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Abstract

The nature of the code used in the auditory cortex to represent complex auditory

stimuli, such as naturally spoken words, remains a matter of debate. Here we argue that

such representations are encoded by stable spatio-temporal patterns of firing within cell

assemblies known as polychronous groups, or PGs. We develop a physiologically

grounded, unsupervised spiking neural network model of the auditory brain with local,

biologically realistic, spike-time dependent plasticity (STDP) learning, and show that
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the plastic cortical layers of the network develop PGs which convey substantially more

information about the speaker independent identity of two naturally spoken word

stimuli than does rate encoding that ignores the precise spike timings. We furthermore

demonstrate that such informative PGs can only develop if the input spatio-temporal

spike patterns to the plastic cortical areas of the model are relatively stable.

Author Summary

Currently we still do not know how the auditory cortex encodes the identity of complex

auditory objects, such as words, given the great variability in the raw auditory waves

that correspond to the different pronunciations of the same word by different speakers.

Here we argue for temporal information encoding within neural cell assemblies for

representing auditory objects. Unlike the more traditionally accepted rate encoding,

temporal encoding takes into account the precise relative timing of spikes across a

population of neurons. We provide support for our hypothesis by building a

neurophysiologically grounded spiking neural network model of the auditory brain with

a biologically plausible learning mechanism. We show that the model learns to

differentiate between naturally spoken digits “one” and “two” pronounced by numerous

speakers in a speaker-independent manner through simple unsupervised exposure to the

words. Our simulations demonstrate that temporal encoding contains significantly more

information about the two words than rate encoding. We also show that such learning

depends on the presence of stable patterns of firing in the input to the cortical areas of

the model that are performing the learning.

Introduction 1

The nature of the neural code used by the auditory brain to represent complex auditory 2

stimuli, such as naturally spoken words, remains uncertain [1, 2]. A variety of spike rate 3

and spike timing coding schemes are being debated. Rate encoding presumes that the 4

identity of an auditory stimulus is encoded by the average firing rate of a subset of 5

neurons, but the precise timing of individual spikes is irrelevant. Temporal encoding 6

suggests that different auditory stimuli are represented by spatio-temporal patterns of 7
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spiking activity within populations of neurons, where the relative timing of the spikes is 8

part of the representation. 9

A widely held view of the auditory pathway is that temporal encoding plays a major 10

role in the early subcortical areas, but becomes increasingly less important in the 11

midbrain and the cortical areas [3]. Here we build on existing theories of learning in 12

spiking neural networks [4–7] to argue that temporal coding may have a crucial role to 13

play in the auditory cortex. In particular, we argue that the basic information encoding 14

units for representing complex auditory stimuli, such as naturally spoken words, in the 15

auditory cortex are spatio-temporal patterns of firing within cell assemblies called 16

polychronous groups (PGs) [6]. 17

Our hypothesis is evaluated using a biologically inspired hierarchical spiking neural 18

network model of the auditory brain comprising of the auditory nerve (AN), cochlear 19

nucleus (CN), inferior colliculus (IC), and auditory cortex (CX) stages, where the last 20

CX stage includes primary (A1) and “higher order” (Belt) cortex (Fig. 1). Using only 21

biologically plausible local spike-time dependent plasticity (STDP) learning [8], our 22

auditory brain model is trained to discriminate between two naturally spoken words, 23

“one” and “two”, through unsupervised exposure to the stimuli. In order to succeed on 24

the task, the model has to learn how to cope with the great variability of the acoustic 25

waveforms of these sounds when pronounced by many different speakers (TIDIGITS 26

database [9]). 27

We show that stable spatio-temporal patterns of firing (PGs) spontaneously emerge 28

within the CX stage of the model, and that they are significantly more informative of 29

the auditory object identity than an alternative rate coded information encoding scheme 30

that disregards the precise spike timing information. Furthermore, our results show that 31

such PG-based learning in the plastic cortical stages of the model relies on relatively 32

stable spatio-temporal input patterns. Due to the stochasticity of spiking times in the 33

AN, if the AN spike patterns are fed directly to the plastic cortical areas, these spike 34

patterns are not stable enough for the emergence of informative PGs in the cortical 35

areas [10]. Hence, the particular subcortical circuitry of the CN and IC is necessary to 36

reduce the high levels of noise known to exist in the AN and re-introduce stability 37

within the firing patterns that serve as input to the plastic cortical areas of the model, 38

thus enabling PG-based learning to emerge in the plastic CX [10]. 39
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Fig 1. Schematic representation of the full AN-CN-IC-CX and reduced AN-CX models.
In the AN-CX model, direct plastic connections from the AN to the A1 replace CN and
IC layers. Blue circles are excitatory, red circles inhibitory cells.

The main contributions of our paper are two-fold: 1) we provide simulation evidence 40

to argue for spatio-temporal information encoding using PGs in the auditory cortex; 41

and 2) we demonstrate that PG-based learning in the plastic auditory cortex relies on 42

the relative stability of the input spatio-temporal firing patterns. 43

Materials and Methods 44

Learning mechanisms 45

In order to form speaker independent representations of different words, the auditory 46

brain has to be able to respond in a manner that discriminates between different words 47

but not between different exemplars of the same word. This is a challenging task, given 48

the great variability in the raw auditory waves corresponding to the same word due to 49

differences in pronunciation both within and between speakers. This input variability is 50

further compounded by the stochasticity present in the firing patterns generated at the 51

first neural stage of auditory processing, the AN. How can the brain discover the 52

statistical regularities differentiating various words in such noisy inputs? We believe an 53
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answer to this question can be found in a number of independent yet overlapping 54

theories describing how spiking neural networks with local STDP learning may discover 55

and amplify the statistical regularities in temporal input patterns [4–7]. 56

Learning to extract repeating patterns from noise: The first relevant idea was 57

described by [5], who showed that a single spiking neuron can learn to pick out a 58

repeating spatio-temporal pattern of firing from statistically identical noise using STDP 59

learning (see Fig. 2A). This effect depends on the particular biologically realistic STDP 60

learning configuration with stronger long term depression (LTD) (parameters αd and τd 61

in our models, see Tbl. 1) compared to long term potentiation (LTP) (parameters αp 62

and τp in our models, see Tbl. 1). Such STDP configuration results in the overall 63

weakening of the feedforward connections (wBLij in our models, see Tbl. 1) to the output 64

neuron due to the random input firing in response to noise. This is true for all 65

connections apart from those originating from the input cells involved in the repeating 66

pattern, which instead get strengthened due to repeating LTP every time the pattern is 67

presented. Such simple circuits are able to cope with variable or degraded inputs while 68

maintaining stable, informative output representations. For example, they may learn to 69

cope with the presence of temporal jitter in the input on the order of a few milliseconds, 70

additive Poisson noise of up to 10 Hz, or loss of up to half of the neurons participating 71

in the input repeating pattern [5]. 72

Extending the memory capacity and temporal receptive fields for repeating 73

pattern learning: The output neuron described by [5] can learn one short 74

spatio-temporal pattern of firing (see Fig. 2A). The learning depends on firing 75

co-occurences within the pattern that lie within the neuron’s temporal integration 76

window (on the order of a few milliseconds). Such a setup in its original form therefore 77

has limited value for learning longer spatio-temporal patterns, such as words, that can 78

last on the order of hundreds of milliseconds. This shortcoming can be partially averted 79

by the addition of randomly initialised conduction delays (∆ij in our models, see Tbl. 1) 80

for the feed-forward connections (wBLij in our models, see Tbl. 1). The conduction 81

delays would extend the temporal range of coincidences that each output neuron can 82

detect (see Fig. 2B). 83
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Fig 2. A: single output neuron (green) can learn to pick out a repeating
spatio-temporal pattern of firing (red) out of statistically identical noise (black) [5]. In
this example the output neuron relies on concurrent input from at least five input
neurons in order to fire. Due to instantaneous axonal conductances, the neuron has a
very narrow temporal integration window of a few milliseconds (shown in light green).
B: If random axonal conduction delays (∆ij in our models, see Tbl. 1) are added for the
feedforward connections (wBLij in our models, see Tbl. 1), each neuron in the next stage
of the model (green) becomes sensitive to a particular pattern of firing in the input.
Axonal conduction delays extend temporal integration windows of output neurons
(shown in light green). Adding extra output layers with random distributions of axonal
delays creates a hierarchy of pattern learning neurons. Neurons at the end of such a
hierarchy (blue) have the largest temporal integration windows (shown in light blue) C:
different pronunciations of words “one”, “two”, and “three” by two different speakers
(red and blue dots respectively) lie on different low dimensional manifolds.
Polychronous groups (PGs) [6] in the auditory cortex (blue circles) can learn to become
sensitive to similar pronunciations of one preferred word (solid ovals). Continuous
transformation learning [4] extends the sensitivity of PGs to more different
pronunciations of the preferred word (dashed ovals), while maintaining the selectivity of
PGs to exemplars of one word only.

If an output neuron receives input spikes through connections with randomly 84

initialised delays, it will only fire if the right input neurons fire in the right temporal 85

order that matches the delay lines. Only then would their spikes arrive at the output 86

neuron coincidentally and depolarise it enough to fire. Since different output neurons 87

will have different axonal delays initialised for their afferent connections, they will be 88

sensitive to different input patterns of firing. Hence, the addition of extra output 89

neurons with different randomly initialised delays would introduce heterogeneity in the 90

types of spatio-temporal patterns the output layer as a whole can learn (see Fig. 2B). 91

Such heterogeneity would allow the feedforward network to organise its firing into a 92

hierarchy of “polychronous groups” (PGs) [6]. PGs are stable spatio-temporal patterns 93

of firing, where neurons within a layer “exhibit reproducible time-locked but not 94

synchronous firing patterns with millisecond precision” [6]. Each neuron can be part of 95

numerous PGs, thus increasing network memory capacity [6]. The idea is that PGs in 96
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each layer will be sensitive to particular parts of repeating spatio-temporal patterns that 97

are characteristic of a particular stimulus class. Throughout the hierarchy of the 98

network, PGs will emerge that are more invariant to the different variations of their 99

preferred pattern and have longer temporal receptive fields. The details of such 100

PG-based learning is discussed next. 101

The nature of learnt PGs is shaped by the interplay between delay lines, STDP 102

learning and stimulus structure. A random distribution of conduction delays sets up a 103

repertoire of PGs in a network as described above. When a stimulus is presented to the 104

network, the resulting input spatio-temporal firing patterns are propagated through a 105

set of connections with random delays. If that set of connections is large then it may 106

contain subsets of connections with delays which happen to match the characteristic 107

spatio-temporal firing patterns in the input in a manner that allows the input spikes to 108

converge synchronously on a receiving neuron. This receiving neuron thereby receives 109

super-threshold activation, and its connections to the input spatio-temporal pattern are 110

strengthened by STDP learning. 111

In this manner, different output layer neurons become sensitized to the characteristic 112

activity of different patterns of firing in the input layer. The temporal structure of the 113

input stimuli may cause the output layer neurons themselves to generate reproducible 114

spatio-temporal firing patterns, giving rise to “higher order” PGs, which may in turn be 115

learned by the next layer in the network. Such a feedforward hierarchy could take 116

advantage of cumulative delays over several layers of connectivity, enabling PGs to 117

discover regularities in the temporal structure of input stimuli over an ever wider 118

temporal scale (see Fig. 2B). 119

Extending robustness to pattern variability: While building on the setup 120

described by [5], PG-based learning is still not quite sufficient to enable a feedforward 121

spiking neural network to form speaker independent representations of naturally spoken 122

words, because it is unable to cope with the high degree of pronunciation variability. To 123

tackle this we introduce the last relevant concept: the Continuous Transformation (CT) 124

learning principle [4]. CT learning is a mechanism originally developed to describe 125

geometric transform invariant visual object recognition in a rate-coded neural network 126

model of the ventral visual stream [11]. It takes advantage of the fact that when visual 127
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objects undergo smooth transformations, such as rotations, translations or scalings, the 128

nearest neighbours of the resulting projections into the two-dimensional retinal input 129

space have a high degree of overlap or correlation. CT learning binds these similar input 130

patterns together into an invariant representation of that object (or an object orbit 131

according to [12]) and maps them onto the same subset of higher stage neurons. 132

While originally conceived around learning transform invariant representations of 133

visual objects, CT learning generalizes to other modalities where the nearest neighbours 134

of different exemplars of a given stimulus class strongly overlap in the high dimensional 135

raw sensory input space. For example, different pronunciations of the same word might 136

form a low-dimensional manifold for that word, and different words might form different 137

manifolds (see Fig. 2C). Two different pronunciations of one word may have highly 138

overlapping AN spatio-temporal firing rasters, and hence be nearest neighbours on the 139

corresponding low-dimensional manifold for that word. By chance, a PG may be 140

sensitive to a particular region of that word manifold. CT learning would then “expand” 141

the span of such a PG to a more extensive region of the manifold, while preserving the 142

selectivity of the PG to its preferred word manifold only. In this way a hierarchy of PGs 143

would emerge through learning in a feed-forward spiking neural network, whereby PGs 144

higher up in the hierarchy would learn to respond to an increasing number of 145

pronunciations of the same word, while ignoring the pronunciations of all other words. 146

Stimuli 147

Recordings of two pronunciations of the digits “one” and “two” from each of 94 native 148

American English speakers served as stimuli (TIDIGITS database [9]). Each utterance 149

was normalised for loudness using the root mean square measure of the average power of 150

the signal. This was done to remove any potential effect of stimulus loudness on learning. 151

The model was trained on the first utterance by each speaker, and tested on the second. 152

The training set was presented to the model ten times. The two digits were presented in 153

an interleaved fashion. Informal tests demonstrated that on average the order in which 154

the stimuli were presented did not significantly affect the performance of the trained 155

models. It did, however, introduce higher trial to trial variability. Hence, we fixed the 156

presentation schedule for the simulations described in this paper for a more fair model 157
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comparison. Each word was followed by 100 ms of silence. The silence was introduced 158

to aleviate the confounding problem of having to perform word segmentation. 159

All reported results are calculated using model responses to the witheld test set of 160

188 distinct auditory stimuli (2 words spoken by the same 94 speakers as during 161

training, but the particular pronunciations of the words were different from the training 162

set). Each testing exemplar was presented 4 times, because due to the stochasticity of 163

AN responses, input AN spike patterns in response to repeated presentations of the 164

same word were not identical. This means that the results are reported in response to 165

752 testing examples in total (2 words * 94 speakers * 4 presentations). 166

Spiking neural network architecture 167

To investigate whether information about auditory objects, such as words, is better 168

encoded within spatio-temporal PGs rather than through rate encoding, we constructed 169

a biologically grounded, unsupervised spiking neural network model of the auditory 170

pathway, as shown in Fig. 1 (for full model parameters see Tbl. 1) [10]. The 171

AN-CN-IC-CX model comprised of five layers: 1) the auditory nerve (AN); 2) the 172

cochlear nucleus (CN), encompassing subpopulations representing three major ventral 173

CN cell classes described by neurophysiologists: chopper (CH), onset (ON) and 174

primary-like (PL); 3) the midbrain (inferior colliculus or IC) on which all CN 175

subpopulations converge; and 4-5) cortical (CX) layers: primary (A1) and secondary 176

(Belt) auditory cortex. We hypothesize that the subcortical layers (CN, IC) play a key 177

role in reducing the physiological noise inherent to the AN. To investigate their 178

importance we also constructed and evaluated a reduced AN-CX model without the CN 179

or IC stages. 180

In the brain sub-populations of the CN do not necessarily synapse on the IC directly. 181

Instead, they pass through a number of nuclei within the superior olivary complex 182

(SOC). The nature of processing done within the SOC in terms of auditory object 183

recognition (rather than sound localisation), however, is unclear. The information from 184

the different CN sub-populations does converge in the IC eventually, and for the 185

purposes of the current argument we model this convergence as direct. The same 186

simplified connectivity pattern (direct CN-IC projections) was implemented by [13] for 187
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their model of the subcortical auditory brain. 188

Another simplification within our models has to do with the higher stages IC, A1 189

and Belt. They are not as neurophysiologically detailed as AN or CN. For example, the 190

A1 stages of the full AN-CN-IC-CX and the reduced AN-CX models are supposed to be 191

a loose and simplified approximation of the MGN and A1 in the real brain. 192

Furthermore, we did not include recurrent connectivity in the cortical stages of our 193

models. This simplification was done to be able to analyse the emergence and the 194

nature of PGs for auditory stimulus encoding. Detecting PGs is a non-trivial problem 195

even in feedforward architectures. It becomes even harder once recurrency is introduced. 196

While we believe that recurrent connections are important for learning longer auditory 197

sequences, and for dealing with speech in noise, we leave their inclusion for future work. 198

Auditory Nerve (AN) 199

The AN comprised of 1000 medium spontaneous rate fibres modelled as described 200

by [14], with log spaced characteristic frequencies (CF) between 300-3500 Hz, and a 201

60 dB threshold. The AN model by [14] has a high level of physiologically realism, 202

ensuring that our models receive input which is highly representative of the signal 203

processing challenges faced by the real auditory brain hierarchy. AN fibers, both 204

biological ones and those of the model, are noisy channels plagued by “temporal and 205

spatial jitter”. Temporal jitter arises when the propensity of the AN fibers to phase lock 206

to temporal features of the stimulus is degraded by poisson-like noise in the nerve fibers 207

and refractoriness [15]. “Spatial jitter” refers to the fact that neighbouring AN fibers 208

have almost identical tuning properties, so that an action potential that might be 209

expected at a particular fiber at a particular time may instead be observed in 210

neighbouring fibers (the “volley principle” [16]). Both forms of jitter disrupt the firing 211

pattern precision required for PG learning, and reducing the jitter should help the 212

plastic CX layers of the model to learn the statistical structure of the stimulus set [10]. 213

Jitter reduction can be accomplished by the CN and IC layers, which were modelled 214

closely on anatomical and physiological characteristics of their biological 215

counterparts [10]. 216
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Neuron Model 217

Apart from the AN, which was modelled as described by [14], all other cells used in this 218

paper were spiking neurons as specified by [17]. The spiking neuron model by [17] was 219

chosen because it combines much of the biological realism of the Hodgkin-Huxley model 220

with the computational efficiency of integrate-and-fire neurons. We implemented our 221

models using the Brian simulator with a 0.1 ms simulation time step [18]. The native 222

Brian exponential STDP learning rule with nearest mixed (spike rule and STDP rule 223

parameters respectively in Tbl. 1) weight update paradigm was used [18]. A range of 224

conduction delays (∆ij) between layers is a key feature of our models. In real brains, 225

these delays might be axonal, dendritic, synaptic or due to indirect connections [19], but 226

in the model, for simplicity, all delays were implemented as axonal. The ∆ij ∈ [0, 50] ms 227

range was chosen to approximately match the range reported by [6]. 228

Excitatory Cells Neurophysiological evidence suggests that many neurons in the 229

subcortical auditory brain have high spiking thresholds and short temporal integration 230

windows, thus acting more like coincidence detectors than rate integrators [3, 20]. This 231

is similar to the behaviour of the Izhikevich’s Class 1 neurons [17]. All subcortical (CN, 232

IC) excitatory cells were, therefore, implemented as Class 1. To take into account the 233

tendency of neurons in the auditory cortex to show strong adaptation under continuous 234

stimulation [21] Izhikevich’s Spike Frequency Adaptation neurons were chosen to model 235

the excitatory cells in the auditory cortex (A1 and Belt). 236

Inhibitory Cells Since inhibitory interneurons are known to be common in most 237

areas of the auditory brain [3, 21] except the AN, each stage of the models apart from 238

the AN contained both excitatory and inhibitory neurons. Inhibitory cells were 239

implemented as Izhikevich’s Phasic Bursting neurons [17]. Sparse connectivity between 240

excitatory to inhibitory cells (wEIij ) within a model area was modelled using strong 241

one-to-one connections from each excitatory cell to an inhibitory partner. Each 242

inhibitory cell, in turn, was fully connected to all excitatory cells (wIEij ). Such an 243

inhibitory architecture implemented dynamic and tightly balanced inhibition as 244

described in [22], which resulted in competition between excitatory neurons, and also 245

provided negative feedback to regulate the total level of firing within an area. Informal 246
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tests demonstrated that the exact implementation or choice of neuron type for 247

within-layer inhibition did not have a significant impact on the results presented in this 248

paper, as long as the implementation still achieved an appropriate level of within-layer 249

competition and activity modulation. 250

Cochlear Nucleus (CN) 251

The model CN was implemented as three parallel cell populations: 1000 CH neurons, 252

1000 PL neurons and 100 ON neurons. The CH cells removed space jitter while ON 253

cells removed time jitter. Their activity was combined in the IC to produce spike rasters 254

with reduced jitter in both space and time. The modelling choices for the three 255

subpopulations of CN are described in more detail below. 256

In the brain CH cells receive a small number of afferent connections from AN 257

neurons with similar CFs [23]. The incoming signals are integrated to produce regular 258

spike trains. In the full AN-CN-IC-CX model, a CH subpopulation was simulated by 259

units with Gaussian topological input connectivity, where each CH cell received 260

afferents from a small tonotopic region of the AN (σ = 26 AN fibers). Their discharge 261

properties correspond closely to those reported experimentally for biological CH neurons 262

(Fig. 3, right column). 263

PL neurons make up ≈ 47% of the ventral CN in the brain [23], suggesting an 264

important role in auditory processing. Although their contribution to the processing of 265

AN discharge patterns is perhaps less clear, informal tests in our model indicate that 266

their inclusion leads to significantly better model performance [10]. PL cells essentially 267

transcribe AN firing [23] and were modelled using strong one-to-one afferent connections 268

(wBLij ) from the AN. The discharge properties of the model PL neurons also correspond 269

closely to those reported experimentally (Fig. 3, left column). 270

ON cells are relatively rare, constituting around 10% of the ventral CN [23]. They 271

require strong synchronized input from many AN fibers with a wide range of CFs in 272

order to fire [20], which results in broad frequency tuning and enables them to 273

phase-lock to the fundamental frequency (F0) of voiced speech sounds [26]. In the full 274

AN-CN-IC-CX model, an ON cell population was simulated using sparse (34%) 275

connectivity from across the AN. The interplay between converging ON and CH cell 276

inputs to the IC can reduce jitter in the neural representation of vocalisation sounds. 277
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Fig 3. Spectra (computed as Fast Fourier Transforms of period histograms) of
primary-like (PL) (left column) and chopper (CH) (right column) cochlear nucleus
neuron responses to a synthetic vowel /a/ generated using the Klatt synthesiser [24].
The ordinate represents the level of phase-locking to the stimulus at frequencies shown
along the abscissa. Dotted lines show the positions of the vowel formant frequencies F1

and F2. Data from chinchilla CN fibers reproduced from [25] is shown in solid blue.
Data collected from the corresponding model CN fibers is shown in dashed red.
Similarity between the real and model fibers’ response properties suggests that the
model’s performance is comparable to the neurophysiological data.

Since ON cells synchronise to the voice F0, they can introduce regularly spaced strong 278

afferent input to the IC. Even if these afferent currents are sub-threshold, they 279

nevertheless prime the postsynaptic IC cells to discharge at times corresponding to the 280

cycles of stimulus F0. If IC cells also receive input from CH cells, then ON afferents will 281

help synchronise CH inputs within the IC by increasing the likelihood of the IC cells 282

firing at the beginning of each F0 cycle. This is similar to the neural coding ideas first 283

described by [7]. 284

Inferior Colliculus (IC) and Auditory Cortex (CX) 285

Each model IC cell received one-to-one afferent connectivity from PL, narrow tonotopic 286

connectivity from CH (σ = 2 neurons) and full connectivity from the ON cells. These 287

subcortical connections (wBLij ) were not plastic. The IC→A1 and A1→Belt (and the 288

equivalent AN→A1 and A1→Belt in the reduced AN-CX model) connectivity was full, 289
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feedforward, with STDP learning [8] (parameters αp, αd, τp and τd in our models, see 290

Tbl. 1) and a uniform distribution of conduction delays (∆ij ∈ [0, 50] ms) [27]. The 291

initial afferent connection strengths were randomly initialised using values drawn from a 292

uniform distribution wBLij ∈ [30, 35] nA. 293

Polychronization index 294

As outlined in the introduction, we envisaged that our model of the auditory brain 295

would exhibit unsupervised learning of speaker independent representations of naturally 296

spoken words “one” and “two” by forming a hierarchy of stable spatio-temporal 297

patterns of firing (PGs). An exhaustive search for PGs through the network was 298

prohibitive, especially given that the number of neurons participating in each PG was 299

unknown a priori, and could be large and variable [28]. We therefore developed a 300

numerical score, the “polychronization index” (PI) to quantify the prevalence of 301

reproducible patterns of firing across the population of neurons in one layer. 302

The PI was calculated for each cell j within a particular stage of the model. For 303

each spike produced by cell j we searched for spikes fired by other cells within the same 304

stage of the model within a fixed time interval ∆tj . PGs which are informative of a 305

stimulus class should be reproducible across the different presentations of different 306

exemplars ek(s) of the stimulus class, where k ∈ {1, ..., 376} is the number of exemplars 307

(4 repetitions of 94 pronunciations) of each of the s = 2 stimulus classes (words “one” 308

and “two”). For each presentation of stimulus exemplar ek(s) we randomly selected one 309

spike by cell j and noted its time tj post stimulus onset. We then constructed a 1000 310

neuron by 101 ms matrix M j
ek(s) representing the firing of the other neurons within the 311

same stage of the model that occured within ∆t = tj ± 50 ms at 1 ms resolution. The 312

±50 ms time window reflects the maximum conduction delay (∆ij) in our model, which 313

puts an upper limit on the temporal integration window of neuron j. If neuron j is part 314

of a PG selective of a particular stimulus class s, then we would expect to see similar 315

firing pattern matrices M j
ek(s) for different ek(s). Consequently, elements of M j

ek(s) 316

which are non-zero across the different stimulus exemplars more frequently than would 317

be expected by chance (where chance levels can be estimated from the average firing 318

rate f) are diagnostic of the PG firing pattern. The larger the proportion of stimulus 319
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exemplars for which these elements are non-zero, the more established and reproducible 320

the PG firing pattern is across the responses to the different exemplars from the given 321

stimulus category. 322

We therefore computed M j
s =

〈
M j
ek(s)

〉
, where 〈·〉 signifies the mean over all the 323

exemplars ek(s) of stimulus class s, and then identified the ten elements of M j
s with the 324

largest mean spike counts (mj
s)n, where n ∈ {1, ..., 10} (the element corresponding to 325

the randomly sampled spike by cell j occurring at time t was ignored). These were used 326

to compute ajs =
〈
(mj

s)n
〉
/f , where f is the average firing rate within the layer and 〈·〉 327

signifies the mean over the ten largest elements indexed by n. 328

Thus, ajs quantifies the evidence that cell j participates in polychronous firing in its 329

responses to stimulus class s. To calculate an overall polychronization index which is 330

not stimulus specific we simply compute PIj = maxs(a
j
s). The larger the PIj , the 331

stronger the evidence that cell j takes part in a PG. 332

Information analysis 333

Apart from quantifying whether PGs arise throughout the hierarchy of our model of the 334

auditory brain, it is imporant to measure how informative these PGs are about the two 335

stimulus classes, words “one” and “two”. One common way to quantify such learning 336

success is to estimate the mutual information between stimulus class and neural 337

response I(S;R). It is calculated as I(S;R) =
∑
s∈S,r∈R p(s, r)log2

p(s,r)
p(s)p(r) , where S is 338

the set of all stimuli and R is the set of all possible PG responses, p(S,R) is the joint 339

probability distribution of stimuli and responses, and p(s) =
∑
r∈R p(s, r) and 340

p(r) =
∑
s∈S p(s, r) are the marginal distributions [29]. Stimulus-response confusion 341

matrices were constructed using decoder multi-layer perceptron (MLP) networks (see 342

below), and used to calculate I(S;R). 343

Our information analysis approach uses observed frequencies as estimators for 344

underlying probabilities p(s), p(r) and p(s, r). This introduces a positive bias to our 345

information estimates Bias ≈ #bins
2Nlog22 , where #bins is the number of potentially 346

non-zero cells in the joint probability table, and N is the number of recording trials [29]. 347

Given the large N in our tests of model performance (N = 752), the bias was negligible 348

(Bias ≈ 0.004 bits) and was ignored. 349
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The upper limit of mutual information to be achieved by PGs in our models I(S;R) 350

is given H(s) =
∑
s p(s)log2

1
p(s) , which, given that we had two equiprobable stimulus 351

classes, here equals 1 bit. 352

Using multi-layer perceptron (MLP) decoders to evaluate network 353

performance: Decoder MLPs were used to evaluate the ability of PGs within the full 354

AN-CN-IC-CX and the reduced AN-CX models of the auditory brain to represent 355

stimulus identity. We compared the amount of information about the two stimulus 356

classes “one” and “two” when using either rate or temporal encoding schemes in the 357

two models. The MLPs were trained to classify 752 input vectors xi ∈ R201 as either 358

word “one” or “two”. The nature of the input feature vectors xi for the temporal and 359

rate encoding schemes is described below. 360

Our MLP decoders had a small, single hidden layer of 20 units (10% of the input 361

layer size) to limit their capacity and therefore to make them more sensitive to the 362

informativeness of different auditory brain models and encoding schemes under 363

investigation. The MLPs had hidden layer neurons with hyperbolic tangent transfer 364

functions. They were trained until convergence using scaled conjugate gradient 365

descent [30] and a cross-entropy loss function. Once the MLPs were trained, their 366

classification outputs were used to fill the confusion matrices used in the information 367

analysis calculations described above. The process was repeated 20 times, each time 368

with a different random subsample of J cells, to obtain a distribution of stimulus 369

information estimates for each cell population. 370

Temporal code: Temporal encoding assumes that information about stimulus class 371

is provided by spatio-temporal firing patterns (PGs). In order to be informative, the 372

same PG must be present more frequently in response to the exemplars of one stimulus 373

class than the other. The vectors xi used as input to the decoder MLPs were designed 374

to capture PGs within a particular stage of the auditory brain model. As discussed 375

previously, it is unfeasible to explicitly identify PGs in our models. We do not know 376

which neurons within a stage of the auditory brain model participate in a PG and which 377

ones do not. We therefore introduce an approximate computationally feasible protocol 378

to get an indication of the presence of PGs within a stage of the model, and then to use 379

these approximations to calculate how informative the approximated PGs in this stage 380

are. We appreciate that our meaure is not perfect, but we accept it, because it 381

PLOS 16/28

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 19, 2016. ; https://doi.org/10.1101/059840doi: bioRxiv preprint 

https://doi.org/10.1101/059840


approximately lowerbounds the informativeness of PGs in the models, and it is 382

informative enough to differentiate between the different models. 383

Our protocol takes the following form. First, in order to restrict the computational 384

load, we randomly sample J = 100 cells from within the chosen auditory model stage. 385

We make an assumption that every cell j within this sample takes part in a PG. We 386

then train a separate MLPj to try and classify the two stimulus classes, words “one” 387

and “two”, using the approximated PGs that each cell j is part of. If our assumption 388

was correct and cell j indeed participated in a PG, then MLPj will achieve high 389

classification accuracy, otherwise the classification accuracy will be low. 390

We quantified reproducible PG spatio-temporal patterns for each cell j using 391

methods analogous to those used to calculate the polychronization index (PI) (see 392

Sec. Polychronization Index). For each cell j we first computed a 100 neuron by 393

101 ms matrix M j
ek(s). This was computed in the same was as for the PI score (see 394

Sec. Polychronization Index), where 100 neurons are the randomly sampled subset of 395

100 neurons within the auditory model stage. For each of the 752 input stimuli ek(s) we 396

then concatenated together a 100 element vector of row sums and a 101 element vector 397

of column sums of matrix M j
ek(s) to form the 201 element column vectors xi for training 398

the MLPj . Summing and concatenating reduces the dimensionality of the feature 399

vectors from 100 ∗ 101 = 10, 100 (the dimensionality of matrix M j
ek(s)) to 201, while still 400

capturing the key patterns of firing across the sample population of 100 cells in response 401

to a single presentation of stimulus ek(s) and the amount of spatio-temporal structure 402

in the network activity that would be compatible with the presence of PGs. Each of the 403

decoders MLPj was then trained to classify response vectors xi as either the word “one” 404

or word “two”. 405

The confusion matrix used in the information analysis calculations described above 406

was constructed based on the majority classification votes among the 100 trained MLPj 407

in response to each stimulus presentation. 408

Rate code: A random subset of J = 201 cells within an auditory brain model stage 409

was chosen to match the dimensionality of the input vectors xi for training the MLPs 410

for the temporal code informativeness estimation. The average firing rate of the 201 411

subsampled neurons was recorded in response to each of the 752 stimulus presentations 412

to form the input to the rate code MLP. 413
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Results 414

In this paper we propose that speaker-independent word representations are encoded by 415

unique discriminative spatio-temporal patterns of firing (PGs) in the auditory cortex. 416

We test this hypothesis using a biologically inspired spiking neural network model of the 417

auditory brain. Since we cannot explicitly detect the information bearing PGs due to 418

computational restrictions, we present instead multiple pieces of evidence for the 419

emergence of informative PGs within the plastic cortical stages of our model. These 420

pieces of evidence include the particular change in the distribution of connection weights 421

(wBLij ) after training that is characteristic of PG-based learning, the increased 422

polychrony of firing in the final cortical stages of the model (measured by the 423

polychronisation index we devised in Sec. Polychronization Index), and the 424

performance of MLP decoders trained to be sensitive to the existence of stimulus class 425

selective PGs. The observed differences according to these measures between the full 426

AN-CN-IC-CX and the reduced AN-CX models, and between rate and temporal 427

encoding schemes, provide evidence in support of our hypothesis that more information 428

is carried using temporal PGs rather than rate codes, and that the emergence of such 429

informative PGs is only possible if stable input firing patterns are provided to the 430

plastic cortical stages of our models. 431

Changes in synaptic weights resulting from unsupervised learning: To 432

examine the synaptic weight changes that occurred in the cortical stages of the full 433

AN-CN-IC-CX model during training we plotted the distributions of IC→A1 and 434

A1→Belt connections (wBLij ) before and after training (Fig. 4, top row). While the 435

majority of weights grew weaker, some connections were strengthened. Such a pattern 436

of change is characteristic of learning PGs. Since the STDP configuration in our model 437

is reminiscent of that described in [5], the majority of connections (wBLij ) weakened due 438

the non-informative random firing in the input. Some connections strengthen due to the 439

presence of repeating stable patterns of firing (PGs) among the pre-synaptic neurons. 440

Compare this pattern of connectivity change to the equivalent stages of the reduced 441

AN-CX model. Almost all AN→A1 and A1→Belt synaptic weights were weakened 442

during training (Fig. 4, bottom row). In the reduced model, stochastic jitter in the AN 443

presumably scrambled the structure of input patterns sufficiently to prevent regularities 444
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Fig 4. Distributions of synaptic connection weights (wBLij ) before (pink) and after
(blue) training for the full AN-CN-IC-CX model (top row) and reduced AN-CX model
(bottom row). The ordinate is log scaled.

(PGs) in the inputs to be discovered and learned. 445

These data suggest that PG learning relies on stable patterns of firing that serve as 446

input to the plastic cortical stages A1 and Belt of the models. AN stochasticity hinders 447

such learning, but de-noising of AN firing within the CN and IC makes PG-based 448

learning possible again in the cortical stages of the full AN-CN-IC-CX model. 449

Denoising of AN firing patterns and the emergence of polychronous 450

groups (PGs): Fig. 5 shows that subcortical preprocessing in the CN and IC led to 451

more stable spatio-temporal discharge patterns, as evidenced by higher PI scores in the 452

IC compared to AN. These more reproducible firing patterns also carried through to A1 453

and Belt. The AN-CX model, which lacked subcortical preprocessing layers CN and IC, 454

did not achieve the same stability of firing patterns seen in IC and CX of the full model 455

even after training. 456

Polychronous groups: Fig. 6 shows a partial visualisation of three PGs that 457

emerged in the A1 layer of the trained AN-CN-IC-CX model. These PGs responded 458

preferentially either to different pronunciations of the word “one” or “two”. The red 459

dots show the ten elements of the mean firing pattern matrix M j
s with the largest mean 460
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Fig 5. Box-and-whisker plot showing the distribution of polychronization indices over
all the cells within the relevant layers of the full AN-CN-IC-CX and reduced AN-CX
models. The ordinate is log scaled.

spike counts (mj
s)n (see Sec. Polychronization Index). They can be thought of as 461

partial PGs observed in response to the respective stimulus classes. When projected 462

through the A1→Belt connections (wBLij ) and the corresponding axonal delays (∆ij), 463

these patterns produce near-synchronous input from four or more A1 neurons in a small 464

subset of Belt neurons, and these inputs are consequently strengthened during training. 465

The green and yellow dots show such inputs for two Belt neurons which in this manner 466

became selective for the word “one”, the white dots show equivalent data for a Belt 467

neuron that became selective for “two”. 468

Stimulus category encoding across models and layers: Fig. 7 shows 469

estimates of the speech stimulus identity information encoded in various layers of the 470

full AN-CN-IC-CX and the reduced AN-CX models. Note the different y-scale ranges in 471

panels A and B. Temporal encoding provides substantially more stimulus category 472

information than rate encoding at every stage of the model. After training, the 473
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Fig 6. Evidence for PGs responding selectively to word “one” or “two” in the A1 layer
of the trained AN-CN-IC-CX model. Each plot shows an example of a stable
spatio-temporal spike pattern in A1 (red circles) in response to different pronunciations
of the words ”one” (left) and ”two” (right). These spikes take part in at least one
polychronous group that is selective for the particular word. In other words, these
patterns are more likely to appear when an example of their preferred word is
pronounced compared to an example of a non-preferred word. When projected through
the A1→Belt connections (wBLij ) with different conduction delays (∆ij) (arrows), these
patterns produce near-synchronous input from several A1 neurons onto a subset of Belt
neurons (green, yellow or white circles corresponding to three separate Belt neurons with
different distributions of axonal conduction delays ∆ij). The green and yellow circles
show such inputs for two Belt neurons which in this manner respond selectively for a
number of different pronunciations of the word “one”, the white circles show inputs for
a neuron that responded selectively to exemplars of the word “two”. Abscissa represents
the time window ∆t = tj ± 50 ms around the origin. The origin is centered around all
the times t when a chosen A1 neuron j fires (see Sec. Polychronization Index for
details). Ordinate represents the 1000 neurons that make up A1 in the AN-CN-IC-CX
model. Red circles show the ten elements of the firing pattern matrix M j

s with the
largest mean spike counts (mj

s)n (see Sec. Polychronization Index for details).

responses of the Belt layer of the full model carried as much as 0.52 bits per response, 474

i.e. they could be decoded with an accuracy of 89.36% correct (672/752 correct trials). 475

In comparison, in the untrained model, the stimulus category information never 476

exceeded 0.05 bits (62.77% correct). 477

A control simulation was run to test the ability of an untrained AN-CN-IC-CX 478

model with the same distribution of IC-A1 and A1-Belt afferent connection weights 479

(wBLij ) as the trained model to discriminate between the two stimulus classes. This was 480

done by randomly shuffling the corresponding connection weights (wBLij ) of the trained 481

AN-CN-IC-CX model before presenting it with the two naturally spoken word stimuli. 482
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Fig 7. Box-and-whisker plots showing the distribution of information over twenty
different subsamples of cells within various layers of the full AN-CN-IC-CX and reduced
AN-CX models based on rate (A) and temporal (B) encoding schemes. In B, the A1
neurons are subdivided according to the strength of their connections (wBLij ) to the Belt
layer. PL and ON layers are not shown. The ON layer conveys 0 bits of information,
and PL is equivalent to AN.

It was found that such a model performed at the same level as the untrained model 483

with afferent connection weights initialised from the wBLij ∈ [30, 35] nA uniform 484

distribution (0.05 (shuffled) vs 0.08 (random) bits in the A1, and 0.04 (shuffled) vs 0.03 485

(random) bits in Belt). 486

Fig. 7B also shows that responses in the plastic A1 and Belt layers of the full 487

AN-CN-IC-CX model contain significantly more stimulus category information after 488

unsupervised learning than the input AN layer responses. This indicates that the 489

biologically inspired spiking AN-CN-IC-CX model has learnt to develop a more efficient, 490

less redundant and more informative representation of the naturally spoken word 491

stimuli during training, in line with [31]. This is achieved using only physiologically 492

realistic, local STDP learning. After learning, the Belt area of the full AN-CN-IC-CX 493

model encoded more than twice as much stimulus category information as the AN, but 494

it failed to reach the maximum of 1 bit of information required for perfect word 495

identification. The information encoding performance of the AN-CN-IC-CX model 496

should be possible to improve by the addition of recurrent plastic within-layer cortical 497

connections or additional plastic cortical layers. We leave this, however, for future work. 498

When the trained model was tested on additional data of the same words “one” and 499

“two” being spoken by twenty novel speakers (ten male and ten female speakers 500

pronouncing each word twice), the network reached a similar level of performance as 501
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described above (0.27 (new data) vs 0.28 (old data) bits in the A1, and 0.48 (new data) 502

vs 0.43 (old data) bits in Belt). 503

It is interesting to note that those A1 cells which acquired A1→Belt connections in 504

the wBLij ∈ [45, 55] nA range are more informative than A1 cells with maximally 505

strengthened connections. This effect is in line with the work by [5]. In order to 506

maximally strengthen the A1→Belt connections (wBLij ), PGs in the A1 have to appear 507

very freuquently. This is more likely to happen if the PGs are present in response to 508

both stimulus classes “one” and “two”. Such PGs, however, are not informative of the 509

stimulus class identity. This effect also explains why A1 and Belt stages of the full 510

AN-CN-IC-CX model have higher levels of spatio-temporal stimulus category 511

information than the IC stage of the model despite no increase in the PI from IC 512

upwards. This is because PI score only measures the presence of PGs in a particular 513

stage of the model without measuring their informativeness. The data suggests that 514

while the degree of stability of spatio-temporal firing in the IC, A1 and Belt stages of 515

the full AN-CN-IC-CX model is similar, the stimulus class selectivity and hence the 516

informativness of PGs grows throughout this feedforward hierarchy. 517

Discussion 518

In this paper we argued that a hierarchy of speaker-independent informative PGs is 519

learnt within the different stages of the plastic cortical layers of the full AN-CN-IC-CX 520

model. The learning in the model, however, is reliant on the input of stable firing 521

patterns to the plastic cortical stages A1 and Belt. Such stable firing patterns are 522

obscured by stochasticity in the raw AN firing rasters [10]. Consequently the cortical 523

layers are essentially unable to learn speaker independent representations of naturally 524

spoken words using unprocessed AN input (reduced AN-CX model). Subcortical 525

preprocessing in the CN and IC stabilises and de-noises the AN firing patterns, thus 526

allowing the cortical ensembles of the full AN-CN-IC-CX model to form category 527

specific response patterns. The biological realism of the inputs to our model sets our 528

results apart from the similar work by [32], who showed that a recurrent network of 529

winner-take-all microcircuits with STDP learning is capable of achieving similar 530

informativeness for differentiating between words “one” and “two” (albeit for only three 531
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utterances pronounced by two speakers) as was achieved in our model (around 0.6 bits). 532

They also argued for temporal information encoding. 533

We took inspiration from the known neurophysiology of the auditory brain in order 534

to construct the spiking neural network models used in this paper. As with any model, 535

a number of simplifying assumptions had to be made with regards to certain aspects 536

that we believed were not crucial for testing our hypothesis. These simplifications 537

included the lack of superior olivary complex or thalamus in our full AN-CN-IC-CX 538

model, the nature of implementation of within-layer inhibition in both the AN-CX and 539

AN-CN-IC-CX models, and lack of top-down or recurrent connectivity in either model. 540

While we believe that all of these simplifications do affect the learning of auditory 541

object categories to some extent, we also believe that their particular implementation in 542

our models does not undermine out qualitative findings and conclusions. 543

The full AN-CN-IC-CX model of the auditory brain described in this paper 544

possesses a unique combination of components necessary to simulate the emergent 545

neurodynamics of auditory categorisation learning in the brain, such as biologically 546

accurate spiking dynamics of individual neurons, axonal conduction delays, STDP 547

learning, neuroanatomically inspired architecture and exposure to realistic speech input. 548

With its biological realism, the full AN-CN-IC-CX model described in this paper can be 549

used to make testable predictions about the auditory object encoding in the auditory 550

brain. For example, the reduction of jitter in spiking responses as one ascends from AN 551

through IC to auditory cortex should be observable in physiological experiments. 552

Furthermore, large channel count recordings may make it possible to discover PG firing 553

patterns which encode categorical stimulus information in the activity of ensembles of 554

real cortical neurons. 555
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