2015). Although the exact location of each causal variant is unknown, the 
genomic span (or effect distance) of a cis-acting variant can be inferred by examining co-
variation in binding occupancies between neighbouring TFBSs (Methods, Figure 3a, S12).  25 
 
The correspondence between TF binding occupancies decays at a logarithmic rate, with 
similar trends observed across all three TFs (Figure 3b). The correspondence is 2-3 times 
lower at 50kb than at 3kb. Nevertheless, we detected cis-driven correspondence slightly above 
genomic background levels up to 400kb away (Rho=0.01–0.02, linear regression). These low 30 
incidences of long-range coordination may reflect an alternative mechanism to the local 
correspondence mediated by cis-acting variants. We determined the point of maximum 
curvature at which the correspondence between TFBSs began to more rapidly decay with 
distance (i.e. the elbow of the curve) using vector projection to estimate its location as 13kb 
(Methods). Our results were consistent across several bin sizes grouping nearby SNVs 35 
(Supplementary Data File). Different TF binding locations appear to be similarly correlated, 
as shown recently for chromatin domains5,6. 
 
Long-range coordination of TF occupancy could be affected by cis-variation via three-
dimensional interactions, and we therefore searched for direct evidence that spatially distinct 40 
TFBSs interact (Figure 3c). We analyzed Hi-C data from BL6 mice42 to identify the 
interaction endpoints that overlap CEBPA binding locations (Methods). As expected, 
conserved sites were more likely to overlap long-range interaction endpoints (logistic 
regression: P<0.05, OR=1.14–1.20) (Table S1). Chromatin interactions anchored on a cis-
associated location were strongly enriched over the any-versus-any background (binomial 45 
test; P-value: cons versus cons=2.0e-8, cis versus trans=1.8e-9, cis versus cons=4.0e-10, cis 
versus cis=5.7e-6, cis versus cistrans=4.5e-4). Significant enrichment over the any-versus-any 
background set was observed for all categories of TFBS.  
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Our data support a model where the cis variants causal for differences in TF binding 
occupancy are mostly proximal to the TFBS they affect. However, regions with TF 
occupancy, including TFBSs affected by cis-variation, are disproportionately found at 
interaction endpoints for genomic domains, providing a possible mechanism for the observed 
long-range correlations. 5 
 
 
Coordination of regulatory mechanisms underlying gene expression and TF binding 
intensity variations 
 10 
The connection between genetic variation with TF binding, chromatin state and gene 
expression has recently been studied in human cell lines22,24,25. However, how genetic variants 
affect the interplay of these regulatory layers remains poorly understood.  
 
As above, we classified the mechanisms of variation underlying the allelic changes in 15 
chromatin state and transcription based on whether these differences are cis-directed, 
conserved, trans-directed, or cistrans-directed (Figure 4, Methods). We then used logistic 
regression to establish whether the mechanisms of variation responsible for regulating TF 
binding differences are enriched or depleted within the corresponding chromatin and gene 
expression categories.  20 
 
We found similar variant classes underlying TF binding occupancy, chromatin state, and gene 
expression at the same locus. For instance, promoters where allelic differences are caused by 
cis-acting variations are associated with TFBS where allelic differences are also caused by 
cis-acting variations (Figure 4a-b). This is compatible with models proposed by Kilpinen et 25 
al.22. Furthermore, there is a positive correlation between the directions of effect between 
allelic changes in TFBS occupancy and gene expression (Figure S13). In other words, when a 
TFBS increases its occupancy, then nearby gene transcription often increases (binomial test, 
P=2.9e-4) and with similar magnitude (Spearman’s rank correlation, rho=0.29, P=6.3e-12). 
This effect is not caused by differences in expression levels (SI S5). 30 
 
Promoter chromatin state and gene expression are correlated43. We identified a subtle but 
significant correspondence between the types of regulatory variation underlying promoter 
activity differences and gene expression differences (binomial test; cis P=0.04, cistrans 
P=0.03, conserved P=0.02, trans P=0.25) (Figure 4c).  35 
 
Finally, TFBSs often act in concert with one another. Hence, we asked whether the collective 
effect of the cis- and trans-acting variants underlying changes to occupancy levels of multiple 
TFBSs propagate to gene expression. Using Shannon’s entropy, we compared the mechanistic 
diversity of TF binding variants with the mechanisms of variation affecting nearby gene 40 
expression (Methods). Expression driven by cis- or cistrans-acting variants was significantly 
more likely to be associated proximally to TFBSs that are themselves driven by variation 
acting through diverse mechanisms (Mann Whitney U test) (Figure 4d). In contrast, 
conserved expression was likely to be associated with TFBSs directed by a similar type of 
variant (SI S6). 45 
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DISCUSSION 
 
Directly connecting genome-wide observations of transcription factor binding with functional 
outputs in gene expression is challenging because of what appears to be two conflicting 
observations. On the one hand, most variation in the human genome associated with complex 5 
disease and other phenotypes is non-coding2. Even for Mendelian disorders, exome 
sequencing can suggest causative sequence changes in only a minority of cases (~25%)44. 
Both point to a major role for functional sequence changes in the regulatory regions of the 
genome, which subsequently lead to changes in gene expression. On the other hand, TF 
binding demonstrates both variability between even genetically identical individuals and such 10 
strikingly rapid evolutionary change45 that it is tempting to conclude that the vast majority of 
TF binding is non-functional "biological noise"46.  
 
Here, we have undertaken a detailed and comprehensive dissection of the genetic mechanisms 
driving TF binding occupancy differences in mammals and integrated these results with 15 
chromatin and gene expression information. Our initial finding regarding how genetic 
sequence variation associates with TF binding differences between alleles is consistent with 
previous reports at a more limited set of locations in murine immune cells48, human 
lymphoblast cells23,25, and using computational simulations49,50. Specifically, almost three-
quarters of assayed quantitative differences in TF binding occupancy appear to be purely the 20 
result of nearby cis-directed genetic differences.  
 
However, our integrated analysis extending from TF binding to output gene expression using 
F1 inter-strain mouse crosses revealed a number of novel insights. First, the vast majority of 
trans-directed TF binding differences are dominantly inherited. Although most cis-driven 25 
binding is inherited additively as expected, a small proportion appears to show 
dominance/recessive variation. One plausible biological explanation is the presence of trans-
directed elements that do not interact with cis-driven variation at each allele. Despite this, cis 
and trans-acting variants driving TF occupancy change show clear differences in their mode 
of inheritance. Second, allelic differences in TF binding are correlated at kilobase distances 30 
above the genomic background, likely driven by neighbouring cis variants. A minor fraction 
of TFBSs show long-range coordination, which may driven by high enrichment of TFBS at 
chromatin contacts. Such long-range correspondence is similar to recently described 
coordination of chromatin states within topological domains6,51. Third, we demonstrate 
interplay between the different mechanisms of variation that underlie transcription factor 35 
binding and tissue-specific gene expression in vivo. Aspects of the regulatory interplay 
between chromatin and gene expression has been reported in human cell lines22,52–55.  
 
The independently determined causal mechanisms of variation correspond well between TF 
occupancy and gene expression. This is potentially surprising given the difference in the 40 
overall patterns of regulatory mechanisms between TF binding and gene expression. Namely, 
protein-DNA interactions are shaped by a comparatively simple combination of DNA 
sequences, chromatin context, and (in some cases) noncoding RNA associations. In contrast, a 
multitude of regulatory processes influence gene expression, including TF binding as well as 
post-transcription processing, translation rate and mRNA degradation. Our results support a 45 
model whereby the variation underlying gene expression differences are a composite of the 
variation that modulate TF binding differences in multiple individual TFBSs.  
 
Our analysis has specific limitations. Our approach cannot analyse the majority of TFBSs 
where no informative SNV is present, and these unclassified TFBSs are more likely to be 50 
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conserved. However, a change in the relative proportion of regulatory categories is not 
expected to influence our key findings, which were focused on the mechanism effect size. Our 
analysis ignores structural variants, and we cannot preclude that possibility that tissues other 
than liver may have greater trans-influenced TF binding differences. Although most tissue-
specific gene expression appears to be driven by combinatorial TF binding of scores of TFs10, 5 
we have profiled only a subset of three. However, analysis of the occupancy of over a 
hundred TFs in one tissue strongly suggest that our data will reflect the typical mechanistic 
contributions influencing the evolution of all tissue-specific TFs56. Finally, our technical 
definition of the cistrans-driven variation captures TFBSs with high biological and/or 
technical heterogeneity.  10 
 
Our work builds upon previous findings of genomic coordination among TF binding, 
chromatin marks and transcription5,6,22,57 and highlights the key role played by the basal 
variation that underlie TF binding in directing regulatory change. The cis- and trans-acting 
factors mechanistically driving changes in regulatory variation are likely to fundamentally 15 
contribute to the coordination of chromatin domains5,6, which are themselves components of 
topologically associated domains58. 
 
 
 20 
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Figure 1. F1 mice were used to interrogate the regulation of TFBS variation 
(A) In vivo binding of liver-specific TFs FOXA1, HNF4A and CEBPA were profiled in the 
livers of male mice from inbred strains C57BL/6J (BL6), CAST/EiJ (CAST) and their F1 5 
crosses: C57BL/6J x CAST/EiJ (BL6xCAST) and CAST/EiJ x C57BL/6J (CASTxBL6). Six 
biological replicates were generated for each TF and genetic background combination. (B) 
The number of TFBS that could be classified were dependent on 1) the presence of one or 
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more SNVs under TF binding locations and 2) sequencing depth. TFBSs that did not overlap 
a SNV or where the loci did not meet our minimum read requirement (see Methods) are in 
white. For all others, the number of SNVs reflects those SNV loci which met our read count 
threshold and were classified to a regulatory category. Reference numbers for the 
representative libraries depicted are do3488, do3463 and do3483. (C) Venn diagram 5 
illustrates the numbers of classifiable SNVs that overlap between TFs. Each variant is at least 
250bp from any other SNV. Numbers shown are the final numbers of regulatory loci used for 
downstream analyses. (D) Heatmap displaying BL6 (black) versus CAST (brown) binding 
intensity ratios for different regulatory categories for CEBPA. A subset of variants from each 
class was randomly sampled to match the overall distribution. Sparkline in key shows the 10 
number of observations at each colour category where density is increasing from left to right.  
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Figure 2. Differences in TF binding intensities strongly driven by cis directed variation 
and are additively inherited  
(A) Mean F0 versus F1 TF binding intensity ratios (BL6 versus CAST) for CEBPA are 5 
plotted in the left panel. The right panel shows mean F0 versus F1 gene expression ratios for 
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liver-expressed protein-coding genes14. The correlation coefficient reflects the extent of cis-
regulation. (B) Proportion in percentages of TF binding locations at promoters and enhancers. 
The width of the bar is proportional to the overall number of TFBSs in the ‘All’ category. 
Putative enhancers were annotated at regions containing H3K27ac with no evidence of 
H3K4me3; while regions containing H3k4me3, which largely also contain H3K27ac, denote 5 
promoter activity. Binomial tests were used to compare for enrichment at promoters and 
enhancers for each regulatory class based on the overall numbers of TFBSs (‘All’). Data from 
CEBPA is shown. ***P<0.0001 **P<0.001* P<0.05. (C) Most highly allele-specific TFBSs 
are driven purely in cis. Lineage-specific TFBSs were defined as TFBSs where binding 
occurs either in BL6 or CAST in F0 individuals and in an allele-specific manner in F1 10 
individuals based on a cut-off (F0B6/(B6+CAST)>0.95, F1B6/(B6+CAST)>0.95, F0B6/(B6+CAST) < 0.05, 
F1B6/(B6+CAST) < 0.05). These TFBSs can be sorted into the three categories described. Each 
category presents a testable model that is formally defined by the formulas on the right. We 
tested each of these scenarios using maximal likelihood estimation by assuming all counts 
follow negative binomial distributions (see Methods). (D) Mean log2 F0 total read counts 15 
were plotted against mean log2 F1 read count (BL6 + CAST allele) multiplied by 2. For the 
scatterplot, we used averages across biological replicates. Cis-driven TFBSs are thus expected 
to fall along the diagonal and these have been coloured blue (see C). Categories shown in the 
scatterplot were determined by maximal likelihood estimation. Data for CEBPA is shown. (E) 
The majority of cis-directed TFBSs are inherited additively. Trans- driven TFBSs may show 20 
additive or dominant inheritance patterns in TF binding intensities. We deciphered the 
different modes of inheritance by comparing overall peak binding intensities between F0 and 
F1 individuals. We constructed models to specifically test and partition trans-driven TFBSs 
into additive, dominant (high) and dominant (low) inheritance patterns, where high and low 
refer to the parental binding intensity that was inherited by the offspring. Trans-classed 25 
TFBSs that do not show sufficient difference between F0MAX and F0MIN were not considered 
(see Methods). The heatmap summarizes of the result of our classification process. Total F1 
counts were individually scaled to 1 (yellow). Red indicates TFBSs where F1 > F0; blue 
indicates TFBSs where F1 < F0. CEBPA data is shown.	
	 	30 
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Figure 3. Rapid loss of cis-acting inter-peak correspondence with genomic distance  
 (A) Strategy for measuring the span of cis regulatory effect. Successive 1kb bins were taken 
from each cis-driven TFBS starting 400bps from the location of the SNV and extending in 5 
both directions. For each bin, Spearman’s ρ	was calculated using	the	BL6:CAST allelic ratio 
between queried TFBSs against TFBSs assigned as anchorages for the analysis. (B) 
Spearman’s ρ values for each bin were plotted for each TF. The linear regression line 
calculated from these values is shown as a solid red line. Red dashed lines mark the 90% 
confidence intervals i.e. we have 90% confidence that the true slope of the line lies within the 10 
region bounded by the dashed lines. Adjusted R2 of the regression line is indicated. Grey dots 
represent the null background distribution of correlation values. These data points were 
constructed by the random subsampling of TFBSs to anchor TFBSs (see Methods). The 
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numbers of TFBSs in each randomly sampled bin were matched to those in the observed bins. 
The grey line is the linear regression line for the correlation values derived from sampled 
points. (C) TFBSs are enriched at regions of chromatin contact. Enrichment values were 
calculated compared with expected rate of chromatin contact given the general enrichment for 
contact in each regulatory dataset (i.e. cons, trans, cis, cistrans). ‘Any’ denotes the null 5 
background set of randomly chosen locations in the genome  
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Figure 4. Genetic and epigenetic influences that change TF binding have parallel 
consequences for gene expression and chromatin 
(A) Coordination between the regulation of variation in chromatin and TF binding occupancy 
variation is shown. TFBSs located 2kb upstream or downstream of the promoter mark, 5 
H3K4me3, were associated to that promoter mark. Separate logistic regressions were 
performed for each chromatin regulatory class (denoted by grey lines)(see Methods). Odds 
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ratios were mean-centred for comparison across chromatin regulation classes. Absolute values 
of Z-scores greater than two (α<0.05) were denoted by a thick black border. (B) Coordination 
between the regulation of variation in gene expression levels and TF binding occupancy 
variation is shown. TFBSs located 20kb upstream or 10kb downstream of a TSS were 
associated to that gene. Separate logistic regressions were performed for genes of each 5 
expression regulation category (see Methods). Odds ratios were mean-centred for comparison 
across expression classes. Absolute values of Z-scores greater than two (α<0.05) were 
denoted by a thick black border. (C) Association between chromatin and gene expression. 
Genes were linked to H3K4me3 modifications if the mark was located within 5kb upstream of 
the TSS. Binomial tests were performed based on the expected background probability of 10 
observing the same regulatory mechanism underlying both expression and histone enrichment 
change. (D) High diversity in mechanisms regulating TF binding variation is associated with 
gene expression that is affected by cistrans-acting variation. Diversity estimates were obtained 
using Shannon’s diversity index. These were calculated on a gene-by-gene basis for TFBSs 
20kb upstream and 10kb downstream of TSSs. These scores were compared between genes 15 
grouped by transcriptional regulatory class. Significant P-values for Mann-Whitney U tests 
are shown. The surface area of the violin plot is proportional to the number of genes in each 
class. 
 
 20 
  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 19, 2016. ; https://doi.org/10.1101/059873doi: bioRxiv preprint 

https://doi.org/10.1101/059873
http://creativecommons.org/licenses/by/4.0/


	
	

18 

REFERENCES 
 
1.	 Wray,	G.	A.	The	evolutionary	significance	of	cis-regulatory	mutations.	Nat.	Rev.	Genet.	

8,	206–216	(2007).	
2.	 Maurano,	M.	T.	et	al.	Systematic	Localization	of	Common	Disease-Associated	5 

Variation	in	Regulatory	DNA.	Science	337,	1190–1195	(2012).	
3.	 Fairfax,	B.	P.	et	al.	Genetics	of	gene	expression	in	primary	immune	cells	identifies	cell	

type–specific	master	regulators	and	roles	of	HLA	alleles.	Nat.	Genet.	44,	502–510	
(2012).	

4.	 Ballester,	B.	et	al.	Multi-species,	multi-transcription	factor	binding	highlights	10 
conserved	control	of	tissue-specific	biological	pathways.	eLife	3,	e02626	(2014).	

5.	 Grubert,	F.	et	al.	Genetic	Control	of	Chromatin	States	in	Humans	Involves	Local	and	
Distal	Chromosomal	Interactions.	Cell	162,	1051–1065	(2015).	

6.	 Waszak,	S.	M.	et	al.	Population	Variation	and	Genetic	Control	of	Modular	Chromatin	
Architecture	in	Humans.	Cell	162,	1039–1050	(2015).	15 

7.	 Biggin,	M.	D.	Animal	transcription	networks	as	highly	connected,	quantitative	
continua.	Dev.	Cell	21,	611–626	(2011).	

8.	 Farley,	E.	K.	et	al.	Suboptimization	of	developmental	enhancers.	Science	350,	325–
328	(2015).	

9.	 Crocker,	J.	et	al.	Low	Affinity	Binding	Site	Clusters	Confer	Hox	Specificity	and	20 
Regulatory	Robustness.	Cell	160,	191–203	(2015).	

10.	Jolma,	A.	et	al.	DNA-dependent	formation	of	transcription	factor	pairs	alters	their	
binding	specificity.	Nature	advance	online	publication,	(2015).	

11.	Wittkopp,	P.	J.,	Haerum,	B.	K.	&	Clark,	A.	G.	Evolutionary	changes	in	cis	and	trans	
gene	regulation.	Nature	430,	85–88	(2004).	25 

12.	Wittkopp,	P.	J.,	Haerum,	B.	K.	&	Clark,	A.	G.	Regulatory	changes	underlying	expression	
differences	within	and	between	Drosophila	species.	Nat.	Genet.	40,	346–350	(2008).	

13.	Lemos,	B.,	Araripe,	L.	O.,	Fontanillas,	P.	&	Hartl,	D.	L.	Dominance	and	the	evolutionary	
accumulation	of	cis-	and	trans-effects	on	gene	expression.	Proc.	Natl.	Acad.	Sci.	105,	
14471–14476	(2008).	30 

14.	Goncalves,	A.	et	al.	Extensive	compensatory	cis-trans	regulation	in	the	evolution	of	
mouse	gene	expression.	Genome	Res.	22,	2376–2384	(2012).	

15.	DeVeale,	B.,	van	der	Kooy,	D.	&	Babak,	T.	Critical	Evaluation	of	Imprinted	Gene	
Expression	by	RNA–Seq:	A	New	Perspective.	PLoS	Genet	8,	e1002600	(2012).	

16.	Strogantsev,	R.	et	al.	Allele-specific	binding	of	ZFP57	in	the	epigenetic	regulation	of	35 
imprinted	and	non-imprinted	monoallelic	expression.	Genome	Biol.	16,	(2015).	

17.	White,	M.	A.,	Myers,	C.	A.,	Corbo,	J.	C.	&	Cohen,	B.	A.	Massively	parallel	in	vivo	
enhancer	assay	reveals	that	highly	local	features	determine	the	cis-regulatory	
function	of	ChIP-seq	peaks.	Proc.	Natl.	Acad.	Sci.	(2013).	
doi:10.1073/pnas.1307449110	40 

18.	Wilson,	M.	D.	et	al.	Species-specific	transcription	in	mice	carrying	human	
chromosome	21.	Science	322,	434–438	(2008).	

19.	Maurano,	M.	T.	et	al.	Large-scale	identification	of	sequence	variants	influencing	
human	transcription	factor	occupancy	in	vivo.	Nat.	Genet.	(2015).	
doi:10.1038/ng.3432	45 

20.	Ding,	Z.	et	al.	Quantitative	genetics	of	CTCF	binding	reveal	local	sequence	effects	and	
different	modes	of	X-chromosome	association.	PLoS	Genet.	10,	e1004798	(2014).	

21.	Stefflova,	K.	et	al.	Cooperativity	and	rapid	evolution	of	cobound	transcription	factors	
in	closely	related	mammals.	Cell	154,	530–540	(2013).	

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 19, 2016. ; https://doi.org/10.1101/059873doi: bioRxiv preprint 

https://doi.org/10.1101/059873
http://creativecommons.org/licenses/by/4.0/


	
	

19 

22.	Kilpinen,	H.	et	al.	Coordinated	Effects	of	Sequence	Variation	on	DNA	Binding,	
Chromatin	Structure,	and	Transcription.	Science	(2013).	
doi:10.1126/science.1242463	

23.	Reddy,	T.	E.	et	al.	Effects	of	sequence	variation	on	differential	allelic	transcription	
factor	occupancy	and	gene	expression.	Genome	Res.	22,	860–869	(2012).	5 

24.	McVicker,	G.	et	al.	Identification	of	Genetic	Variants	That	Affect	Histone	
Modifications	in	Human	Cells.	Science	342,	747–749	(2013).	

25.	Kasowski,	M.	et	al.	Variation	in	Transcription	Factor	Binding	Among	Humans.	Science	
328,	232–235	(2010).	

26.	Pickrell,	J.	K.	et	al.	Understanding	mechanisms	underlying	human	gene	expression	10 
variation	with	RNA	sequencing.	Nature	464,	768–772	(2010).	

27.	Doss,	S.,	Schadt,	E.	E.,	Drake,	T.	A.	&	Lusis,	A.	J.	Cis-acting	expression	quantitative	trait	
loci	in	mice.	Genome	Res.	15,	681–691	(2005).	

28.	Hasin-Brumshtein,	Y.	et	al.	Allele-specific	expression	and	eQTL	analysis	in	mouse	
adipose	tissue.	BMC	Genomics	15,	471	(2014).	15 

29.	Lagarrigue,	S.	et	al.	Analysis	of	allele-specific	expression	in	mouse	liver	by	RNA-Seq:	
a	comparison	with	Cis-eQTL	identified	using	genetic	linkage.	Genetics	195,	1157–
1166	(2013).	

30.	Almlöf,	J.	C.	et	al.	Powerful	identification	of	cis-regulatory	SNPs	in	human	primary	
monocytes	using	allele-specific	gene	expression.	PloS	One	7,	e52260	(2012).	20 

31.	Tirosh,	I.,	Reikhav,	S.,	Levy,	A.	A.	&	Barkai,	N.	A	Yeast	Hybrid	Provides	Insight	into	the	
Evolution	of	Gene	Expression	Regulation.	Science	324,	659–662	(2009).	

32.	Wang,	D.	et	al.	Expression	evolution	in	yeast	genes	of	single-input	modules	is	mainly	
due	to	changes	in	trans-acting	factors.	Genome	Res.	17,	1161–1169	(2007).	

33.	Springer,	N.	M.	&	Stupar,	R.	M.	Allele-specific	expression	patterns	reveal	biases	and	25 
embryo-specific	parent-of-origin	effects	in	hybrid	maize.	Plant	Cell	19,	2391–2402	
(2007).	

34.	Emerson,	J.	J.	et	al.	Natural	selection	on	cis	and	trans	regulation	in	yeasts.	Genome	Res.	
20,	826–836	(2010).	

35.	Sladek,	R.	&	Hudson,	T.	J.	Elucidating	cis-	and	trans-regulatory	variation	using	30 
genetical	genomics.	Trends	Genet.	TIG	22,	245–250	(2006).	

36.	Gibson,	G.	&	Weir,	B.	The	quantitative	genetics	of	transcription.	Trends	Genet.	21,	
616–623	(2005).	

37.	McManus,	C.	J.	et	al.	Regulatory	divergence	in	Drosophila	revealed	by	mRNA-seq.	
Genome	Res.	20,	816–825	(2010).	35 

38.	Sudmant,	P.	H.	et	al.	An	integrated	map	of	structural	variation	in	2,504	human	
genomes.	Nature	526,	75–81	(2015).	

39.	Creyghton,	M.	P.	et	al.	Histone	H3K27ac	separates	active	from	poised	enhancers	and	
predicts	developmental	state.	Proc.	Natl.	Acad.	Sci.	U.	S.	A.	107,	21931–21936	(2010).	

40.	Boj,	S.	F.	et	al.	Functional	Targets	of	the	Monogenic	Diabetes	Transcription	Factors	40 
HNF-1α	and	HNF-4α	Are	Highly	Conserved	Between	Mice	and	Humans.	Diabetes	58,	
1245–1253	(2009).	

41.	Gibson,	G.	et	al.	Extensive	sex-specific	nonadditivity	of	gene	expression	in	Drosophila	
melanogaster.	Genetics	167,	1791–1799	(2004).	

42.	Vietri	Rudan,	M.	et	al.	Comparative	Hi-C	Reveals	that	CTCF	Underlies	Evolution	of	45 
Chromosomal	Domain	Architecture.	Cell	Rep.	10,	1297–1309	(2015).	

43.	Consortium,	T.	E.	P.	An	integrated	encyclopedia	of	DNA	elements	in	the	human	
genome.	Nature	489,	57–74	(2012).	

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 19, 2016. ; https://doi.org/10.1101/059873doi: bioRxiv preprint 

https://doi.org/10.1101/059873
http://creativecommons.org/licenses/by/4.0/


	
	

20 

44.	Yang,	Y.	et	al.	Clinical	Whole-Exome	Sequencing	for	the	Diagnosis	of	Mendelian	
Disorders.	N.	Engl.	J.	Med.	369,	1502–1511	(2013).	

45.	Schmidt,	D.	et	al.	Five-vertebrate	ChIP-seq	reveals	the	evolutionary	dynamics	of	
transcription	factor	binding.	Science	328,	1036–1040	(2010).	

46.	Spivakov,	M.	Spurious	transcription	factor	binding:	Non-functional	or	genetically	5 
redundant?	BioEssays	n/a–n/a	(2014).	doi:10.1002/bies.201400036	

47.	Bradley,	R.	K.	et	al.	Binding	Site	Turnover	Produces	Pervasive	Quantitative	Changes	
in	Transcription	Factor	Binding	between	Closely	Related	Drosophila	Species.	PLoS	
Biol	8,	e1000343	(2010).	

48.	Heinz,	S.	et	al.	Effect	of	natural	genetic	variation	on	enhancer	selection	and	function.	10 
Nature	503,	487–492	(2013).	

49.	Wray,	G.	A.	The	Evolution	of	Transcriptional	Regulation	in	Eukaryotes.	Mol.	Biol.	Evol.	
20,	1377–1419	(2003).	

50.	Stone,	J.	R.	&	Wray,	G.	A.	Rapid	Evolution	of	cis-Regulatory	Sequences	via	Local	Point	
Mutations.	Mol.	Biol.	Evol.	18,	1764–1770	(2001).	15 

51.	Gruber,	J.	D.,	Vogel,	K.,	Kalay,	G.	&	Wittkopp,	P.	J.	Contrasting	Properties	of	Gene-
Specific	Regulatory,	Coding,	and	Copy	Number	Mutations	in	Saccharomyces	
cerevisiae:	Frequency,	Effects,	and	Dominance.	PLoS	Genet	8,	e1002497	(2012).	

52.	Cheng,	C.	et	al.	Understanding	transcriptional	regulation	by	integrative	analysis	of	
transcription	factor	binding	data.	Genome	Res.	22,	1658–1667	(2012).	20 

53.	Cheng,	C.	&	Gerstein,	M.	Modeling	the	relative	relationship	of	transcription	factor	
binding	and	histone	modifications	to	gene	expression	levels	in	mouse	embryonic	
stem	cells.	Nucleic	Acids	Res.	(2011).	doi:10.1093/nar/gkr752	

54.	Wong,	E.	S.	et	al.	Decoupling	of	evolutionary	changes	in	transcription	factor	binding	
and	gene	expression	in	mammals.	Genome	Res.	25,	167–178	(2015).	25 

55.	Cusanovich,	D.	A.,	Pavlovic,	B.,	Pritchard,	J.	K.	&	Gilad,	Y.	The	Functional	
Consequences	of	Variation	in	Transcription	Factor	Binding.	PLoS	Genet	10,	
e1004226	(2014).	

56.	Cheng,	Y.	et	al.	Principles	of	regulatory	information	conservation	between	mouse	
and	human.	Nature	515,	371–375	(2014).	30 

57.	Ghanbarian,	A.	T.	&	Hurst,	L.	D.	Neighboring	Genes	Show	Correlated	Evolution	in	
Gene	Expression.	Mol.	Biol.	Evol.	32,	1748–1766	(2015).	

58.	Dixon,	J.	R.	et	al.	Topological	domains	in	mammalian	genomes	identified	by	analysis	
of	chromatin	interactions.	Nature	485,	376–380	(2012).	

 35 
	

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 19, 2016. ; https://doi.org/10.1101/059873doi: bioRxiv preprint 

https://doi.org/10.1101/059873
http://creativecommons.org/licenses/by/4.0/


SUPPLEMENTARY MATERIALS 
 

 

Interplay of cis and trans mechanisms driving TF binding, chromatin, and gene 
expression evolution  

 

 

Emily S Wong1*, Bianca Schmitt2*, Anastasiya Kazachenka3, David Thybert1, Aisling 

Redmond2, Frances Connor2, Tim F Rayner2, Christine Feig2, Anne Ferguson-Smith3, John C 

Marioni1,2, Paul Flicek1,4#, Duncan T Odom2,4# 

 

 
* These authors contributed equally 

 
# Corresponding authors: PF (flicek@ebi.ac.uk), DTO (duncan.odom@cruk.cam.ac.uk) 

 

 
1 European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust 

Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.  
2 University of Cambridge, Cancer Research UK - Cambridge Institute, Li Ka Shing Centre, 

Cambridge, CB2 0RE, UK. 
3 University of Cambridge, Department of Genetics, Cambridge, CB2 3EH, UK. 
4 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, 

CB10 1SA, UK. 

 

  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 19, 2016. ; https://doi.org/10.1101/059873doi: bioRxiv preprint 

https://doi.org/10.1101/059873
http://creativecommons.org/licenses/by/4.0/


	 2	

METHODS: 

Sample collection and preparation 

All mice were housed in the same husbandry conditions within the Biological Resources Unit 

in the Cancer Research UK-Cambridge Institute under a Home Office Licence. C57BL/6J 

and CAST/EiJ mouse strains were used in experiments as parental strains (F0) as well as for 

breeding of reciprocal crosses of F1 mice. All mice used in the experiments were males 

between eight and 12 weeks of age, and harvested at the same time of day (between 8 and 

11am). Liver perfusion was performed on mice post mortem, prior to tissue dissection. 

Harvested tissues were formaldehyde cross-linked for ChIP-seq experiments. Before cross-

linking, dissected tissue was immediately chopped post mortem and added to a cross-linking 

solution containing 1% formaldehyde. Tissue was incubated for 20 min prior to quenching 

with 1/20th volume of 2.5 M glycine. Samples were incubated for a further 10 min before 

washing with PBS and flash-freezing and storage at -80oC. 

 

Generation of HNF4A and CEBPA heterozygous mice 

To create HNF4A and CEBPA heterozygous knockout mice, we acquired mice with targeted 

alleles from JAX (www.jax.com) (HNF4A stock number: 004665 53; CEBPA stock number: 

006230  54). Heterozygous knockouts were generated via the Cre-loxP system 55 using the 

germline deleter strain PgkCre 56 and crossing it to CebpaFLOX/FLOX and Hnf4aFLOX/WT mice. 

Ear biopsies were taken at the time of weaning for genotyping to confirm deletion via PCR 

(Table S3).  

 

ChIP-seq experimental procedure 

The ChIP-seq protocol was as described by Schmidt et al. (2009). Protein-bound DNA was 

immunoprecipitated with 10µg of an antibody against CEBPA (Santa Cruz, sc-9314), HNF4A 

(ARP 31946_P050), FOXA1 (ab5089, Abcam), H3K27ac (ab4729, Abcam), or H3K4me3 

(Millipore 05-1339). Immunoprecipitated DNA was end-repaired, A-tailed, and Illumina 

sequencing adapters ligated before 16 cycles of PCR amplification. DNA fragments ranging 

from 200- to 300-bp in size were selected for 50-bp single-end read sequencing on an 

Illumina HiSeq 2000 according to the manufacturer’s instructions. 

 

Validation of allele-specific TF binding using pyrosequencing 

We performed pyrosequencing to confirm the allele-specific occupancy of CEBPA in livers 

from F1 mice in both genetic cross directions. The assays and primers (Table S2) for 

pyrosequencing were designed using PyroMark Assay Design Software. The annealing 

temperature for PCR primers was optimized by gradient PCR. Primers’ efficiency was 

confirmed using quality controls with different proportion of BL6 and CAST DNA (0/100%, 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 19, 2016. ; https://doi.org/10.1101/059873doi: bioRxiv preprint 

https://doi.org/10.1101/059873
http://creativecommons.org/licenses/by/4.0/


	 3	

30/70%, 50/50%, 70/30%, 100/0%). PCR conditions: 1) 95°C – 5 min; 2) 94°C – 30 sec, 

optimized t°C – 30 sec, 72°C – 55sec, 40 cycles; 3) 72°C – 5 min. PCR product was mixed 

with streptavidin beads dissolved in binding buffer and shacked for 20 min. Sequencing 

primers were dissolved in annealing buffer and aliquoted into PSQ plate. DNA-Beads were 

cleaned on the PyroMark vacuum workstation and then mixed with PSQ Primer/Annealing 

Buffer. The samples were incubated at 85°C for 3 min, centrifuged for 3-4 minutes at 2500 

rpm and then loaded to the pyrosequencer. PyroMark Gold Q96 SQA Reagents were used to 

load the pyrosequencer. 

 

Read mapping, normalization and estimation of allele-specific binding level 

We constructed the Mus musculus castaneus genome assembly using CAST/EiJ SNV calls 

(ENA accession: ERS076381) against the Mus musculus reference assembly (C57BL/6J) 57. 

Single nucleotide variants (SNVs) were mapped from their original calls on NCBI37/mm9 to 

the latest version of the mouse assembly, GRCm38.p2/mm10, and nucleotides at each base 

position were changed to reflect point mutations in CAST. SNV calls were available for all 

autosomes and the X chromosome.  

 

To assess allele-specific binding and histone enrichment, we aligned reads to an alignment 

index comprising of both GRCm38.p2/mm10 (BL6) and CAST assemblies. Indexing of the 

genomes was performed using BWA (Version 0.7.3a) 58. Raw sequencing reads were first 

filtered and trimmed using Trimmomatic (Version 0.3) 59. We required a minimum phred 

score of 30 using a sliding window of 20 bps, and only kept a read if it matched these criteria 

while maintaining a minimal overall length of 40bp. We aligned filtered reads using BWA with 

a maximum of 2 mismatches per read (-n 2). Reads that mapped equally well to multiple 

locations were discarded by filtering based on the ‘XT:A:U’ alignment tag. Our alignment 

statistics showed our approach aligned reads to each strain with high specificity (see Figure 

S3). The proportion of F1 reads aligning to the combined BL6 and CAST genomes were 

roughly 51:49, respectively. Proportions of BL6 TFBSs versus CAST TFBSs called from 

these alignments were also similar. 

 

The mpileup program from the SAMtools package 60 was used to count the number of reads 

that overlapped each base of the joint assembly. We then filtered these counts to retain only 

those genomics positions where it was possible to distinguish between BL6 and CAST 

backgrounds. Further filtering was done to retain those sites where a minimum of 10 reads 

was mapped to either F0 CAST or F0 BL6 across replicates. For F1 crosses, we retained 

sites overlapping at least 10 reads for at least 10 allele-specific replicates. We repeated 
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these steps on a site-specific manner for each TF/histone mark irrespective of whether 

multiple SNVs existed at each ChIP-seq peak. 

 

Prior to fitting statistical models and further downstream analyses, we normalized for 

sequencing depth by adjusting for differences in library sizes across biological replicates in 

F0 and F1 populations for each TF/histone mark. A constant scaling factor was estimated for 

each library based on the median of the ratio of reads at each SNV over its geometric mean 

across all libraries tested. This normalization constant was then applied to each library under 

the assumption that count differences attributable to biological effects only exists in a small 

proportion of the total number of sites. This procedure was performed using R Bioconductor 

package ‘DESeq’ 61. 

 

To assess overall peak counts and determine the quality of each ChIP experiment, we also 

aligned reads from each library (F0 and F1) to the GRCm38.p2/mm10 genome using 

GSNAP 62 with a less stringent mapping criteria. We used a less conservative mismatch 

threshold (maximum mismatch of 3 bases per read) to allow F1 reads derived from the CAST 

allele to map against the BL6 genome. Based on overall SNV numbers between the strains, 

a rough estimation suggests that there are approximately 1 SNV every 100 bps, which 

distinguishes the strains. Regions bound by both TFs and covalently modified histones were 

called using MACS1.4 63 using default parameters. 

 

To mitigate the impact of potential batch effects, biological replicates for each TF for each 

genetic background were prepared and sequenced in three independent flowcells. 

 

We estimated TF occupancy levels for the histone modification H3K4me3 by taking into 

account the fact that histone marks typically localise over a broader genomic region than do 

TFBSs. Wider regions cause a dilution in the number of reads overlapping SNVs, relative to 

binding site numbers and sequencing depth. Hence, to increase our ability to resolve binding 

differences at H3K4me3 loci, we summed the counts of all SNVs overlapping the same 

region. To ensure background-specific peaks were captured, we constructed a summary 

peak file comprising of the union of genomic intervals from peak calls from individuals of 

different genetic backgrounds (BL6, CAST and BL6xCAST) (library reference: do3342, 

do3337, do3411). 

 

We identified between 6,000-8,000 TF bound regions per TF where two or more SNVs lie 

within close (<250 bp) proximity; ~85% of these co-located SNVs showed the same allelic 

direction of TF binding between BL6 and CAST. To avoid multiple counting of TF binding 
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events, we only used one SNV in any 250 bp region in further analyses. Our results were 

highly reproducible among replicates (Figure S2) with similar numbers of reads mapping to 

each genome (Figure S3). 

 

Statistical models for identifying regulatory mechanisms 

ChIP-seq read counts were used as a proxy for the binding intensities of a TF to the DNA 7. 

Sites were classified into regulatory categories using the method of Gonclaves et al. 29.  

 

We defined as conserved those regions with equal TF binding occupancy between BL6 and 

CAST in both F0 and F1 individuals, despite the presence of one or more variants near the 

site of binding; these types of sites could also be described as non-differentially bound 25. We 

defined cis-driven TFBSs as sites where binding occupancy differences between strains 

were determined by locally acting genetic sequences; hence, the TF occupancy ratios 

between BL6 and CAST genomes found in the F0 parents is the same as that observed 

between alleles in the F1 offspring. TF binding affected in trans were defined based on TF 

binding occupancy differences between parents, but not between alleles in the F1 offspring. 

Finally, cistrans mechanisms show a complex mixture of cis and trans acting influences.  

 

For each TF or histone mark, F0 counts from each strain were modelled as a negative 

binomial marginal distribution while F1 counts were modelled using a beta-binomial 

distribution where the parameters of the beta distribution were used to model the proportional 

contribution from each allele. For each TF and histone mark, there were 6 replicates (i) for 

each F0 strain and 12 replicates (j) for F1 samples. F0 counts for each strain (𝑥! , and 𝑦!) were 

assumed to follow negative binomial distributions while F1 counts (𝑛!), were modeled on an 

allele-specific basis (𝑧!) using a beta-binomial distribution: 

 

 

𝑥!  ~ 𝑃𝑜 𝜇! ,  𝑦!  ~ 𝑃𝑜 𝜐! , 𝑧! ~ 𝐵𝑖(𝑛! , 𝑝!) 

 

 𝜇!~ 𝐺𝑎 𝑟,
𝑝!

1 − 𝑝!
, 𝑣!~ 𝐺𝑎 𝑟,

𝑝!
1 − 𝑝!

, 𝑝!  ~ 𝐵𝑒(𝛼,𝛽) 

 

 

where 𝑥! is formally defined as the binding intensity of the variant in the ith C57BL/6J F0 

mouse, 𝑦! is the binding intensity of the variant in the ith CAST/EiJ F0 mouse, 𝑛!  is the 
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number of reads mapping across both allelic variants in the jth F1 hybrid and 𝑧! is the number 

of reads mapping to the C57BL/6J allele in the jth F1 hybrid. 

 

We estimate the dispersion parameter r for F0 samples using the ‘estimateDispersions’ 

function within ‘DESeq’ with local regression fit. r was used as the reciprocal of the fitted 

dispersion value from ‘DESeq’. 

 

We constrained parameter estimation for each distribution based on four different regulatory 

scenarios and derived maximum likelihood values for each hypothetical case on a site-by-

site basis. The four models are described below: 

 

 

𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑒𝑑: 𝑝! =  𝑝!  𝑎𝑛𝑑 𝛼 = 𝛽 

 

𝐶𝑖𝑠: 𝑝! ≠  𝑝!  𝑎𝑛𝑑 
𝛼

𝛼 + 𝛽
=  

𝑝!
1 − 𝑝!

𝑝!
1 − 𝑝!

+ 𝑝!
1 − 𝑝!

 

 

𝑇𝑟𝑎𝑛𝑠: 𝑝! ≠  𝑝!   𝑎𝑛𝑑 𝛼 = 𝛽 

 

𝐶𝑖𝑠𝑡𝑟𝑎𝑛𝑠: 𝑝! ≠  𝑝!   𝑎𝑛𝑑 𝛼 ≠ 𝛽 

 

 

To identify the most probable model at each variant we used the Bayesian information 

Criterion (BIC). 

 

To avoid confounding results from the analysis of variants derived from the same binding 

site, downstream analyses only used variants spaced at least 250 bps apart. Hence, where 

two or more variants were found spaced within 250bps of one another, only one variant was 

chosen for subsequent analyses. 

 

 

Identification of motif-disrupting variants 

MEME 64 was used to perform de novo search for enriched motifs for all peaks called for 

three randomly chosen ChIP-seq samples from each TF (library identifiers do3488, do3463 

and do3483). Sequences +/-50bp from all peak summits were extracted for analysis based 
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on the assumption of one motif per peak. Where multiple motifs exist in a peak, the motif 

sequence with the best score was retained.  

 

 

Statistical test for regional enrichment of mechanisms driving TF occupancy  

Enrichment for TF regulatory categories that overlapped with the location histone marks were 

assessed using the exact binomial test. Colocation was defined using an overlap of 1bp. The 

probability of Bernoulli success was defined for each TF based on their proportion of binding 

categories.   

 

To assess whether collocating TFs (i.e. binding at the same SNV) share the same regulatory 

category (i.e. cis, cistrans, conserved, trans) more often than expected by chance, we 

calculated the expected probability of Bernoulli success as follows: 

 

𝑝! = 𝑏 !"#$!,! × 𝑏!"#!!,! × 𝑏!"#$%,!  

 

where b is the proportion of TFBSs in regulatory category i at TFBSs where all three TFs 

collocate. 

 

Differential binding analysis between mice that are heterozygous versus wild-type for 

HNF4A and CEBPA 

CepbaFLOX/- and Hnf4aFLOX/- mice were assayed by ChIP-seq using antibodies for CEBPA, 

HNF4A and FOXA1. Three biological replicates per condition (HET or WT) per antibody were 

compared for changes in binding intensity to their wildtype counterparts. We quantified the 

difference in TF binding intensity between heterozygous mice and wildtype mice, and then 

sorted the TFBSs based on whether their occupancy was conserved, or driven by cis- or 

cistrans-acting mechanisms. Binding intensities were considered as the number of reads at 

the summit of peaks that were called by MACS1.4 63. The same WT input libraries were used 

for peak calling in both HET and WT samples. We filtered out peaks with a read count cut-off 

of less than 11 reads in less than 5 libraries. Prior to differential binding comparisons, upper 

quantile normalization 65 was used to adjust for differences in sequencing depth between 

libraries. For each TF, ‘edgeR’ 66 was used to identify peaks with different binding intensities 

between HET and WT samples. A significance cut-off of FDR<0.1 was used.  

 

Statistical models for assigning modes of TF occupancy inheritance  

To identify the mode of TF binding intensity inheritance at non-conserved TFBSs, F0 and F1 

libraries were first adjusted for differences in sequencing depth using the median of the ratio 
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of reads at each SNV over its geometric mean across all libraries as a constant normalization 

factor for each library 61. Next, data from each SNV was fitted to statistical models reflecting 

either additive or dominant/recessive inheritance patterns. Models were constructed based 

the following premise: if offspring binding intensities were inherited via an additive mode of 

inheritance, we would expected the combined offspring binding intensity from both alleles to 

equal the summed binding intensity of parental alleles; on the other hand, if inherited through 

a dominant/recessive mode of inheritance, we would expect the combined binding intensity 

in the offspring across both alleles to equal the total intensity of one but not the other of its 

parents. We assumed read counts followed negative binomial distributions. Here, we formally 

define the models:  

 

𝑥!"#,!  ~ 𝑃𝑜 𝑝!"#,! , 𝑥!"#,!  ~ 𝑃𝑜 𝑝!"#,! , 𝑦!  ~ 𝑃𝑜 𝑜!  

 

𝑥!"#,! is defined as the normalized read count binding intensity of the variant in the ith F0 

mouse from the parental strain showing the higher median binding intensity among 

replicates, 𝑥!"#,! is the normalized read count binding intensity of the variant in the ith F0 

mouse from the parental strain with the lower median binding intensity among replicates. 𝑦! 

is the binding intensity of the variant in the ith F1 mouse summed across both alleles. 

 

𝑝!"#,!~ 𝐺𝑎 𝑟,
𝑆!"#$

1 − 𝑆!"#$
, 𝑝!"#,!~ 𝐺𝑎 𝑟,

𝑆!"#$
1 − 𝑆!"#$

, 𝑜!~ 𝐺𝑎 𝑟,
𝑆!

1 − 𝑆!
 

 

 

As above, the dispersion parameter, r, was estimated using ‘DESeq’. We used maximum 

likelihood estimation to fit the counts to the models below and used BIC to assess which of 

the following two models best fit counts from each cis- and trans-regulated site. 

 

𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡: 𝑆!"#$ = 𝑆! 𝑜𝑟  𝑆!"#$ = 𝑆! 

 

𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒: 𝑆!"#$ ≠ 𝑆!   𝑎𝑛𝑑  𝑆!"#$ ≠ 𝑆! 

 

We excluded those sites from our results where the parameter estimated for the offspring, 

𝑆!, was indistinguishable from the parameters estimated for both parent, i.e. if 𝑆! = 𝑆!"#$ 

and 𝑆! = 𝑆!"#$. Such sites were determined by comparing the dominant and additive models 

separately for 𝑝!"#,! and 𝑝!"#,! and excluding sites found to fit the dominant model in both. It 

is possible that additively inherited TFBSs may be misclassified if the difference in binding 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 19, 2016. ; https://doi.org/10.1101/059873doi: bioRxiv preprint 

https://doi.org/10.1101/059873
http://creativecommons.org/licenses/by/4.0/


	 9	

intensities between the parental measurements is small enough that the F1 measurement is 

statistically indistinguishable from either parent due to measurement noise. To minimize this 

potential source of error, we restricted tested sites to those TFBSs where the difference 

between the means of B6F0 and CASTF0 across biological replicates was equal or greater 

than twice the standard deviation of the average binding intensity across biological replicates 

(this was set at 19 normalized counts or more). To further increase confidence in our results, 

we only used sites assigned to their regulatory category with BIC>1. 

 

Over- and under-dominant TFBSs were identified by first restricting all TFBSs to those 

classified to a regulatory class with BIC>1. Normalised count data at each TFBS was fitted to 

the models described above. For each TFBS where the binding occupancy of each parent 

did not equalled to that of the offspring  (i.e. 𝑆!"#$ ≠ 𝑆!, 𝑆!"#$ ≠ 𝑆!), TFBSs were classified 

as under-dominant if the mean F1 occupancy level among replicates was less than that of 

both parents, on the other hand, TFBSs where the mean F1 occupancy level was greater 

than that of both parents were termed over-dominant.  

 

Statistical models to distinguish between cis and cistrans influences at lineage-

specific TFBSs 

Read counts were normalized between F0 and F1 libraries as described in the previous 

section 61. Lineage-specific binding sites were defined as those sites meeting these criteria: 

(ratioF0<0.05 and ratioF1<0.05) or (ratioF0>0.95 and ratioF1>0.95). ratioF0 = B6F0/(B6F0/CASTF0) 

and ratioF1=B6F1/(B6F1/CASTF1), where values were mean levels of binding among biological 

replicates. We expect that a lineage-specific site that is purely cis-regulated to possess F1 

count levels that are half of that in F0. Significant deviation from this 2:1 ratio would indicate 

a trans effect. We constructed the following statistical models to test the likelihood of these 

scenarios for each lineage-specific site and used maximum likelihood estimation and BIC to 

choose the model of best fit. At each TFBS, reads across replicates were modelled using the 

negative binomial distribution. 

 

𝑥 !  ~ 𝑃𝑜 𝑝! , 2𝑦!  ~ 𝑃𝑜 𝑜!  

 

𝑝!~ 𝐺𝑎 𝑟,
𝑆!"#$

1 − 𝑆!"#$
, 𝑜!~ 𝐺𝑎 𝑟,

𝑆!
1 − 𝑆!

 

 

𝑥 ! is defined as the normalized read count binding intensity of the variant in the ith F0 mouse 

from the strain of lineage-specific binding. 𝑦! is the binding intensity of the variant in the ith 
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F1 mouse summed across both alleles. The dispersion parameter, r, was estimated using 

‘DESeq’, as described above. We tested the two following scenarios: 

 

𝐶𝑖𝑠: 𝑆!"#$ = 𝑆!  

 

𝐶𝑖𝑠𝑡𝑟𝑎𝑛𝑠: 𝑆!"#$ ≠ 𝑆! 

 

Comparison of regulatory mechanisms underlying variation in gene expression and 

TF binding  

Logistic regressions were used to examine the relationship between gene expression and TF 

binding. For each gene where expression variation is driven of each of the following 

mechanisms: cis, cistrans, conserved and trans, we represent the transcriptional context by 

taking all TFBSs 20kb upstream and 10kb downstream of the TSS and counting the numbers 

of each TFBSs in each TF regulatory category. Counts of TFBSs in each regulatory category 

(i.e. number of TFBSs where occupancy levels were driven in cis, etc) were then used as 

four independent predictive variables. Separate regressions were performed using each of 

the four expression regulatory classes in turn as the dependent variable. The binary nature of 

the dependent variable was defined using remaining regulatory categories. We used the 

same strategy to study the relationship between TF binding and chromatin state (H3k4me3), 

that is, the mechanistic relationship between TFBSs proximal to the histone mark was 

assessed using logistic regression. The size of the genomic regions used for the grouping of 

TFBSs was +/- 2kb from each histone mark location. To test for shared regulatory 

mechanisms between H3K4me3 and gene expression, the histone marks were first linked to 

genes (within 5kb upstream of a TSS). As H3K4me3 marks active promoters, we expect a 

1:1 relationship between the histone modification and expressed genes. Binomial tests were 

then used to calculate the statistical enrichment of shared regulatory mechanisms at histone 

mark-gene pairs. 

 

We computed the diversity of TF regulatory mechanisms for genes grouped by expression 

mechanisms using Shannon’s diversity index (H’) 67, which was calculated for each gene as 

follows: 

 

𝐻! =  − 𝑎! ln 𝑎!

!

!!!
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where ai is the proportion of binding sites belonging to the ith TF binding regulatory category 

within 20kb upstream or 10kb downstream of a liver-expressed protein-coding gene.  

 

Gene expression levels show correlation with TFBS abundance. Thus, highly expressed 

genes are expected to be proximal to a more diverse set of mechanisms underlying TF 

occupancy change than by chance alone. Hence, to control for differences in expression 

levels, we subsampled genes to obtain matched gene expression levels between 

comparison sets. Gene expression levels were compared based on the average expression 

value among biological replicates of the more highly expressed parent. Mean expression 

levels were first log transformed then separated into 20 bins of equal consecutive intervals. 

Each cistrans-directed gene was then matched to a conserved regulated gene assigned to 

the same expression bin. In the same way, cis-driven genes were matched in expression 

values to conserved genes. All subsampling was done with replacement. 

 

Measuring the coordination of TF binding occupancy 

To determine the genomic region under the influence of any set of cis regulatory variants, we 

calculated correlation coefficients for binding intensities of TFBS pairs at successive genomic 

intervals away from each cis-directed TFBS. To capture the coordination of TF occupancies 

between TFBSs, we calculated Spearman’s correlation coefficient of allelic proportions 

(BL6/(BL6+CAST)) between binding sites at consecutive distance bins centred upon cis-

regulated variants. Spearman’s Rho was calculated for each mutually exclusive bin with their 

‘anchor’ peak. Interval width increased by 1kb at each succeeding bin extending from 1kb 

from the cis-driven variant. We performed linear regression using log-transformed distances 

as the predictor variable with Spearman’s Rho estimates as the outcome variable to quantify 

the decay in correlation signal (Methods, Figures 4a-b, S10).  

 

In order for meaningful inference, we generated a null distribution of the correlation of binding 

strengths by comparing occupancy levels of anchor TFBSs with the occupancies of other 

TFBS locations sampled randomly from across the genome. Null values were calculated 

using TFBSs that were randomly sampled from the total pool (without replacement) to 

simulate a set of binned peaks for each anchor peak (anchor peaks were kept constant). The 

total number of binned peak simulated was equal to the total number of anchored–binned 

peak pairings observed. Spearman’s Rho was then calculated as described for the observed 

set. 

 

To estimate the genomic distance at which the ‘elbow’ or maximum curvature of the curve 

occurs, we used a vector projection method on the fitted regression curve 68. First, we drew a 
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line connecting the points from 𝑥 = 1kb to where 𝑥 = 50000. Next, for every point on this line 

at values of 𝑥 we extended perpendicular lines to intersect with our regression line. We then 

measured the lengths of each of these lines and selected the point with the longest length as 

the estimate of the elbow. 

 

Hi-C data processing and analysis 

Hi-C libraries were generated from pooled liver samples from two 2-4 week old mice 37. Raw 

data files were quality filtered using Trimmomatic 59 using identical parameters to those 

described above. We used the Homer Hi-C software 

(http://homer.salk.edu/homer/interactions/) to process Hi-C reads and to identify significant 

interactions. Restriction sites (‘AAGCTT’) were trimmed from our reads prior to mapping to 

the GRCm38.p2/mm10 genome using GSNAP 62 at a maximum of two mismatches per read. 

Only reads mapping to unique locations in the genome were retained. Paired reads that likely 

represent continuous genomic fragments or re-ligation events were removed if the reads are 

separated by less than 1.5x the sequencing insert fragment length (-removePEbg). Paired 

ends that originate from areas of unusually high read density were also removed by scanning 

10kb regions in the genome and removing reads containing greater than five times the 

average number of reads (-removeSpikes 10000 5). Only reads where both ends of the 

paired read have a restriction site within the fragment length 3’ to the read were kept (-both). 

We also filtered reads if their ends self-ligated with adjacent restriction sites (-

removeSelfLigation). 

  

To detect significant interactions between two genomic locations, it was necessary to create 

a background model that accounts for the primary sources of technical biases to count 

enrichment. Closely spaced loci are inevitably enriched for interactions due to their close 

proximity. We used Homer to normalize both for linear distance and read depth. We 

normalized our reads at 10 kb regions across the genome and examined the number of 

interactions occurring between these regions. Enrichment for significant interactions were 

identified using a binomial test against the expected number of interactions based on the 

background model that also accounts for the total number of reads mapping to each locus 

being tested. Briefly, the parameters for the binomial test are as follows: the probability of 

success is the expected interaction frequency (which vary depending on restriction site 

locations), the number of success is the number of reads mapping between the loci, and the 

number of trials is the overall number of significantly interacting reads. 
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SUPLEMENTARY RESULTS: 

 

S1. TF binding affinity is more strongly regulated in cis than gene expression 

In 80% of instances when we compared any randomly chosen TFBS to any randomly chosen 

expressed gene, the magnitude of cis effect was greater for TF occupancy than for gene 

expression (magnitude measured by the distance between F1 alleles over 10,000 random 

comparisons). 

 

S2. Trans-influenced lineage-specific TFBS show little difference in compensatory 

versus diversifying effects  

We next calculated the percentages of trans-influenced binding locations that have a 

decreased difference in the F1 mouse in binding intensities between the alleles 

(compensatory) versus increased differences (diversifying). Under complete neutrality, they 

should be equally favoured (Tirosh et al. 2009). The amount of compensatory versus 

diversifying effects is not significantly different at lineage-specific TFBSs (binomial test, 

P=0.6) (Figure S8a). In comparison, of the 2,563 non-lineage-specific cistrans-regulated 

CEBPA binding sites, 64% are compensatory and 36% diversifying (binomial test, P<2.2e-

16) (Figure S6). These numbers closely mirror the proportion of compensatory versus 

diversifying effects reported for gene expression in liver (68% compensatory, 32% diverging) 

(Goncalves et al. 2012). No strain-specific TFBS that are regulated purely in trans were 

observed (i.e. strain-specific in F0 but equally bound in F1). In other words, our results 

strongly suggest that cis-directed mechanisms may either directly (e.g. modification of the 

binding motif) or indirectly (e.g. through the opening up of chromatin by altering the shape of 

the DNA) play a required role in birth of TFBSs.  

 

S3. No difference in selective pressure was detected between strain-specific TFBS 

that are gained and those that are lost 

The divergence time between BL6 and CAST is estimated to be less than a million years 

(Geraldes et al. 2008). Lineage-specific TFBS can be caused by: 1) lineage-specific loss of a 

TFBS that existed in the common ancestor of BL6 and CAST (plesiomorphic), or 2) lineage-

specific gain since the most recent common ancestor in one strain (apomorphic) (Figure 5c). 

To identify gained versus lost TFBS, we compared our lineage-specific TFBS with matched 

TFBS data obtained from livers of Mus Spretus (SPR) (Stefflova et al. 2013), a mouse 

species of equal evolutionary distance (ca. ~1.5–2 MY) to both BL6 and CAST (Dejager et al. 

2009). We distinguished between BL6 versus CAST lineage-specific binding sites that are 

apomorphic (present in BL6 not CAST or SPR and present in CAST not in BL6 or SPR) and 

plesiomorphic (shared between BL6 and SPR and between CAST and SPR but not BL6 and 
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CAST). Around 35% of TFBSs strain-specific between BL6 and CAST were also found in 

SPR, placing a lower bound on the number of plesiomorphic TFBSs. Proportions of cis and 

trans-influenced TF binding locations were evenly distributed between apomorphic and 

plesiomorphic (binomial test, P>0.01) suggesting that there is little difference in selection 

pressure between strain-specific TFBS that are gained and those that are lost. 

 

S4. Over- and under- dominant patterns of TF occupancy inheritance 

We searched for evidence of over- and under- dominant patterns of occupancy inheritance 

that correspond to respectively stronger or weaker F1 occupancy levels compared to 

parental measurements. In gene expression, this pattern of imbalance is thought to be 

associated with hybrid incompatibilities (Landry et al. 2005; McManus et al. 2010), and 

comprises approximately 27% and 8% (under- and over- , respectively) of expressed genes 

between two strains of fruit flies (McManus et al. 2010). In mice, we found that 6% and 11% 

of liver expressed genes showed under- and over- dominant modes of expression 

inheritance (Figure S7). In contrast, less than 1% of sites in mouse tissues were determined 

as under- or over- dominant across all TFBSs (where BIC>1) (Supplementary Data File). 

 

S5. Accounting for gene expression level when connecting the regulatory 

mechanisms underlying gene expression to TF occupancy 

In addition to using logistic regression to connect the mechanism underlying TF binding with 

gene expression, we tested for similar associations using an alternative strategy which takes 

into account expression level differences between genes. As before, we took all protein-

coding genes with at least one binding event in the region 20kb upstream and 10 kb 

downstream of the TSS. We then subsampled genes to match gene expression levels 

between regulatory classes. Again, we found that genes showing conserved expression 

levels were depleted for TFBSs with occupancy driven in cis (Mann-Whitney U test; on a per 

gene basis comparing the numbers of different TFBSs near conserved regulated genes 

against genes where expression is regulated in cis and cistrans, P=9.8e-11 and 2.2e-16, 

respectively). Hence, genes whose expression variation is regulated both in cis and cistrans 

possessed a higher than expected number of TFBSs driven in cis proximal to the TSS. 

Analysis of trans-regulated genes was generally non-informative due to the small number of 

genes (14) in this category. 

 

S6. Accounting for gene expression level in TFBS diversity analysis 

We considered the possibility that the association between diversity of TFBS and category of 

gene expression above might be due to differences in gene expression levels within each 

category. To control for this, we repeated the analysis by subsampling genes from each 
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regulatory category to generate subsets with matched expression levels. We observed little 

difference on our core results (Mann Whitney U test; cistrans versus conserved: P=1.4e-7, 

cis versus conserved: P=1.4e-3). 	
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Figure S1. Overview of computational analysis pipeline 
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Figure S2. Correlation of ChIP-seq measurements at SNVs between libraries of the 

same genetic background are consistently greater than between libraries from 

different genetic backgrounds. The histograms show the frequency of Spearman’s Rho for 

ChIP-seq measurements at SVNs between libraries. For each F0 library of the same TF or 

histone mark, Spearman’s Rho was calculated using libraries generated from the same 

genetic background (either BL6 or CAST) (dark colour). The frequencies of these values 

were displayed in the same plot as Rho values generated from comparisons with libraries 

from individuals of the other strain (light colour). For F1 individuals, correlations were made 

on an allele-specific basis.  
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Figure S3. A similar proportion of BL6 and CAST reads were mapped. Culmulative 

probability based on the ratio of BL6:CAST ChIP-seq measurements at SNVs were plotted. 

The vertical red line indicates 0.5 culmulative probability and the horizontal red line indicates 

where BL6/(BL6+CAST) = 0.5 (i.e. an equal number of BL6 and CAST reads).  
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Figure S4. The assignment of regulatory status shows that TF occupancy levels are 

cis-driven for a large proportion of TFBSs  

(A) Regulatory categories for variation in TF binding intensities were assigned based on 

comparison of normalized ChIP-seq read counts between BL6 and CAST at SNVs 

overlapping TFBSs. Due to a common nuclear environment, trans effects that are mediated 

by diffusible elements are expected to impact both alleles equally. Based on this, by 
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comparing BL6 and CAST ratios between F0 and F1 individuals one can classify TFBSs into 

various regulatory categories, namely – conserved, cis, trans, and cistrans. (B) Scatterplots 

of BL6 vs CAST ratios of TF binding intensities in F0 and F1 individuals. Each point 

represents a separate SNV. Regulatory categories are highlighted in separate scatterplots. 

Dark grey colour shows the remaining binding variants that do not belong in the highlighted 

category. CEBPA data is shown. (C) Pie charts depict the relative proportion of interrogated 

SNVs of each regulatory class for all SNVs overlapping TF bound locations, and only for 

SNVs positioned in the regulatory motif. 
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Figure S5. Examples of CEBPA binding sites classified into different regulatory 

modes. TFBSs were classified based on the statistical models described (see Methods). 

Numbers shown are normalized ChIP-seq counts at SNV locations. These sites are marked 

by a vertical line.  
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Figure S6. Validation of allele-specific measurements made using ChIP-seq. On the y-

axis, a measure of allele-specific occupancy change (using the BL6 allele as the reference) 

determined from ChIP-seq is plotted for seven SNVs, each of which is located under a 

separate CEBPA peak. On the x-axis, the corresponding measure of allele-specific binding 

occupancy determined from pyrosequencing is shown. ChIP-seq measurements were 

derived from the average allelic ratio across all F1 individuals in the study. Pyrosequencing 

measurements were taken as the average measurement across six biological replicates 

(averaging across the three technical replicates). Importantly, the correspondence between 

the ChIP-seq and the pyrosequencing data was high for SNVs even at moderate levels of 

binding occupancy change in allelic ratio. SNVs for which primer allelic biases were detected 

were not included in plot (see Table S2 for full list of primers).  
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Figure S7. TF binding measurements are slightly noisier than gene expression. We use 

the coefficient of variance (SD/mean), a standardized measure of variance, to compare the 

level of noise across our replicates for TF binding to that of gene expression. The figure 

shows that expression measurements are more consistent across replicates than TF binding 

occupancy measurements. This is not surprising as the expression level of a gene can be 

estimated by many more SNVs than TF binding (thus reducing residual error). Therefore, the 

difference between TF binding and gene expression shown in Figure 2A cannot be explained 

by the difference in experimental error or biological noise.  
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Figure S8. Compensatory versus diversifying cistrans modes of regulation. (A) 

Cistrans regulated sites can be further classified into those showing either diversifying or 

compensatory effects. These can then be compared to cistrans-regulated sites from all non-

lineage-specific binding events. Data for CEBPA is shown. (B) Purely cis-driven highly allele-

specific TFBSs were classified into those that were gained in BL6 or CAST and those which 

were lost in in BL6 or CAST based on parsimony by comparison with TF binding data in Mus 

spretus (counts in brackets).  
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Figure S9. Perturbation of TF expression is more likely to cause changes in the 

binding occupancy of cis and cistrans driven TFBSs. To restrict analyses to confidently 

called regulatory categories, only cis and cistrans driven TFBSs classified with BIC>2 are 

shown.  
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Figure S10. Patterns of inheritance of gene expression and TF occupancy levels are 

distinctly different. Smoothed density scatterplots showing the distribution of inheritance 

patterns for genes and TFBSs (CEBPA). Hybrid and parental values were summed across 

both alleles. Axes show log2 transformed parental subtracted from log2 transformed hybrid 

values (i.e. log2 (hybrid) - log2 (parental)). All values have been normalized for sequencing 

depth differences across F0 and F1 libraries. 
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Figure S11. Colocating TFBSs show coordination in their mode of regulation. 

Percentage of expected and observed instances where all three colocating TFBSs (CEBPA, 

HNF4A, FOXA1) are regulated in cis, trans, conserved and cistrans. ***P<0.0001.  
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Figure S12. Rapid loss of cis-mediated inter-peak correspondence with genomic 

distance (0-400kb) Spearman’s ρ values for each bin were plotted for each TF. Red solid 

line is the linear regression line. Grey dots represent the background distribution. These data 

points were constructed by random subsampling of TFBSs to anchor TFBSs (see Methods). 

The numbers of TFBSs in each randomly sampled bin were matched to those in the 

observed bins. The grey line is the linear regression line for the correlation values derived 

from sampled points.   
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Figure S13. Comparison of allele-specific ratio for cis-regulated TF binding intensities 

and gene expression values for cis-regulated genes. TFBSs were associated to a gene 

based on their location either 20kb upstream or 10kb downstream of the TSS of an 

expressed cis-regulated protein-coding gene. Averaged values across biological replicates 

are plotted. The probability of points lying in quadrants 2 and 3 is 0.6. 
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Table S1. Odds ratios for chromatin contact enrichment at different regulatory 

categories. We derived odds ratios from the coefficients of a logistic regression analysis 

whereby the underlying regulatory mechanisms were regressed against whether a TFBS 

location overlapped a region displaying enrichment for long-range chromatin contact (as 

determined by Hi-C). 95% confident intervals are presented in brackets. ***P<0.0001 

**P<0.001* P<0.05. 
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Table S2. Primers used for pyrosequencing validation 
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Table S3. Primers used for the genotyping of heterozygous knockout mice 
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