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Abstract 31 

Background. The explosive growth of microbiome research has yielded great quantities of data. These 32 

data provide us with many answers, but raise just as many questions. 16S rDNA—the backbone of 33 

microbiome analyses—allows us to assess α-diversity, β-diversity, and microbe-microbe associations, 34 

which characterize the overall properties of an ecosystem. However, we are still unable to use 16S rDNA 35 

data to directly assess the microbe-microbe and microbe-environment interactions that determine that 36 

system’s broader ecology. Thus, properties such as competition, cooperation, and nutrient conditions 37 

remain insufficiently analyzed. Here, we apply predictive community metabolic models of microbes 38 

identified with 16S rDNA data to probe the ecology of microbial communities. 39 

Results. We developed a methodology for the large-scale assessment of microbial metabolic 40 

interactions (MMinte) from 16S rDNA data. MMinte assesses the relative growth rates of interacting pairs 41 

of organisms within a community metabolic network and whether that interaction has a positive or 42 

negative effect. Moreover, MMinte’s simulations take into account the nutritional environment, which 43 

play a strong role in determining the metabolism of individual microbes. We present two case studies 44 

that demonstrate this software’s utility. In the first, we show how diet influences the nature of the 45 

microbe-microbe interactions. In the second, we use MMinte’s modular feature set to better understand 46 

how the growth of Desulfovibrio piger is affected by, and affects the growth of, other members in a 47 

simplified gut community under metabolic conditions suggested to be determinant for their dynamics.  48 

Conclusion. By applying metabolic models to commonly available sequence data, MMinte grants the 49 

user insight into the metabolic relationships between microbes, highlighting important features that may 50 

relate to ecological stability, susceptibility, and cross-feeding. These relationships are at the foundation 51 

of a wide range of ecological questions that impact our ability to understand problems such as 52 

microbially-derived toxicity in colon cancer. 53 

 54 

Keywords: metabolic network reconstruction, network, microbiome, 16S rDNA, predictive community 55 

modeling  56 
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Background 57 

Advances in sequencing technology have culminated in an explosion of 16S rDNA–based microbiome 58 

projects, both small [1] [2] [3] and large [4, 5] [6]. The microbial ecosystems characterized in these 59 

projects are the basis for many critical life processes, from global nutrient cycles [7, 8] to homeostasis in 60 

the human body [9-11]. The importance of microbiome research is embodied in recent calls for the 61 

formation of a worldwide microbiome consortium [12]. The gut microbiome exemplifies a complex 62 

system and contains trillions of interacting bacterial cells [13]. It is not sufficient to treat bacterial taxa as 63 

independent entities in a statistical framework of association and diversity. Instead, ecological 64 

investigation requires examining the biological interactions underlying the complexities of our microbial 65 

communities [14].  66 

Efforts to understand complex microbial communities range from inference based on 16S rDNA 67 

sequences [15] to the use of ‘omics technologies across multiple time points [16]. A variety of software 68 

and tools for analyzing 16S rDNA data exist, and range from identifying taxa [17, 18] and calculating 69 

diversity [19] to producing microbe-microbe association networks [20]  However, none of these utilize 70 

16S rDNA to understand the mechanistic basis of microbe-microbe interactions. Each measure captures 71 

part of a complex picture, but none captures the functional basis [21] for the microbial interactions that 72 

make up a community—i.e., the building blocks of the microbiome. 73 

Bridging the gap between association and mechanism in microbe-microbe interactions requires an 74 

approach centered on mechanistic principles. One avenue to deciphering the role of a microbe in a 75 

community is through the use of a predictive modeling approach [22, 23]. Metabolic models recapitulate 76 

the biological processes of nutrient uptake and metabolite secretion [24], which are at the basis of most 77 

microbial interactions. Computationally, the reconstruction of genome-scale metabolic models [25, 26] 78 

has been automated through large-scale computing efforts such as RAST [27] and ModelSEED [28]. 79 

Tools such as COBRA Toolbox [29, 30] provide an interface for manipulating and investigating metabolic 80 

network models. Recently, community metabolic models have been generated to explore the gut 81 

microbiome in health and disease [31-34], but these efforts have been driven largely by manual 82 

curation—a time consuming and laborious practice [26]. Building on these past research efforts, we 83 
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explore an alternative path to generating predictive community metabolic models for large-scale 84 

microbial communities.  85 

MMinte (pronounced /‘minti/) is an integrated pipeline that allows users to explore the pairwise 86 

interactions (positive or negative) that occur in a microbial network. From an association network and 87 

16S rDNA sequence data, MMinte identifies corresponding genomes, reconstructs metabolic models, 88 

estimates growth under specific metabolic conditions, analyzes pairwise interactions, assigns interaction 89 

types [35] to network links, and generates the corresponding network of interactions. Our application is 90 

composed of a set of seven individual functionalities, known as widgets, that run sequentially, and each 91 

widget may also be run as an independent module. Below, we present two case studies from the gut 92 

microbiome that illustrate how MMinte can be used to predict ecological features of a microbial 93 

community based on metabolic maps of bacterial species. In doing so, MMinte provides a valuable tool 94 

for generating well-defined mechanistic hypotheses for further exploration. 95 

 96 

Implementation 97 

MMinte consists of minimally overlapping functions that come together to perform a single task. In 98 

designing it, our goal was to facilitate code re-use by focusing on modularity, allowing the user to 99 

streamline the parts presented here for other purposes. Indeed, we do not view MMinte as a single-100 

purpose code, but as a set of widgets that can be repurposed for multiple queries, ranging from testing 101 

interactions between a set pair of species to reconstructing a community metabolic network.  102 

The web browser interface creates a point-and-click experience that allows the user to perform 103 

complex analysis on large data sets without programming expertise. For those seeking more control or to 104 

implement their own pipelines using MMinte widgets, MMinte functions can also be run in a command-105 

line environment. Because all of the code is provided to the user, it can be changed to fit a particular 106 

need. Finally, MMinte is under continuous development, it is publicly available on Github 107 

(www.github.com/mendessoares/MMinte) for use by the community, and the authors welcome 108 

contributions to further its development.  109 
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A full run of MMinte generates a predicted network of microbe-microbe interactions for a microbial 110 

community using a sequence of seven widgets that progressively analyze 16S rDNA sequences, then 111 

genomes, metabolic models, and finally community metabolic networks. The analysis can be run 112 

uninterrupted, and all intermediate files are stored. The seven widgets that constitute MMinte are 113 

depicted in Figure 1.  114 

Widget 1: Reduces data for the downstream analysis. The purpose of this step is to remove operational 115 

taxonomic units (OTUs) that will not be used in future analyses, based on an existing list of OTU 116 

associations.  117 

Inputs: (1) 16S rDNA sequences of all representative OTUs (as one might obtain from, for instance, 118 

QIIME [36] or mothur [37]) and (2) an association table between pairs of OTUs.  119 

Output: 16S rDNA sequences of OTUs. 120 

Widget 2: Matches 16S rDNA signatures with corresponding genomes. Using BLAST, the user’s 16S 121 

rDNA sequences are matched with 16S rDNA sequences from publicly available, complete genomes in 122 

NCBI [38]. Importantly, we output a table of percent similarities between OTU- and genome-derived 16S 123 

rDNA sequences. This information is used to limit potential sources of error from imperfect OTU-genome 124 

pairings and to color code nodes in the final network (Widget 7). 125 

Input: 16S rDNA sequences of OTUs.  126 

Output: (1) Genome IDs and (2) percent similarity table. 127 

Widget 3: Obtains metabolic models. This widget takes advantage of the ModelSEED [28] framework to 128 

reconstruct and gap-fill metabolic models for a list of genomes.  129 

Input: Genome IDs. 130 

Output: Single-species metabolic models. 131 

Widget 4: Merges models. Using COBRApy [39], this function creates metabolic models of two-species 132 

communities from a list of pairs of species [33, 40]. The list can be provided by the user or created by 133 

MMinte.  134 

Input: (1) Species-species associations (optional) and (2) single-species metabolic models in the 135 

Systems Biology Markup Language (SBML) format. 136 
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Output: Two-species metabolic models. 137 

Widget 5: Runs flux balance analysis. This step estimates the growth rates for each species under 138 

defined nutrient conditions, in isolation and in the presence of another species, by running a flux balance 139 

analysis in COBRApy [39, 41]. The user has the option to specify the nutrient conditions to reflect the 140 

specific conditions of the environment being studied. 141 

Inputs: (1) Two-species metabolic models and (2) choice of metabolic conditions to be used from media 142 

file (provided in the supportFiles folder, default choice = “complete”).  143 

Output: Growth-rate predictions. 144 

Widget 6: Evaluates metabolic interactions. Using previously calculated growth rates, this function 145 

quantifies the effect of pairwise interactions and assigns an interaction type to each pair, following 146 

Heinken and Thiele [33]. The possible types are positive (commensalism, mutualism), negative 147 

(parasitism, amensalism, competition), or no (neutralism) interaction. 148 

Input: Growth-rate predictions. 149 

Output: Quantitative effect of interaction and interaction type predicted. 150 

Widget 7: Draws community metabolic network. This function generates a color-coded interaction 151 

network using the D3.js [42] visualization platform, based on the associations provided to Widget 1. Links 152 

are colored according to the type of interaction predicted by MMinte (Widget 6). A node’s shading 153 

reflects the percent similarity between OTUs and genomes (Widget 2) 154 

Input: (1) Association table between pairs of OTUs, (2) percent similarity table, and (3) quantitative 155 

effect of interaction and interaction type predicted. 156 

Output: Metabolic interaction network (see Fig. 2) 157 

 158 

 159 

Results and Discussion 160 

Usage 161 

Below we present two case studies that exemplify how MMinte can be used to predict microbial 162 

interactions under user defined metabolic conditions. All files used in these examples, and a full tutorial 163 
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on how to perform these analyses, can be found in the Supplementary Materials and in the project folder 164 

at github.com/mendessoares/MMinte. 165 

 166 

Case Study 1 167 

With just two user-provided files, one containing correlations between pairs of OTUs and the other 168 

representative sequences from a microbiome study, MMinte creates an association network in which the 169 

color of the links represents the types of predicted interactions between pairs of OTUs in a microbial 170 

community. 171 

In Case Study 1, we use data from the Human Microbiome Project to demonstrate MMinte’s potential 172 

for exploratory research studies that focus on the dynamics of host-associated microbial communities. 173 

The Human Microbiome Project is a multi-institutional collaboration and the study was reviewed by each 174 

participating institution’s Institutional Review Boards. Full information can be found in [5]. The data used 175 

in this example are a subset of what is available on the Human Microbiome Project page 176 

(http://hmpdacc.org/HMQCP/, uncompressed files from rep_set_v13.fna.gz and otu_table_v13.txt.gz) [4, 177 

5], allowing users to rerun the analysis in a straightforward and fast way, while taking advantage of 178 

publicly available data. The reduced dataset contains 659 associations for 308 OTUs representing 176 179 

species.  180 

 181 

The problem. The number of positive and negative interactions in a community influences its level of 182 

stability and consequently its resistance to invasion by pathogens [43]. With MMinte, we can run our 183 

analysis in a variety of metabolic conditions and quantify the number of positive and negative 184 

interactions predicted for each. This will generate hypothesis regarding the metabolic conditions likely to 185 

favor stability of the system.  186 

 187 

The results. We ran the full MMinte pipeline by clicking the “run all” tab on MMinte’s introductory page 188 

and providing two files, corrs.txt (which contains the associations between OTUs) and seqs.txt (which 189 

contains representative sequences). Using the default setting of “complete” for the metabolite 190 
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availability condition, which represents a condition with 380 metabolites available in large amounts. 191 

MMinte predicted 252 positive and 323 negative interactions between pairs of OTUs in addition to 179 192 

pairs lacking any type of of interaction (Figure 2, left panel). We then reran Widget 5 with different 193 

metabolite availability conditions. Figure 2 (right panel) shows the same correlation network with a 194 

metabolite availability that is 10 times lower, resulting in different predicted interactions (58 positive and 195 

651 negative interactions between OTUs and 45 pairs lacking any interaction). This result is consistent 196 

with the prediction that lower nutrient availability will favor more competition between organisms. 197 

The results of this analysis highlight some possible characteristics of the community that could not be 198 

inferred solely from association data. For instance, assuming stability, and thus protection against 199 

pathogen invasion, is greater in communities with more competitive interactions [43], then the 200 

metabolic conditions that lead to the predicted network shown in Figure 2 (right panel) are likely to 201 

promote more stability. In addition, if we assume that stronger positive correlation values between pairs 202 

of species indicate positive interactions [44], the network of interactions observed under metabolic 203 

conditions equivalent to the ones listed under “complete” are more reflective of the real system than the 204 

alternative metabolic conditions tested. These are just two examples of the window microbe-microbe 205 

interactions—the building blocks of community networks—provide for understanding  their ecology. 206 

 207 

Case Study 2 208 

In the following example, we use data from Rey et al [45], who investigated the growth of the 209 

sulfate-reducing bacterium Desulfovibrio piger in the guts of gnotobiotic mice, in the presence of eight 210 

other bacterial species and under different nutritional conditions. D. piger is the most commonly found 211 

sulfate-reducing bacterium in healthy adults, and is thought to shape the responses of the gut microbiota 212 

to dietary changes [45]. However, relatively little is still known about the niche this species occupies and 213 

how it may influence the metabolism of the other microbial species found in the gut [45]. 214 

 215 

The problem. The interactions between D. piger and other members of the gut microbial community 216 

have been shown to influence the level of H2S in the gut. However, D. piger has a variety of potential 217 
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metabolic pathways, only some of which will lead to the production of H2S. The role of interactions in 218 

determining the metabolic niche of D. piger in the gut is both important and not fully understood. Using, 219 

MMinte, we explored the types of interactions that are predicted to occur between nine different species 220 

of microbes that co-occur in the human gut and whose interactions are believed to be metabolically 221 

based [45, 46]. We created a set of metabolic conditions where we varied the availability of oxygen, 222 

chondroitin sulfate, and fructose. These represent some of the metabolites that were manipulated in the 223 

experiments of Rey et al. [45].  224 

 225 

Results. We started by providing a list of species IDs to Widget 3 (D. piger: model 411464.8, Bacteroides 226 

thetaiotaomicron: model 226186.12, Bacteroides caccae: model 411901.7, Bacteroides ovatus: model 227 

28116.7, Eubacterium rectale: model 657318.4, Marvinbryantia formatexigens: model 478749.5, Collinsella 228 

aerofaciens: model 411903.6, Escherichia coli: model 83333.113, and Clostridium symbiosium: model 229 

742740.3). After reconstructing the individual species metabolic models and creating two-species 230 

communities (Widget 4), we predicted species growth rates in the presence and absence of another 231 

species in the community by running Widget 5 under 17 different metabolic conditions, listed in Supp. 232 

Table 1. To parallel our analysis in Case Study 1, we also calculated the number of positive and negative 233 

interactions under metabolic conditions containing 380 metabolites with different availabilities. 234 

A look at the predicted growth rate of D. piger in the presence and absence of other species in the 235 

community shows that this species is likely to benefit from the presence of each of the other species in 236 

the community under “Complete” metabolic conditions. D. piger is consistently predicted to grow under 237 

aerobic conditions, but under anaerobic conditions, growth is only predicted to occur if either B. ovatus, 238 

B. thetatiotaomicron, B. caccae, C. symbiosium, or E. coli are present. Thus, using the models 239 

reconstructed using ModelSEED, MMinte predicts an obligate association between D. piger and these 240 

species in anaerobic environments (Supp. Table 1). Interestingly, D. piger impaired the growth of most 241 

species it was paired with under all conditions except “complete” (Supp. Table 1). Exceptions were E. coli 242 

and E. rectale; the magnitude of the effect of D. piger on their growth depended on the flux conditions for 243 

oxygen, chondroitin sulfate, and sulfate (Supp. Table 1). Even though our analysis only focused on 244 
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variations in three metabolites, the results provide some insight into the niches that these species occupy 245 

and they are predicted to interact under a variety of metabolic conditions 246 

Overall, the number of each type of interaction changed depending on metabolite availability, but not 247 

linearly (Figure 3). For instance, with a 10-fold decrease in metabolite availability, the number of 248 

predicted parasitic interactions increased—but with a further 10-fold decrease in metabolite availability, 249 

the number of predicted parasitic interactions then decreased. This suggests that alternative metabolic 250 

pathways may be invoked depending on the amount of particular metabolites and not necessarily on 251 

their presence or absence, affecting how different organisms interact with each other. These results are 252 

in concordance with the observation that the nutrient conditions that organisms experience are 253 

predicted to have marked effects on the kinds of interactions they have (Figure 3).  254 

 255 

General Discussion. MMinte bridges the gap between association and mechanism in microbe-microbe 256 

interactions by assessing the metabolic influence that two microbes have on each other. Our predictive 257 

modeling approach involves reconstructing the pairwise metabolic community models that make up the 258 

basic unit of interaction within a community. More specifically, MMinte advances microbiome research 259 

by assigning functional interactions instead of simply calculating associations or correlations based on 260 

abundance [44]. This allows us to capture the effect of metabolite exchange on the interactions of an 261 

entire microbial community across different nutrient conditions, thus providing an important link to the 262 

overall drivers of environmental dynamics.  263 

The metabolic interactions that MMinte identifies can be used to understand the broader ecological 264 

features of a biological system. Dynamic ecological features such as stability and robustness are linked to 265 

competitive-cooperative interactions and the nature of the positive-negative feedback loops they 266 

engender [43]. For example, it has been widely posited that negative interactions “self-regulate” and 267 

stabilize fluctuations within a community [47, 48]. In Case Study 1, MMinte showed that out of 754 total 268 

associations detected among a subset of human microbiome species, 33.4% were predicted to be 269 

positive and 42.8% negative under “complete” metabolic conditions. The rest (23.7%) were predicted to 270 

not represent significant metabolic interactions between the species. When fasting conditions are 271 
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modeled by decreasing the availability of metabolites by an order of magnitude, MMinte predicts that 272 

7.7% of interactions will be positive, 86.3% will be negative, and in 6% of the cases, no interactions will 273 

occur. This finding intuitively matches the expectation that competition increases in a community with 274 

limited nutrient availability [49]. MMinte enables users to grasp these important ecological interactions 275 

and better understand the role of competition and cooperation in community stability [50, 51].  276 

Case Study 2 highlights the modular nature of MMinte and the user’s ability to explore the effect that 277 

changes in the availability of a particular metabolite may have on the interactions between organisms. 278 

The results give us an important window into the role of the environment, specifically the presence or 279 

absence of oxygen, chondroitin sulfate, and sulfate, on the interactions between D. piger and other 280 

organisms commonly found in the gut. In vivo experiments have shown that mice colonized solely with D. 281 

piger have significantly increased levels of H2S, which is a genotoxic metabolite that may be involved in 282 

the development of colorectal cancer [52, 53], compared to mice colonized with a consortium containing 283 

the other eight species analyzed here. Understanding the metabolite conditions favoring the dominance 284 

of the other species over D. piger can help inform dietary interventions aimed at reducing the abundance 285 

of this species in the gastrointestinal tract.  286 

Like all algorithms, MMinte has potential limitations. For example, MMinte’s predictions are only as 287 

accurate as the metabolic models used. These metabolic models are linked from 16S in a multi-step 288 

process that involves identification of genomes and metabolic network reconstruction using ModelSEED 289 

[28]. Missing data in the genome database or in the biochemical database are both potential sources of 290 

error. Conversely, as databases rapidly grow, so will the accuracy of MMinte’s predictions. MMinte helps 291 

the user minimize the potential for over-interpretation by visually displaying the percent similarity 292 

between 16S rDNA provided by the user and the genomic data,  293 

 294 

Conclusions 295 

 MMinte is the first tool that predicts the type of interactions occurring between organisms in a 296 

complex microbial community under defined metabolite conditions based on the metabolic models of 297 

each species. A full run takes data of an association network and 16S rDNA sequences, identifies the 298 
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genomes, reconstructs metabolic models, and estimates the effect of being in a two-species community 299 

for each species under user defined metabolic conditions. The predicted interactions are then plotted in 300 

an interaction network. Additionally, the widgets that make up MMinte can be run independently 301 

allowing the user to run specific tasks and bypass some of the steps of the analysis. We have 302 

incorporated the design principles of clear modularity, usability, and open access into the development 303 

of MMinte. In our view, part of the value of MMinte to the development of predictive community 304 

metabolic modeling is the potential for integration into other analytical platforms. We view the ability to 305 

build on existing development efforts as critical to expanding systems biology tools to wider and broader 306 

scales of ecology and data [14]. MMinte is thus a fundamental tool for exploring a large number of 307 

interactions, allowing researchers to move beyond the use of statistical measures of association into 308 

biologically relevant analysis of interactions between the species in a microbiome. 309 

 310 

Availability of supporting data 311 

All files required to reproduce the results are provided in the project folder at 312 

www.github.com/mendessoares/MMinte . 313 

Additionally, results and supplementary files can be found in the following project folder 314 

MMinte/supportFiles/ResultsAndSuppIMaterial. The folder ResultsCaseStudy1 contains output files 315 

from the first example workflow. The folder ResultsCaseStudy2 contains the file with the 316 

Supplementary Table 1, listing the growth rates of the 9 species analyzed in the second example in the 317 

presence and absence of another species in the two-species communities under a variety of metabolic 318 

conditions. 319 

 320 

Ethics statement 321 

In Case Study 1, we use data from the Human Microbiome Project to demonstrate MMinte’s potential 322 

for exploratory research studies that focus on the dynamics of host-associated microbial communities. 323 

The Human Microbiome Project is a multi-institutional collaboration and the study was reviewed by each 324 

participating institution’s Institutional Review Boards. Full information can be found in [5]. 325 
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Figure Legends 346 

Figure 1. Schematic of the MMinte pipeline. Each green rectangle represents one widget. Widget 1 347 

takes two files, a network of associations between operational taxonomic units (OTUs) and a FASTA file 348 

containing the 16S rDNA sequences from a microbiome study, and reduces the latter data set to include 349 

only the sequences for OTUs present in the network. Widget 2 identifies the sequences provided and 350 

assigns them a genome ID. The percent similarity between the query OTU and the 16S sequence of the 351 

genome to which it was matched is stored in a file to be used by Widget 7. Widget 3 Calls the 352 

ModelSEED service [28] with the list of genome IDs produced by Widget 2, which reconstructs species 353 

metabolic models that are exported to the user’s local machine. Widget 4 then uses these species 354 

models to create metabolic models for two-species communities. Widget 5 estimates the growth rate of 355 

each species in the community under defined metabolic conditions, which can be changed by the user. 356 

Widget 6 assesses the types of interaction (mutualism, parasitism, commensalism, competition, 357 

amensalism, or neutralism) occurring between the pairs of species in a community based on the effect 358 

that each species has on the growth of another. Widget 7 takes the initial information about the 359 

topology of the network, the information about the percent similarity between OTUs and the closest 360 

genomes, and the types of interactions and plots an interaction network in which the color of the links 361 

represents the type of interaction (positive, green; negative, red; no interaction, grey). 362 

 363 

Figure 2. Network and number of the different types of interaction for operational taxonomic units in 364 

Case Study 1 under “Complete” (left) and “Complete/10” (right) metabolic conditions. There are 380 365 

metabolites in the “Complete” metabolic conditions and they exist as highly available. The 366 

metabolic condition “Complete/10” contains the same metabolites as “Complete” but at 10 times 367 

lower availability. Please see file Diet.txt for a complete list of the metabolites, and their 368 

availabilities represented as uptake metabolic fluxes. It can be seen from the figure that a 10 fold 369 

reduction in metabolite availability resulted in a significant decrease in the number of positive 370 

interactions predicted to occur between the members of this community, with parallel increase in 371 

the number of negative interactions.  372 
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 373 

Figure 3. Number of each type of interaction predicted to occur between pairs of the nine bacterial 374 

species (D. piger, Bacteroides thetaiotaomicron, Bacteroides caccae, Bacteroides ovatus, Eubacterium 375 

rectale, Marvinbryantia formatexigens, Collinsella aerofaciens, Escherichia coli, and Clostridium 376 

symbiosium) inoculated into the guts of gnotobiotic mice under different metabolic conditions in [45] and 377 

used in Case Study 2. The metabolic conditions simulated in MMinte were “Complete”, “Complete/10” 378 

and “Complete/100”. There are 380 metabolites in the “Complete” metabolic conditions and they exist as 379 

highly available. The metabolic condition “Complete/10” contains the same metabolites as “Complete” 380 

but at 10 times lower availability and “Complete/100” contains the same metabolites as “Complete” but 381 

at 100 times lower availability. Please see file Diet.txt for a complete list of the metabolites, and their 382 

availabilities represented as uptake metabolic fluxes. 383 

 384 
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Figure 1. 385 

386 

Widget 1 – Rep. OTUs + Association Table � Working Rep. OTUs 

Widget 2 – Working Rep. OTUs � Species Genome IDs 

Widget 3 – Species Genome IDs � Species Metabolic models 

Widget 4 – Species Metabolic Models � 2-Species Com. Models 

Widget 5 – 2-Species Com. Models � Growth Rate Predictions 

Widget 6 – Growth Rate Predictions � Types of Interactions 

Widget 7 – Association Table + Types of interactions � Interaction Network 
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Figure 2. 387 
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Figure 3. 389 

390 
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