
StereoGene: Rapid Estimation of Genomewide Correlation of
Continuous or Interval Feature Data

Elena D. Stavrovskaya 1,2, Alexander Favorov 3,4,5*, Tejasvi Niranjan 6, Sarah J.
Wheelan 6, and Andrey Mironov 1,2

1 Dept. of Bioengineering and Bioinformatics, Moscow State University,
Moscow, 119992, Russia
2 Institute for Information Transmission Problems, RAS, Moscow, 127994,
Russia
3 Department of Oncology, Division of Biostatistics and Bioinformatics,
Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins
University, Baltimore, MD 21205, USA
4 Laboratory of Systems Biology and Computational Genetics, Vavilov
Institute of General Genetics, RAS, Moscow, 119333, Russia
5 Laboratory of Bioinformatics, Research Institute of Genetics and
Selection of Industrial Microorganisms, Moscow, 117545, Russia
6 Department of Oncology, Sidney Kimmel Comprehensive Cancer Center,
The Johns Hopkins University School of Medicine, 21287, Baltimore, MD
21287, USA

* favorov@sensi.org

Abstract

Motivation: High throughput sequencing methods produce massive amounts of data.
The most common first step in interpretation of these data is to map the data to
genomic intervals and then overlap with genome annotations. A major interest in
computational genomics is spatial genome-wide correlation among genomic features (e.g.
between transcription and histone modification). The key hypothesis here is that
features that are similarly distributed along a genome may be functionally related.

Results: Here, we propose a method that rapidly estimates genomewide correlation
of genomic annotations; these annotations can be derived from high throughput
experiments, databases, or other means. The method goes far beyond the simple
overlap and proximity tests that are commonly used, by enabling correlation of
continuous data, so that the loss of data that occurs upon reduction to intervals is
unnecessary. To include analysis of nonoverlapping but spatially related features, we use
kernel correlation. Implementation of this method allows for correlation analysis of two
or three profiles across the human genome in a few minutes on a personal computer.
Another novel and extraordinarily powerful feature of our approach is the local
correlation track output that enables overlap with other correlations (correlation of
correlations). We applied our method to the datasets from the Human Epigenome Atlas
and FANTOM CAGE. We observed the changes of the correlation between epigenomic
features across developmental trajectories of several tissue types, and found unexpected
strong spatial correlation of CAGE clusters with splicing donor sites and with poly(A)
sites.
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Availability: The StereoGene C++ source code, program documentation, Galaxy
integration scrips and examples are available at the project homepage at
http://stereogene.bioinf.fbb.msu.ru/

Contact: favorov@sensi.org
Supplementary information: Supplementary data are available online.

Introduction

Modern high throughput genomic methods generate large amounts of data, which can
come from experimental designs that compare tissue-specific or developmental
stage-specific phenomena for human [7] and model organisms [4]. Single-cell approaches
are also rapidly advancing [3]. Such datasets are integrated into several different archive
databases [8, 35,42] and manually curated databases [23].

An important challenge of genome-wide data analysis is to reveal and assess the
interactions between biological processes, e.g. chromatin profiles and gene expression. A
rapidly emerging approach to this challenge is to represent data as functions on genomic
positions and to estimate correlations between these functions.

Numerous recent biological publications employ the correlation-based approach.
Several research papers [39,41] focus on relationships between transcription factor
binding and chromatin state. These studies also include information on DNA
accessibility [1], higher-order chromosomal organization [17], and association of
chromatin modifications and alternative splicing [16,21]. The research field has
broadened its focus on analysis of individual and cell/tissue specific variation of
epigenomic features and their relationship with diverse traits [29]. An interesting
“Comparative epigenomics” paradigm [40] has emerged from an observation that
combinations of epigenetic marks are more conserved than the individual marks
themselves. This cooperation requires spatial relationships that are difficult to
statistically ascertain.

Several bioinformatic methods that estimate the association between genome-wide
numerical features have been recently proposed, and powerful aggregation and
visualization tools were developed for manual analysis of colocalization of multiple
features [12,34,35,38].

Computational assessment of correlations on continuous genomewide data recruits
various mathematical and statistical methods. For consistency with existing
bioinformatic methods for positional correlation analysis, we use the terms profile or
track for position-defined genomic features. For the colocalization analysis, genomic
features are formalized as one of three types: profiles that are represented as a set of
intervals on the genome (genes, repeats, CpG islands, etc.); point profiles (binding sites,
TSS, splice sites); and continuous profiles, such as coverage data (expression, ChIP etc)
resulting from high throughput sequencing experiments.

Many computational approaches have been developed to assess genomic features. An
entropy-based approach has been developed for identification of differentially
methylated regions [43]. A Bayesian mixture model is used for consistency analysis of
different sources of data (ChIP-ChIP and ChIP-seq, [33]. A Hidden Markov Model is
used for prediction of generalized chromatin states [10]. A probabilistic approach for the
chromatin code landscape is introduced in [46]. A compendium of epigenomic maps is
used in [9] to generate genome-wide predictions of epigenomic signal tracks, and a
detailed review of machine learning for genome features is given in [19].

Correlations may be direct overlaps, but many of the most interesting relationships
are more difficult to discern, as they require a general proximity but not overlap. For
example, gene expression (RNA-seq coverage) correlates with transcription factor
binding or chromatin state in nearby promoter regions or distant enhancer regions. The
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distant spatial correlations of interval profiles is addressed in [6, 11].
The interval and point-wise genome-wide correlations are addressed in [6,10,11], [14].

A common approach to investigating genomic features is to represent these features as
intervals, computed from the original continuous coverage data using a threshold or
more sophisticated algorithms [44]. With these methods, the resulting track depends on
the algorithm used, and portions of the original data are lost.

[22] work with continuous profiles directly using the Karhunen-Loeve transform.
This enables evaluation of both experimental variability and true biological signal (the
biological signal tends to be in the higher components). While elegant, this method is
slow and precludes the investigational analyses that are so important when analyzing
these data.

Here, we propose a fast universal method to assess correlation of genomic profiles.
The data can be discrete features (e.g. intervals) or continuous profiles (e.g. coverage
data representing the level of histone methylation, protein binding, or expression). The
method is based on calculation of the convolution integral with some kernel (kernel
correlation, KC), with speedup using Fast Fourier Transform (FFT). The kernel allows
calculation of correlation of the profiles that are smoothed over a genomic neighborhood.

The KC measure provides us with an estimate of spatial correlation (overlap,
colocalization, or relative distance) of two features. To estimate the statistical
significance of the correlation, we split the genome into a set of non-overlapping
windows (100kb-1Mb). The foreground signal is computed as the distribution of
correlation values for each of the windows. To get the background signal, we shuffle
windows and recalculate the correlations. Statistical analysis is based on comparison of
foreground and background distributions.

Our implementation is very quick: calculation for a pair of profiles over the human
genome takes approximately 1-3 minutes on a standard PC.

StereoGene is presented and source code and some examples are available at the
project homepage at http://stereogene.bioinf.fbb.msu.ru/.

Materials and Method

Kernel correlation

We consider each genomic feature as a numeric function (profile) on the genomic
position x. The standard Pearson correlation of two profiles f = f (x) and g = g (x) is
defined as:

CC(f, g) =
1

σfσg

1

|G|

∫
G

f̃(x)g̃(x)dx =
Q(f̃ , g̃)√

Q(f, f)Q(g, g)

where f̃ = (f(x)− f̄), f̄ is the mean value of f ; σf is the standard deviation of f ,
Q(f, g) =

∫
G
f(x)g(x)dx; the integration is performed over the genome G. The Pearson

correlation relates profile values on exactly the same genomic positions. In biological
systems, the relationships of values at proximal but nonoverlapping (in genomic
coordinates) positions are also important. These correlations may be mediated by
chromatin looping or other interactions. To account for them, we use the following
generalization for the covariation integral:

Qρ(f, g) =

∫
G

∫
G

f̃(x)g̃(y)ρ(x− y)dxdy (1)

where ρ(x− y) is a kernel function that reflects the expectations of interaction of
features at adjoining positions. In the case ρ(x− y) = δ(x− y), we get the standard
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covariation integral. Here, we use the Gaussian kernel ρ(z) = 1√
2πσ

exp(− x2

σ2 ), but other

non-negative kernel functions can be used.
The two-dimensional integral Qρ(f, g) can be rapidly calculated using a Fourier

transform:

Qρ(f, g) =
∑
i=1

fkgkρk;

f(x) =
∑
k

fkφk(x);

g(x) =
∑
k

g∗kφ
∗
k(x);

ρ(y − x) =
∑
k

ρkφk(y − x)

where φk(x) are the harmonic basis functions φk(x) = exp(k · 2πi/L), and φ∗k means
complex conjunction of φk. The equation takes into consideration that the zero
coefficient of a Fourier transform of a function f is the average of the function (f̄ = f0).
Thus, the kernel correlation KC is defined as:

KC(f, q) =
1

σρf · σ
ρ
g

∑
i=1

fk · g∗k · ρk

where σρf =
√

(Qρ(f, f)) =
√∑

fkf∗kρk, σρg =
√∑

gkg∗kρk. The value KC(f, g)
satisfies the inequality: −1 ≤ KC (f, g) ≤ 1. The Fourier transform can be calculated
by the discrete Fast Fourier Transform (FFT) algorithm [20] that have the
computational complexity O(|G| · log |G|), where |G| is the genome length. Complexity
of correlation coefficient calculation consists of the complexity of Fourier transform and
the complexity of summation O(|G|). Hence Tr(|G|) = O(|G| · log |G|).

Cross-correlation (Distance correlation)

For two given profiles, f(x) and g(x) the cross-correlation function can be calculated:

c(x) =
1

σfσg

1

|G|

∫
G

f̃(t)g̃(t− x)dt (2)

The cross-correlation function reflects a distance dependence of the profiles.
This function can also be calculated using Fourier transform:

c(x) =
1

σfσg

1

|G|

∫
G

f̃(t)g̃(t− x)dt =
1

σfσg

1

|G|
FT−1(fk · g∗k)

where FT−1 means the reverse Fourier transform that can also be calculated using FFT
algorithm.

Local correlation profile generation

Along with the integration of the correlation measure along the genome, StereoGene
can generate a new profile that describes the kerneled local correlation of two profiles.

LC(x) =

g(x)
∫
G

ρ(x− t)f(t)dt+ f(x)
∫
G

ρ(x− t)g(t)dt

2σfσg
(3)
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The integrals in this equation can be represented via Fourier transform, and the
correlation profile is expressed as

LC(x) =
1

2σfσg

(
g(x) · FT−1(ρkfk) + f(x) · FT−1(ρkgk)

)
This profile is necessary to investigate relationships that are non-uniform along the

genome, revealing more or less correlated segments. In particular, it can be used for a
gene set enrichment analysis or correlated with a third genomic profile, and thus it can
be involved in a 3-way correlation analysis that is analogous to liquid correlation [18].
This is a powerful and unique approach to dissecting complex relationships among
genomewide datasets. Note that the value of LC is not restricted by ±1 boundaries and
can take any values.

Partial correlation

Nonrandom correlation of the two profiles may occur due to their correlation with a
third profile (confounder) that systematically biases both signals (e.g. level of
mapability). To computationally exclude such an influence, StereoGene can correlate
projections of the two profiles orthogonal to the confounder profile a subspace:

f̂(x) = f(x)− a(x)
< af >

< aa >
(4)

Statistical significance

The KC value provides useful information about the relative genomewide correlation of
features, but it does not carry any information on statistical significance. To obtain the
latter, KC is calculated in a set of adjacent large windows that cover the genome. Then,
a shuffling procedure is used that randomly matches windows of one profile to another,
and KC calculation is repeated in all the window pairs. Thus, two distributions, a
foreground distribution of the real KC values and a background of permuted values, are
obtained. The statistical significance is provided by a Mann-Whitney test of these two
sets of values.

Program implementation

As input, StereoGene accepts two or more input files in one of the standard Genome
Browser formats: BED, WIG, BedGraph, and BroadPeak. In the first step, StereoGene
converts input profiles to an internal binary format and saves the binary tracks for
future runs. If a project refers to the saved profile and the parameters have not changed,
StereoGene reuses the saved tracks. StereoGene also requires chromosome length
information provided in any standard UCSC form.

Output depends on parameters and will provide the following files: *.bkg — array of
correlations for shuffled windows; *.fg — correlations in coherent windows; *.dist —
distance distribution (correlation function) for background, foreground, and
chromosomes; *.wig — a wig file for local kernel correlations; *.chrom — statistics by
chromosomes; ’statistics’ — a file that stores statistics for all runs and provides a
summary, including total correlation, Z-score for Mann-Whitney statistics, and p-value.

For a quick and intuitive depiction of results, the StereoGene optionally generates
an R script that graphs the output in two plots. The first plot displays foreground and
background (permuted) distributions of genomic windows of the kernel correlation. A
right shift of the foreground distribution relative to the background distribution
represents positive correlation, and vice versa. The plot also displays more complicated

5/17

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 21, 2016. ; https://doi.org/10.1101/059584doi: bioRxiv preprint 

https://doi.org/10.1101/059584
http://creativecommons.org/licenses/by/4.0/


features, such as multimodality, which show that the correlation is not uniform over the
genome, or that multiple classes of features with different correlation profiles exist. The
second plot, the (not kernel) cross-correlation function on possible feature-to-feature
shifts, represents local relationships between them.

StereoGene is implemented in C++. The time required for the binary file
preparation depends on file size. On a standard computer, the preparation takes from a
few seconds to 1-2 minutes. The calculation of correlation with shuffling requires
roughly one minute. A complete description of the keys and the parameters of
StereoGene and output files formats are presented on StereoGene homepage.

Data source

Data by Roadmap Epigenomics Project [2] was obtained via the Human Epigenome
Atlas (http://www.genboree.org/). Data for FANTOM4 CAGE clusters [28] was
obtained from the UCSC website (RIKEN CAGE Loc tracks, GEO accession IDs were
GSM849326 for nucleus GSM849356 for cytosole in H1 Human Embryonic Stem Cell
Line, RRID:CVCL 9771). The datasets with the tracks are listed in Supplementary file
1.

1 Results
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Figure 1. Genome-wide correlations for different types of cells.

Human Epigenome Atlas Pairwise Correlation Anthology

As a straightforward test of our method, we prepared an anthology of pairwise
correlations of the profiles from the Human Epigenome Atlas [2]. We built a pipeline
that analyzes colocalization at all pairs of different profiles from the same tissue (or cell
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line) and all the pairs of the same profiles from different tissues. The results are
displayed here http://stereogene.bioinf.fbb.msu.ru/epiatlas.html Interestingly,
the majority of the comparisons of Epigenomics Roadmap profiles show a significant
positive correlation, while negative correlations appear rarely.

To prepare an overview of this complex and multifaceted dataset, we split the
Human Epigenome Atlas data into two collections: mature tissues and fetal tissues (refer
to Supplementary file 4 for the track URL’s). We focused on correlations of the most
frequently studied epigenetic marks (i.e.), H3K4me1, H3K4me3, H3K9me3, H3K27me3,
and H3K36me3, as well as RNA-seq. Fig 1A showed distributions of genome-wide
correlations for the pairs of profiles. The highest difference of feature-to-feature
correlation between the collections was observed for the H3K9me3 and H3K27me3 pair:
they were significantly more correlated in adult tissues than in fetal ones. A comparison
of correlation between H3K9me3 and H3K27me3 in the same tissue for fetal and adult
gave a p− value = 3.2 · 10−5 (Wilcoxon test). This result is consistent with the prior
observation that at early stages, different genomic regions are separately regulated by
H3K9me3 and H3K27me3, but during tissue maturation, these heterochromatin marks
became more synchronized [5]. One possible explanation is that H3K27me3 initiates
chromatin compaction by recruitment of H3K9me3. The colocalization of H3K27me3 vs
H3K36me3 relates to monoallelic gene expression [24]. Figure 1 shows significant
increase of correlation of these marks in adult tissues in comparison with fetal tissues.
The observation is consistent with the recent studies [25]. Other pairs of epigenomic
marks behaved similarly, but with more moderate effect (table 1).

Table 1. p-values for difference of correlation distributions between fetal and adult
tissues

Feature 1 Feature 2 p-value
H3K9me3 H3K27me3 3.2 · 10−05

H3K4me1 H3K36me3 5.8 · 10−04

H3K4me3 H3K4me1 2.2 · 10−03

mRNA-Seq H3K9me3 4.5 · 10−03

H3K36me3 H3K27me3 5.7 · 10−03

H3K4me3 H3K27me3 7.3 · 10−03

H3K9me3 H3K36me3 8.9 · 10−03

H3K9me3 H3K4me1 1.4 · 10−02

H3K4me3 H3K36me3 1.4 · 10−02

H3K9me3 H3K4me3 4.6 · 10−02

mRNA-Seq H3K27me3 1.2 · 10−02

mRNA-Seq H3K36me3 1.3 · 10−01

mRNA-Seq H3K4me1 1.8 · 10−01

H3K4me1 H3K27me3 2.4 · 10−01

mRNA-Seq H3K4me3 2.7 · 10−01

In some cases, a bimodal shape is observed among the distribution of correlations in
a feature-to-feature comparison; this may indicate that subsets of a feature fall into
multiple classifications, each with different correlation properties. The correlation of
H3K4me3 and H3K27me3 in adult lung tissue provides a good example of such bimodal
behavior (fig.2A). These marks are widely assumed to have opposite effects: H3K4me3
is associated with active genes, while H3K27me3 is associated with closed chromatin.
Simultaneously, the trimethylation of H3K4 and H3K27 presumably delineates bivalent
domains in which developmental genes are poised for expression as the cell differentiates,
and in general they are to be repressed in adult tissue [31]. To provide an example of
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StereoGene application, we analyzed genes associated with regions that carry high
correlation of H3K4me3 vs H3K27me3 in the adult lung. To do this, we took the local
correlation track (*.wig StereoGene output file) and selected 3000 of the highest peaks
using MACS [45]. Then we selected the genes with TSS, which were located in the
interval ±5k around these peaks. The resulting list of genes was mined for biological
enrichment using David software [13]. The most interesting tags that were found under
FDR < 5% threshold were alternatively spliced mRNAs, cell motion regulation and
apoptosis (Supplementary file 2).
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Figure 2. Distributions of correlations. A. H3K27me3 vs H3K4me3 in lung tissues.
The background (red) coincides for adult lung (blue) and for fetal (green). B. Correlation
distribution for H3K27me3 vs H3K4me3 in adult lung. Red – background distribution;
blue – correlation distribution over genome; green - correlation distribution for chr19,
brown - correlations for X-chromosome.

Chromosome-specific correlation of promoter and polycomb
marks

We compared the relationship between two well-investigated histone marks: the
promoter-related H3K4me3, and the heterochromatin polycomb-related H3K27me3, in
the adult lung, chromosome by chromosome (see fig. 2B). The genome-wide correlation
(e.g. with all the chromosomes pooled) distribution for these marks is bimodal with a
rather high peak on positive correlations. At the same time, the correlation distribution
on chromosome 19 has a significantly different shape and is mostly negative. This result
could be related with by the fact that chromosome 19 has very high gene density and
contains many housekeeping genes. The correlation distribution on chromosome X also
differs from both the genome-wide and chr19 distributions. It is unimodal with a high
peak on positive values.

Example of partial correlations

The H3K4me3 is an ’active promoter’ mark and is expected to be positively correlated
with RNA-seq. Indeed, fig. 3A shows some weak positive but statistically significant
correlation. Interestingly, using a projection mode to remove H3K27me3 binding from
the correlation of H3K4me3 with RNA-seq profile (fig 3B) produces a much stronger,
and bimodal, correlation. This suggests that the relationship H3K4me3 to gene
expression is modulated by H3K27me3 in some way. This observation is consistent with
”poised promoters,” in which the activating and repressive histone marks are both
bound; these promoters are a subset of all genes and this unusual behavior runs
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contrary to what is seen in the majority of promoters. Here, we have uncovered multiple
promoter states in addition to the multiple modes of interaction between H3K4me3 and
H3K27me3.

A B

−1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4
5

6
7

correlation coefficient
−1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4

correlation coefficient

Figure 3. Distribution of correlations over the windows: A. Correlation of H3K4me3
vs mRNA-seq in Brain Hippocampus Middle; B. The same correlation with H3K27me3
removed as a confounder by partial correlation. Blue line – foreground distribution; Red
line – background correlation distribution

Chromatin marks vs gene features

We separated genes on three fractions: active genes (top 25% of mRNA-seq level),
passive genes (bottom 25% of mRNA-seq level) and moderately expressed genes (other
genes) for certain cell type (Brain Cingulate gyrus) and plot cross-correlation function
of histone marks vs gene features – start/end, and intron beg/end (fig.4). Generally, we
can see:

1.Specific distribution of H3K4meX and H3K9ac near TSS. This behavior is in an
agreement with other research.

2.Some specificity near intron starts. The behavior of H3K4meX and H3K9ac at
intron starts may simply reflect usage of alternative transcription start sites.

3.Specific behavior of H3K36me3 at gene end and intron end.

Cohesin and histone modifications

We calculated the positional correlations of cohesin protein Rad21 with CTCF and
different histone modifications in H1 stem cells (RRID:CVCL 9771) and in the K562
(RRID:CVCL 5145) cell line (table 2). We observed very strong positional correlation of
the CTCF binding with cohesin protein Rad21. Promoter and enhancer regions
(H3K4meX) were co-localized with cohesin while active transcribed regions and
repressed regions were not related to cohesin. These observations are consistent
with [36].

CAGE vs gene annotation

We analyzed the positional relationship of CAGE (FANTOM4 [28]) data, a
genome-wide map of capped mRNA, for the nucleus and for cytosol of H1-hESC cells
and the RefSeq [26] gene annotations.

The correlation functions are presented in fig.5. CAGE clusters are highly correlated
with transcription start sites (fig. 5A), as expected. In addition, we observed two
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Figure 4. Cross-correlation function for different epigenomic marks and gene features.
Blue line – active genes (top 25%); Cyan line – middle expressed genes Brown line –
passive genes Red line – background cross-correlation function

unexpected phenomena: strong positional correlation of CAGE clusters (panel B) with
intron start sites and strong positional correlation of CAGE clusters with transcription
termination sites (panel C). Both observations were relevant only when the CAGE
clusters and genes were on the same strand, further supporting a meaningful biological
relationship. More detailed analysis showed very precise localization of CAGE clusters
at donor sites and at polyadenylation sites (fig. 5D). To check statistical significance of
this observation, we selected equivalent random positions at 500 bp downstream from
the donor splice sites or polyadenylation sites, as a control set. The resulting
contingency tables are here 3. The Exact Fisher test for these contingency tables gave
p-values less than 2.2 · 10−16 in both cases.

CAGE association with intron starts may be explained by the activity of
debranching enzymes [30]. After lariat debranching, the freed 5′ end of the intron may
become available for capping, and this cap would be detected by CAGE. Taft et al. [37]
observed short (18-30 nucleotides) RNAs associated with donor splice sites. The authors
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Table 2. Correlations of cohesine Rad21 track vs histone modifications

Cohesine Histone avCorr p-value
H1 stem cells

Rad21 H3K9me3 0.01 9.18E-007
Rad21 H3k36me3 0.02 2.73E-023
Rad21 H3k79me2 0.04 1.70E-050
Rad21 H3K27me3 0.1 0.00E+000
Rad21 H4k20me1 0.12 0.00E+000
Rad21 H3k27ac 0.13 0.00E+000
Rad21 H3k4me3 0.14 0.00E+000
Rad21 H3k9ac 0.15 0.00E+000
Rad21 H3k4me2 0.19 0.00E+000
Rad21 H3k4me1 0.21 0.00E+000
Rad21 H2AZ 0.27 0.00E+000
Rad21 CTCF 0.9 0.00E+000

K562 cell line
Rad21 H3k36me3 0.01 9.52E-001
Rad21 H3K27me3 0.02 1.19E-018
Rad21 H3K9me3 0.08 6.04E-283
Rad21 H3k79me2 0.11 0.00E+000
Rad21 H3k27ac 0.13 0.00E+000
Rad21 H3k9ac 0.15 0.00E+000
Rad21 H3K9me1 0.15 0.00E+000
Rad21 H3k4me3 0.17 0.00E+000
Rad21 H4k20me1 0.18 0.00E+000
Rad21 H3k4me2 0.18 0.00E+000
Rad21 H3k4me1 0.19 0.00E+000
Rad21 H2AZ 0.25 0.00E+000
Rad21 CTCF 0.78 0.00E+000

Table 3. Contingency tables for numbers of CAGE clusters starting at specific positions
in comparison with +500bp control position.

Donor splice site
CAGE no CAGE

intron start 66181 320252
intron start+500 50 386383
p-value < 2.2 · 10−16

Poly-A sites
CAGE no CAGE

gene end 2393 42003
gene end+500 2 44394
p-value < 2.2 · 10−16

suggested a model where RNA polymerase produced such transcripts on donor splice
sites during mRNA transcription. The transcriptional stop site correlation is less
evident, though suggests that occasional capping of the free 5′ end after cleavage by the
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Figure 5. The cross-correlation function for CAGE vs gene annotation. Red lines
show background (shuffled windows), blue lines show foreground (coherent windows). A.
CAGE vs gene starts; B. CAGE vs intron starts; C. CAGE vs gene ends; D. CAGE vs
intron starts (green) and gene ends (brown) at single nucleotide resolution.

polyadenylation complex is possible.

Discussion

We present a new method with unprecedented speed for estimation of genomewide
positional correlations. As seen on public datasets, the approach yields biologically
plausible results. The correlation distribution graphs depict multiple varieties of
genomewide relationships. Local correlation tracks can be used for traditional gene
enrichment analysis or to describe the relationship between genomic features.
StereoGene is also available as a Galaxy plugin, and we provide two examples, one
using 2-way correlation and the other using partial correlation, to illustrate usage. In
both cases, the user can save the correlation track and use these data for more complex
queries.

We compare (Table 4) StereoGene with commonly used tools. Notably, very few
programs can compute on continuous data (bedGraph, wig, etc) and require
establishment of often arbitrary thresholds in order to create intervals for analysis.
KLTepigenome [22] is able to work with continuous profiles, but is limited to sparse data
and is quite slow even when compared to StereoGene doing the same computation on
the full profile. StereoGene has additional, unique functions such as partial correlation
analysis and the ability to compute over a linear combination of different profiles.

We applied StereoGene to continuous, interval, and pointwise genomic data,
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Table 4. Comparison of functionality for correlation analysis programs.
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correlate non-local features + + + + + + – +
interval profiles + + + + + + + +

work with continuous data – – – – – + – +

statistical evaluation + – – + + + + +
partial correlation – – – – – – – +
liquid correlation – – – – – – – +
produce correlation profile – – – – – – – +

cross correlation function – – – – – – – +

including experimental results and annotation tracks. In all cases, StereoGene
produced reliable and sometimes nonobvious, yet intuitive, results that stimulate further
investigation. StereoGene is thus a powerful and promising method for identifying
genome-level biological patterns. The potential for guided 3-way (liquid) correlation is
particularly novel and enables elucidation of the phenomena underlying complex
relationships.
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L. Zender, S. Koschmieder, M. Dugas, and K. Ickstadt. Integrative analyses for
omicsdata: a bayesian mixture model to assess the concordance of chip-chip and
chip-seq measurements. J Toxicol Environ Health A, 75(8-10):461–470, 2012.

34. J. Severin, M. Lizio, J. Harshbarger, H. Kawaji, C. Daub, Y. Hayashizaki,
FANTOM Consortium, N. Bertin, and A. Forrest. Interactive visualization and
analysis of large-scale sequencing datasets using zenbu. Nat Biotechnol,
32(3):217–219, 2014.

35. M. Speir, A. Zweig, K. Rosenbloom, B. Raney, B. Paten, P. Nejad, B. Lee,
K. Learned, D. Karolchik, A. Hinrichs, S. Heitner, R. Harte, M. Haeussler,
L. Guruvadoo, P. Fujita, C. Eisenhart, M. Diekhans, H. Clawson, J. Casper,
G. Barber, D. Haussler, R. Kuhn, and W. Kent. The ucsc genome browser
database: 2016 update. Nucleic Acids Res, 44(D):D717–D25, 2016.

36. L. Steiner, V. Schulz, Y. Makismova, K. Lezon-Geyda, and P. Gallagher. Ctcf
and cohesinsa-1 mark active promoters and boundaries of repressive chromatin
domains in primary human erythroid cells. PLoS One, 11(5):e0155378, 2016.

16/17

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 21, 2016. ; https://doi.org/10.1101/059584doi: bioRxiv preprint 

https://doi.org/10.1101/059584
http://creativecommons.org/licenses/by/4.0/


37. R. Taft, C. Simons, S. Nahkuri, H. Oey, D. Korbie, T. Mercer, J. Holst,
W. Ritchie, J. Wong, J. Rasko, D. Rokhsar, B. Degnan, and J. Mattick.
Nuclear-localized tiny rnas are associated with transcription initiation and splice
sites in metazoans. Nat Struct Mol Biol, 17(8):1030–1034, 2010.
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