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Abstract

By reaching near-atomic resolution for a wide range of specimens,
single-particle cryo-EM structure determination is transforming struc-
tural biology. However, the necessary calculations come at increased
computational costs, introducing a bottleneck that is currently lim-
iting throughput and the development of new methods. Here, we
present an implementation of the relion image processing software
that uses graphics processors (GPUs) to address the most computa-
tionally intensive steps of its cryo-EM structure determination work-
flow. Both image classification and high-resolution refinement have
been accelerated up to 40-fold, and template-based particle selection
has been accelerated almost 1000-fold on desktop hardware. Memory
requirements on GPUs have been reduced to fit widely available hard-
ware, and we show that the use of single precision arithmetic does not
adversely affect results. This enables high-resolution cryo-EM struc-
ture determination in a matter of days on a single workstation.
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1 Introduction

With the advent of direct-electron detectors and advanced methods of image
processing, structural characterisation of macromolecular complexes to near-
atomic resolution is now feasible using single-particle electron cryo-micro-
scopy (cryo-EM) (Li et al., 2013; Bai et al., 2013). Although this has caused
a rapid gain in its popularity, two technological factors still limit wide appli-
cability of cryo-EM as a standard tool for structural biology.

First, partly due to the steep increase in demand, access to high-end mi-
croscopes is limited. This is being addressed with acquisition of new equip-
ment in a large number of departments worldwide, as well as the establish-
ment of shared infrastructures (Saibil et al., 2015). Second, processing the
increasing amounts of data produced by these microscopes requires compu-
tational hardware that is not directly accessible to many labs. Even at larger
centres the computational requirements are so high that cryo-EM now suf-
fers from a computational bottleneck. The work presented here addresses
this second problem, to the end of drastically reducing the computational
time and investment necessary for cryo-EM structure determination.

A typical cryo-EM data set may constitute hundreds or thousands of im-
ages (called micrographs) of a thin layer of vitreous ice in which multiple
individual macromolecular complexes (called particles) are imaged. Because
radiation damage imposes strict limitations on the electron exposure, micro-
graphs are extremely noisy. Thus, to extract fine structural details, one needs
to average over multiple images of identical complexes to cancel noise suf-
ficiently. This is achieved by isolating two-dimensional particle-projections
in the micrographs, which can then be recombined into a three-dimensional
structure (Cheng et al., 2015). The latter requires the estimation of the rel-
ative orientations of all particles, which can be found using a wide range of
different image processing programs like spider (Frank et al., 1981), imagic
(van Heel et al., 1996), eman2 (Tang et al., 2007), sparx (Hohn et al.,
2007), frealign (Grigorieff, 2007), xmipp (Scheres et al., 2008) and re-
lion (Scheres, 2012a).

These programs also need to tackle the problem that any one data set
typically comprises images of multiple different structures; purified protein
samples are e.g. rarely free from all contaminants. Multiple conformations,
non-stoichiometric complex formation, or sample degradation are all possi-
ble sources of additional data heterogeneity. The classification of heteroge-
neous data into homogeneous subsets has therefore proven critical for high-
resolution structure determination and provides a tool for structural analysis
of dynamic systems. However, identifying structurally homogeneous subsets
in the data by image classification algorithms adds computational complex-
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ity, and often increases the computational load dramatically.
An increasingly popular choice for processing cryo-EM data is an em-

pirical Bayesian approach to single-particle analysis (Scheres, 2012b) imple-
mented in the computer program relion (Scheres, 2012a). In the Bayesian
framework, optimal weights for all orientations and class assignments, as well
as the three-dimensional reconstruction itself, are learnt from the data in an
iterative manner. This allows high-resolution structure determination with
minimal bias or user input. In addition, the Bayesian approach has proven
highly effective in classifying a wide range of structural variation, such as con-
formational dynamics within protein domains (Bai et al., 2016), or of very
small sub-populations in large data-sets (Fernández et al., 2013). Unfortu-
nately, the regularised likelihood optimisation algorithm that underlies these
calculations is computationally demanding. We estimate that a recent 3.7 Å
structure of a yeast spliceosomal complex (Nguyen et al., 2016) required more
than half a million CPU hours of classification and high-resolution refine-
ment. Computations of this magnitude require the use of high-performance
computing clusters with dedicated staff, and restricts development of new
algorithms and methods which could benefit the field.

One of the most important recent developments for other scientific pro-
grams has been the introduction of hardware accelerators, such as graphics
processors (GPUs). To exploit this type of hardware, substantial redesigns
of algorithms are required to make many independent tasks simultaneously
available for computation, which is known as exposing (low-level) parallelism.
However, the possible gain is equally substantial; together with commodity
hardware it has been a revolution e.g. for molecular dynamics simulations
(Salomon-Ferrer et al., 2013; Abraham et al., 2015), quantum chemistry
(Ufimtsev and Martinez, 2008), and machine learning (Jia et al., 2014).
Historically, relion has scaled to the large resources it needs by utilizing
image-level parallelism to subdivide the computational tasks within each it-
erative refinement step, like that of most available alternatives (Fernandez,
2008). However, lower-level core computations on single images in relion
have remained serialised since its introduction more than four years ago.

Here, we describe a new implementation of the regularised likelihood opti-
misation algorithm in relion, using GPUs to address its computational bot-
tlenecks. We have chosen to implement our increased parallelism in cuda, a
programming language provided by nvidia. The cuda language currently
dominates the GPU computing market, and provides a stable programming
environment with a rich C++ interface. We also utilise a number of libraries
provided within the cuda framework, such as cufft for fast Fourier trans-
forms (FFTs), and CUB/thrust for sorting and other standard functions.
In addition to high-end professional cards there is wide availability of cheap
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consumer hardware that supports cuda, which provides outstanding value
for many research groups. However, the acceleration and parallelization ap-
proaches are general and should be possible to port to other architectures in
the future.

The present acceleration of relion addresses the most computationally
intensive steps in a typical image processing workflow. This includes clas-
sification of data into structurally homogeneous subsets (2D or 3D classi-
fication) (Scheres, 2012b); high-resolution refinement of each homogeneous
such set of particles (3D auto-refine) (Scheres, 2012a); and the alignment of
movie frames from fast direct-electron cameras (movie refinement) (Scheres,
2014). In addition, we describe an improved algorithm for semi-automated
selection of particles from micrographs (Scheres, 2015), this too targeting
GPUs. Memory requirements have been reduced to fit widely available con-
sumer graphics cards, and we show that the current adaptation to use single
precision floating-point arithmetic does not cause loss of resolvable detail
in relion. These developments enable high-resolution cryo-EM structure
determination in a matter of days on individual workstations rather than
relying on large clusters, and will make it possible to pursue new algorithms
for classification and data processing that were previously too expensive even
on supercomputers.

2 Results

2.1 Acceleration of regularised likelihood optimisation

Parallelism in the algorithm

The most demanding computation in regularised likelihood optimisation is
the comparison of projections of the reference structure along many different
orientations with thousands or millions of individual particle images (Fig. 1).
This task has several inherent levels of parallelism that can be executed si-
multaneously. In our implementation, classes, as well as image translations
and orientations within each class, are all treated as independent tasks that
are scheduled independently on GPUs. Even individual image pixels are
evaluated independently of one another (Fig. 2). Reformulation of inter-
nal algorithms for such massively parallel streams of data is key to perform
well on highly parallel hardware like GPUs. To permit this parallelism, all
data required by all tasks must be available before any task can start. The
straightforward solution is to prepare all the necessary data prior to start-
ing GPU execution. However, pre-calculating reference projections for all
examined orientations and classes in this way requires both very large and
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Figure 1: (A) Operations and the real/Fourier spaces used during (B) image re-
finement in relion. Micrograph input and model setup use the CPU. Most subse-
quent processing steps have been adapted for accelerator hardware. The highlighted
orientation-dependent difference calculation is by far the most demanding task, and
fully accelerated. Taking 2D slices out of (and setting them back into) the reference
transforms has also been accelerated at high gain. The inverse FFT operation has
not yet been accelerated, but uses the CPU.

Figure 2: Extensive task-level parallelism for accelerators. While relion-1.4 only
exploited parallelism over images (left), in the new implementation classes and all
orientations of each class are expressed as tasks that can be scheduled indepen-
dently on the accelerator hardware (e.g. GPUs). Even individual pixels for each
orientation are calculated in parallel, making the algorithm highly suited for GPUs.
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fast memory. In practice, this imposes severe limitations on the number
of simultaneously examined classes that can be used. To overcome this,
our implementation instead stores oversampled Fourier transforms of every
class-reference in GPU memory, and extracts 2D-slices (in any orientation)
on demand. By utilising fast-access data structures known as textures (nor-
mally used to project images on 3D objects), on-demand projection in fact
achieves faster execution compared to reading pre-calculated projections from
memory. As indicated, this also improves scaling with respect to the number
of examined orientations and classes, both in terms of memory utilisation
and execution speed. In fact, using GPU-enabled relion, the time needed
for classification is only weakly dependent on the number of classes used,
whereas the CPU-based implementation has a much steeper linear depen-
dence (Fig. 3).

The result of these adaptations is an implementation that is efficient
enough to reliably run on workstations with a single consumer-level GPU, but
that also scales favourably to multiple cards, multi-node hardware, and large
GPU-based computer clusters. Neither method nor behaviour of relion has
changed from that of version 1.4.

Performance

The performance of our implementation on a workstation equipped with
modern GPUs can exceed that of hundreds of CPU cores (Fig. 3). This is
most prominent for increasing numbers of pixels, orientations and classes,
due to the increased low-level parallelism relion-2 has been designed to use
efficiently. Therefore, calculations where many classes and orientations need
to be sampled, e.g. 3D-classifications over multiple classes and with high
orientational sampling rates, experience the greatest gain from the current
work (Fig. 3D). In the CPU-only version, the computational time scales
linearly with increased number of classes (Fig. 3B) due to the serialised single-
image calculations, whereas GPU-enabled execution can show better-than-
linear scaling. This is due to the added parallelism and subsequent possibility
of concurrent execution, resulting in latencies being hidden. The small parts
of the calculation that have not yet been GPU-accelerated provide the largest
part of this scaling component (Fig. 3C), which indicates new bottlenecks are
now limiting scaling behaviour.

Limited precision & accuracy

Floating-point computations inherently lose precision during calculations,
due to their finite resolution, which can lead to accuracy problems. re-
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Figure 3: relion-2 enables desktop classification and refinement using GPUs.
empiar (Iudin et al., 2016) entry 10028 was used to assess performance, using
refinements of 105k ribosomal particles in 3602-pixel images. (A) A workstation
equipped with four GPUs easily outperforms even a large cluster job in 3D classi-
fication. (B) Additional classes are processed at negligible cost compared to CPU-
only execution, due to faster execution and increased capacity for latency hiding.
(C) With increasing number of classes, the time spent in non-accelerated vs accel-
erated execution increases. (D) Comparing a single CPU cluster node to a GPU
workstation of roughly comparable price, speedup ranges from an order of magni-
tude (2D classification) up to a factor 40 (3D-classification using 6 classes). (E)
The same workstation also clearly beats the cluster job for single-class refinement
to high resolution, despite the generally lower degree of parallelism. During finer
exhaustive sampling of the orientational space, the timing difference is even more
conspicuous due to the GPU’s ability to parallelise the drastically increased number
of tasks.
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Figure 4: The GPU and CPU implementations yield qualitatively identical results.
(A) A high-resolution refinement of the Plasmodium falciparum 80S ribosome using
single precision GPU arithmetic achieves a gold-standard Fourier shell correlation
(FSC) indistinguishable from double precision CPU-only refinement. The FSC of
full reconstructions comparing the two methods shows their agreement far exceeds
the recoverable signal (grey). (B) Partial snapshots of the final reconstruction
following post-processing, superimposed on PDB ID 3J79 (Wong et al., 2014).

lion has used so-called double precision since its first release, in order to
retain as much available accuracy as possible. This is common for scien-
tific programs, which generally have quite stringent demands on numerical
results compared to e.g. visualisation applications. While there are profes-
sional GPUs with good double precision performance, the consumer market
is dominated by visualisation and game applications, and for this reason
cheap hardware only provides good performance for single precision. Even
for professional hardware single precision improves performance, although
the difference is smaller. This makes it highly desirable to use single preci-
sion arithmetics wherever possible. In addition to much better floating-point
throughput, single precision calculations reduce the memory requirements
by 50%, and modern GPUs provide special hardware features for more ad-
vanced operations in lower precision. An example of this is the resampling
of image rotations, where target pixels are calculated even when not directly
overlapping with source-pixels. relion has always used linear interpolation
from proximal pixels, and now does so by utilising special data storage and
hardware interpolation on GPUs (so-called textures). Because the required
precision depends on the algorithms used in the application, part of the de-
velopment of relion-2 was to evaluate image refinement quality when using
single precision. While we indeed observed a slight loss of precision e.g.
in fast interpolation intrinsics, the orientational probabilites of images did
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not display differences that causes subsequent alteration to the final recon-
struction. Execution of the iterative gridding algorithm that underlies the
reconstruction step in relion (Scheres, 2012a) however appeared to show
significant loss of information. Therefore, we opted for a hybrid implemen-
tation of the algorithm. In this version, the demanding slice projection and
probability calculations are performed in single precision on the GPU, while
the reconstruction step remains in double precision on the CPU. With this
implementation, the probability distributions that result from the difference
calculations between reference projections and experimental images do not
exhibit any loss of information (Fig. 4).

Disk & memory considerations

While GPUs offer high capacity and throughput for data processing, the
available memory on the device is limited, which leads to some challenges
for its use and management. relion typically requires large amounts of
memory. Fortunately, its peak use is not during the accelerated, computa-
tionally most intensive parts of the algorithm. Rather, memory usage peaks
during the reconstruction step, which is executed on the CPU as described
above. The available on-card GPU memory however remains a limitation,
as it determines the capacity for storage of the oversampled Fourier trans-
forms of one or more references. This is of particular concern for larger
and higher resolution structures, which require more memory to be faithfully
represented. When resolving detail at the Nyquist frequency, due to twofold
oversampling, we need memory corresponding to twice the image dimension
cubed. For example, when using 4002-pixel particle images, the required grid
size is 8003, which becomes ∼2GB per class, since each value requires 4 bytes
in single precision. Moreover, as the reconstructed object also needs to be
accommodated, this number is effectively multiplied by 2.5.

Peak memory usage for particle image sizes up to 4002 indicate that at
most 6 GB of on-card GPU memory is needed to perform refinement to
Nyquist (Fig. 5). The 3D classification is usually performed at much lower
resolution, and for this reason the memory requirements are lower.

To enable efficient evaluation and good scaling on GPUs, several new
methods to manually manage data at low cost have been implemented. Lower
levels of parallelism are coalesced into larger objects using customised tools,
which results in more efficient use of memory. In addition, because of the
much improved performance, multiple tasks have become limited by how fast
input data can be read from disk. Therefore, we now find it highly beneficial
to cache data on local solid state devices (SSDs), as has also been observed
for GPU-accelerated CTF estimation (Zhang, 2016).
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Figure 5: GPU memory requirements. (A) The required GPU memory scales
linearly with the number of classes. (B) The maximum required GPU memory
occurs for single-class refinement to the Nyquist frequency, which increases rapidly
with the image size. Horizontal grey lines indicate avaliable GPU memory on
different cards.

To allow this in a straightforward way, relion-2 features the ability to
automatically copy data sets to fast local disks prior to refinement. Depend-
ing on the storage system used, this can further increase performance during
less computationally intensive refinements, such as 2D classification.

2.2 Acceleration of automatic particle picking

Parallelism in autopicking

relion implements a template-based particle selection procedure, which is
implemented by calculating a probability measure (the R-value) for each pixel
in the micrograph to signify the likelihood that it is the location of any of
the provided templates (Scheres, 2015). The R-value map of a micrograph
considers all possible rotations of each template, and is subsequently used
in a peak-search algorithm that locates particles within the original micro-
graph. These calculations are performed in the Fourier space, where they
are extremely efficient (Roseman, 2003). In fact, they are so fast that their
execution time becomes negligible compared to the time spent transforming
image objects from real space and back using FFTs. Consequently, even
though reference templates are also treated as independent tasks to increase
parallelism in the GPU version, a much larger gain is found at the level of
template rotations. By parallelising this step we have been able to improve
the efficiency considerably through parallel execution of FFTs. For example,
when using 5-degree incremental template rotations, 72 such inverse FFTs
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Figure 6: Semi-automated particle picking in relion-2. The low-pass filter applied
to micrographs is a novel feature in relion, and drastically reduces the size and
execution time of the highlighted inverse FFTs, which accounts for most of the
computational work. In addition to the inverse FFTs, all template- and rotation-
dependent parallel steps have also been accelerated on GPUs.

are now performed concurrently on the GPU, through the cufft cuda li-
brary. The size of these FFTs is now also padded automatically, since severe
performance penalties can occur if the transform size includes any large prime
factors.

Low-pass filtering of micrographs

Even after parallelisation and acceleration, cross-correlation-based particle
selection is still dominated by computing many large inverse FFTs (Fig. 6),
as has been observed previously (Castaño-Dı́ez et al., 2008). Reducing their
size is thus the most straightforward way to further reduce execution time.
Reference templates are typically subject to low-pass filtering, and for this
reason we investigated the possibility to apply a similar filtering to all mi-
crographs, which reduces high-frequency information.

We found little difference in the particles selected when discarding reso-
lution information in micrographs beyond that of search templates. While
intuitively straightforward, this conclusion drastically reduces the size of FFT
grids and subsequent computations, which provides large acceleration at vir-
tually no quality loss. The low-pass filtering also significantly reduces the
amount of memory required for particle selection, which permits parallelism
to target hardware like desktop workstations much more efficiently.
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Figure 7: Low-pass filtering and acceleration of particle picking. (A) Ribosomal
particles were auto-picked from representative 40962-pixel micrographs collected at
1.62Å/pixel using four template classes, showing near-identical picking with and
without low-pass filtering to 20Å. The only differing particle is shown in orange,
and it likely does not depict a ribosomal particle. (B-C) Despite near-identical par-
ticle selection, performance is dramatically improved. (D) Filtering alone provides
almost 20-fold performance improvement on any hardware compared to relion-
1.4, and when combined with GPU-accelerated particle picking the resulting per-
formance gain is more than two orders of magnitude using only a single GPU.

Autopicking performance

We tested both the speed and the quality of picked particles of our new
implementation. In an initial test, a single 40962-pixel micrograph containing
ribosomes at 1.62 Å/pixel was processed against 8 templates with 5 degree
angular sampling and no low-pass filtering. This took 675s to evaluate on a
CPU-only workstation (i7-5960X, using 1 thread merely for reference). When
applying low-pass filtering to 20Å, this time is reduced to 39s, i.e. by a factor
∼17. When using a single consumer-level GPU (GTX1080) in a single CPU
thread, execution is further reduced to just 0.73s, i.e. an additional factor
∼54. A workstation with 8 CPU threads and a single GPU can therefore now
process ∼925 micrographs in the same time previously required to process
just 8 micrographs (1 per available core) as shown in Fig. 7.

We further evaluated the quality of filtered selection according to the
β-galactosidase benchmark (empiar entry 10017) used in the original im-
plementation in relion-1.3 (Scheres, 2015). This data set consists of 84
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Code Filter # picked Recall FDR Time Speedup over
(Å) particles (s/micrograph) 1 CPU core

CPU none 54,301 0.88 0.34 1,227 1
GPU none 54,325 0.88 0.34 10 122
GPU 5 55,629 0.90 0.34 5.8 211
GPU 10 55,886 0.90 0.34 2.1 584
GPU 15 56,450 0.92 0.33 1.6 766
GPU 20 57,361 0.95 0.33 1.3 943

Table 1: Quality and speed of autopicking for the β-galactosidase benchmark. Com-
paring the CPU version with the GPU version using increasing levels of low-pass
filtering yields progressively higher recalls at similar FDRs. The GPU version
yields identical results to that of the CPU version, but at a much reduced compu-
tational costs. Filtering does not depend on GPU-acceleration, and will perform
similarly using only CPUs.

micrographs of 40962 pixels (1.77 Å/pixel), and comes with coordinates for
40,863 particles that were manually selected by Richard Henderson. The
latter were used for comparison with our autopicking results, with a center
cutoff distance of 35 pixels for particles to be considered identical (Tab. 1).
Filtered selection did not decrease the quality of the results, but rather pro-
vided an increased recall without increasing the false discovery rate (FDR,
see e.g. Langlois and Frank (2011) for definitions of recall and FDR). When
filtering and GPU-acceleration are combined, a single GPU provides almost
three orders of magnitude performance improvement over a single CPU core.

2.3 A complete workflow for β-galactosidase

To illustrate the impact of our GPU implementation and show how it can
alter practical work, we chose to re-analyse the empiar-10061 dataset of
β-galactosidase (Bartesaghi et al., 2015) using relion-2. Downloading this
12.4 TB set took a total of 151h (6.3 days) using the ascp client for fast
file transfer. We performed the entire processing workflow, including initial
beam-induced motion correction in unblur (Grant and Grigorieff, 2015),
CTF estimation in Gctf (Zhang, 2016), automated particle picking, 2D and
3D classification, movie-refinement, particle polishing (Scheres, 2014) and
high-resolution auto-refinement, on a single workstation with four GTX 1080
cards. Calculating a map to 2.2 Å resolution (Fig. 8A) took under five days
- less time than downloading the data. Figure 8B shows an overview of the
most computationally demanding steps. The parts of the workflow that have
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Figure 8: High-resolution structure determination on a single desktop machine.
(A) The resulting 2.2 Å map shows excellent high-resolution density throughout the
complex. (B) The most time-consuming steps in the image processing workflow.
GPU-accelerated steps are indicated in orange. The total time of image processing
was less than that of downloading the data. (C) The resolution estimate is based on
the gold-standard FSC after correcting for the convolution effects of a soft solvent
mask (black). The FSC between the relion map and the atomic model in PDB
ID 5A1A is shown in orange. The FSC between EMDB-2894 and the same atomic
model is shown for comparison (dashed gray).

been GPU-accelerated no longer dominate execution, but this exposes other
new bottlenecks. In particular, steps that involve reading large movie files
from disk become a problem. We also note that due to the extremely rigid
nature of the β-galactosidase complex, only a single 3D classification step
was performed. This is unrealistic for many other structures: typically 3D
classification is repeated multiple times. In such a scenario, the impact of
the GPU acceleration is even larger. Even when repeating 3D classification
five times using a workstation for less than $10,000, processing would still be
faster than downloading the data.

3 Discussion

We present a GPU-enabled implementation of relion-2, as a first step to
address current and future needs for large and expedient computations in the
field of cryo-EM structure determination. The principal benefits drawn from
the presented work are twofold. First, the nature of progress in scientific
applications is to continually re-evaluate and examine data in many different
ways. With ease of re-processing data, the threshold for trial, error and suc-
cessive improvement of existing methods is now markedly lowered. Second,
the order-of-magnitude speedups make it possible to get by with much less
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hardware for cryo-EM processing, in most cases even desktops. This removes
a computational bottleneck for large labs, and enables any group to perform
their own reconstruction without access to supercomputers.

In the next few years, larger data sets and image sizes are expected, as
well as new methods that require expedient processing of large data sets. The
large reduction in computational costs opens up the possibility to perform
more ambitious computational analyses without increasing the investments.
For example, the favourable scaling of performance we observed for multi-
class refinements will make it feasible to use many more classes than was
practical before, which will lead to better descriptions of conformational di-
versity in flexible molecules. Additionally, with even faster algorithms and
hardware it might soon be possible to perform highly automated, on-the-fly,
structure determination while data acquisition is ongoing. In anticipation of
these developments, relion-2 already implements a pipelined approach for
automated execution of pre-determined image processing workflows (details
to be published elsewhere).

While the new GPU implementation has removed many of the previous
computational bottlenecks in relion, the large speedup has exposed several
new areas of the code that can now dominate execution time, such as data
input/output and the reconstruction step during iterative image refinement.
Although these parts of the algorithm were previously insignificant, in some
cases they now collectively account for roughly 50% of total execution time.
These parts of the code will see benefit from further modifications. Future
work will e.g. strive to further generalise parallelism such that performance is
less dependent on the type of refinement performed, as sufficient parallelism
is always available within the relion core algorithm. Memory requirements
on the GPU are also expected to be reduced further, so that larger image
sizes and more classes can be handled to higher resolution.

With the current implementation, cryo-EM structures to near-atomic res-
olution can be calculated in a matter of days on a single workstation, or
hours on a GPU-cluster. Nevertheless, the aim of the current adaptations
is not to present a final solution to computational needs in relion; while
the present version achieves excellent speedup on a wide range of low-cost
systems, we expect the acceleration to improve both in performance and
coverage. Generalising the low-level parallelism described here to vectorised
CPU calculations, and possibly an open GPU language like OpenCL, will
constitute little more than translating this parallelism to new instructions.
This is something we intend to pursue in the future. As such, relion-2
represents a new incarnation of an existing algorithm, which is intended to
be developed far further in the following years. Meanwhile, we hope that the
current implementation will have as much impact in the broader community
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as it is already having in our labs.

4 Materials and Methods

Data sets & hardware specifications

The ribosome data used for the 3D classification and refinement in Figs. 3 and
4 correspond to empiar entry 10028 (Wong et al., 2014). For autopicking,
empiar entry 10017 was used (Scheres, 2015). The complete workflow for
β-galactosidase used empiar entry 10061 (Bartesaghi et al., 2015). The
workstation used for ribosome refinement and autopicking was equipped with
a single Intel Core i7-5960X CPU with 8 cores running at 3GHz and 64GB
memory. The corresponding CPU cluster calculations used 10 compute nodes
equipped with dual Xeon E5-2667 or E5-2643 CPUs (12 physical cores, for
a total of 120 cores) running at 2.9-3.4GHz with 64GB memory. Refinement
tests were run with four consumer GPUs (testing both nvidia GTX 980Ti
and GTX 1080 cards), and two CPU threads per GPU to improve utilisation.
The classification speedup (Fig. 3C) compares the GPU workstation to a
single cluster node, which is hardware of roughly comparable price (a modern
E5-2643v4 node might be 10% cheaper). The autopicking benchmark only
used a single GPU to better reflect a simple desktop setup. Admittedly,
comparing performance to a single core is not entirely fair when a typical
CPU has multiple cores, but in practice a workstation can easily be equipped
with multiple GPUs too. The results for the β-galactosidase test case were
obtained on a single desktop machine with four GTX 1080 cards, a 400GB
local SSD scratch disk, dual Xeon E5-2620 CPUs (12 cores in total) running
at 2.4GHz and with 64GB memory.

β-galactosidase image processing

Super-resolution 8k × 8k micrograph movies with 38 frames were submit-
ted to initial beam-induced motion correction using unblur (Grant and
Grigorieff, 2015). The resulting average micrographs were used for CTF es-
timation in Gctf (Zhang, 2016). Autopicking with six templates yielded an
initial data set of 130,375 particles, which were subjected to reference-free
2D classification using 200 classes. This initial classification was done using
4× downscaled particles (with a pixel size of 1.274 Å and a box size of 192
pixels). Selection of the 75 best classes resulted in 120,514 particles. All
subsequent calculations were performed using 2× downscaling (resulting in a
pixel size of 0.637 Å and a box size of 384 pixels). The selected particles were
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subjected to an initial 3D auto-refinement that used PDB ID 3I3E (Dugdale
et al., 2010) as an initial model. Subsequent movie-refinement (with a run-
ning average of 7 movie frames and a standard deviation of 2 pixels on the
translations) was followed by particle polishing (using a standard deviation
of 1000 pixels on the inter-particle distance). The resulting shiny particles
were submitted to a single round of 3D classification with exhaustive 7.5-
degree angular searches and eight classes. Selection of the seven best classes
yielded a final data set of 109,963 particles, which were submitted to 3D auto-
refinement. The final resolution was estimated using phase-randomisation to
account for the convolution effects of a solvent mask on the FSC between
the two independently refined half-maps (Chen et al., 2013). This mask
was generated by binarisation of a 15 Å low-pass filtered version of the re-
constructed map, with addition of a five-pixel wide cosine-shaped soft edge.
FSC curves between the model and the solvent-masked map were calculated
with relion_image_handler. The same soft solvent mask was also used for
the calculation between EMDB-2984 and the atomic model.
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