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Abstract

The degree of order versus randomness in mammalian cortical circuits has been the subject of much discussion. Previous
reports showed that at a large scale there is smooth tonotopy in mouse auditory cortex, while at the single neuron level
the representation is the traditional “salt and pepper” configuration attributed to rodent cortex. Here we show that
at the micro columnar scale we find a large variety of response profiles, but neurons tend to share similar preference
in terms of frequency, bandwidth and latency. However, this smooth representation was fractured and large di↵erences
were possible between neighbouring neurons. Despite the tendency of most groups of neurons to operate redundantly,
high information gains were achieved between cells that had a high signal correlation. Connectivity between neurons
was highly non-random, in agreement with a previous in-vitro report from layer five. Our results suggest the existence of
functional clusters, connecting neighbouring mini-columns. This supports the idea of a ”salt and pepper” configuration
at the level of functional clusters of neurons rather than single units
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1. Introduction

The topographic organisation of the mammalian cortex
has long been a topic of research, with the presence of
orderly maps (or the lack thereof) in some cortical areas
being a key di↵erence between species. Examples of such
topographic organisation include tonotopy in the auditory
cortex, retinotopy in the visual cortex, and orientation
columns in the visual cortex of some mammals. Mouse
cortex has often been given as a typical example of a ran-
dom arrangement with its “salt and pepper” configuration.
The organization of mouse auditory cortex has however re-
cently been under debate, with two photon calcium imag-
ing studies showing heterogenous organisation in terms
of preferred frequency when considering spiking activity
from neighbouring neurons from upper layers, while show-
ing tonotopy when considering the aggregated activity of
groups of neurons (Rothschild et al., 2010; Bandyopad-
hyay et al., 2010). Recent electrophysiological studies have
shown that tonotopy largely depends on the type of signal
considered for the characterisation, quality of tuning in-
cluded, area of auditory cortex, anaesthetic state and layer
with upstream layers having a degraded tonotopy com-
pared to thalamo-cortical recipient layer (Hackett et al.,
2011; Guo et al., 2012).
We can expect that any property exhibited by a pop-

ulation of neurons must have an underlying biophysical
correlate. It has been proposed that local connectivity
plays an important role in shaping the arrangement seen
in cortices lacking in orderly arrangement of columns as is

the case with mouse cortex, while the existence of struc-
ture such as pinwheels and the columnar arrangement
around them is mainly due to long range suppressive con-
nections (Kaschube et al., 2010). Experimental evidence
from in-vitro studies has shown mini columnar ensembles
(Maruoka et al., 2011; Krieger et al., 2007) not yet been
characterised in vivo, which in principle could aggregate
to form functional units as suggested by (Krieger et al.,
2007) and (Ohki et al., 2005) and could constitute the ba-
sis of columnar processing by sharing common input and
being synaptically connected.

In this study, using high density columnar micro elec-
trode arrays, we measured functional properties of local
columnar populations from layer V. Reconciling the known
random configuration exhibited by mouse cortex and the
columnar processing expected to take place, we found that
groups of neighbouring neurons tend to share similar prop-
erties while still having a rich variety of response profiles,
coherent with the existence of overlapping fine-scale net-
works (Yoshimura and Callaway, 2005; Yoshimura et al.,
2005). We studied monosynaptic interactions within these
local networks, finding highly non-random connectivity
and their spatial coverage supports the idea of inter col-
umn functional aggregation.

2. Methods

2.1. Surgery and Stimuli

We performed experiments on 5-7 week old mice (n= 12
CBA/Ca mice) under terminal anaesthesia, in strict ac-
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cordance with the 1986 Act (Scientific Procedures) under
license granted by the UK Home O�ce. Mice were deeply
anaesthetised with a mixture of fentanyl (0.05 mg/Kg),
midazolam (5 mg/Kg) and medetomidine (0.5 mg/Kg).
The animal’s temperature was maintained at 37�C using
a feedback controlled blanket.
A small craniotomy was performed over auditory cortex

area A1, and recordings with high density electrode arrays
were made using a Poly3-25s probe (Neuronexus Technolo-
gies) as shown in Fig. 1A. The probe was introduced paral-
lel to the midline and lowered to a single location targeting
layer 5, collecting both spontaneous and evoked activity.
We used iso-intensity pure tone stimuli (70 dB) gen-

erated using an RZ6 real-time processor and presented
via electrostatic speaker (ES-1; Tucker-Davis Technolo-
gies) placed 5 cm behind the contralateral ear. Pure tones
(3-48 kHz, 1/3 octave steps, 100 ms duration), gated with
ramped cosine windows (3 ms to 90% of maximum), were
presented at a frequency of 0.5 Hz.

2.2. Single unit characterisation

Single neurons were isolated and localised as described
previously (Delgado-Ruz and Schultz, 2014) from raw data
collected across the 32 channels as seen in Fig. 1B. Briefly,
signals were spike sorted using Caton/MaskedKlustakwik
(Kadir et al., 2014), and then each isolated neuron was
fitted to a line source model to estimate its location. Ex-
amples of sorted neurons can be seen in Fig. 1C and a
raster plot of all recorded neurons in Fig. 1D. Each neu-
ron was also classified as narrow spiking or broad spiking
(putative inhibitory and excitatory respectively) following
the procedure described in (Peyrache et al., 2012), which
is based on the temporal waveform of the action potential.
The tuning of each unit was calculated for the 40 ms

after stimulus onset. This time window was selected as
the responses measured when using larger time windows
contain more noise (Moshitch et al., 2006). In addition,
upstream neurons are likely to use the first few tens of
milliseconds from the neurons’s responses (see Cohen and
Kohn (2011) for discussion).
The neuronal response to stimuli was characterised us-

ing three metrics: preferred frequency, bandwidth and
peak latency from onset. The bandwidth measures the
selectivity exhibited by each neuron, while the latency
reflects di↵erences on upstream path and distance from
soma to synaptic inputs (Carrasco and Lomber, 2009; Bi-
zley et al., 2005; Sakata and Harris, 2009; Katona et al.,
2012). Preferred frequency was defined as the frequency
that elicited the largest evoked response. Bandwidth was
defined as the 3 dB bandwidth around the preferred fre-
quency, and peak latency from onset was defined as the
time elapsed from onset until the peak firing rate for the
preferred frequency.
Di↵erences in response properties were shown qualita-

tively using Voronoi diagrams. To construct them the xy
cartesian plane is divided into regions (one per neuron)

whose boundaries are defined based on neurons’ locations
calculating boundaries equidistant to neighbouring neu-
rons. By assigning to each region the property value mea-
sured for the neuron associated to it, the Voronoi diagrams
allow us to graphically show how the xy plane spans dif-
ferent property values.

The temporal response profile was characterised, iden-
tifying neurons that showed ON (transient or sustained
response) and OFF responses. This simple separation al-
lowed us to see the range of responses. We used the method
described in detail in (Willott et al., 1988), which is based
on the computation of an adaptation ratio Ar that quanti-
fies variations in firing rate on the time slots after stimulus
onset. Neurons with Ar < 0.2 were considered as having a
transient or phasic response, while 0.2 < Ar < 2 were con-
sidered sustained. Neurons having a firing rate above 25%
above spontaneous level after stimulus o↵set were consid-
ered to have an OFF response.

2.3. Characterisation of interactions

Each recorded pair was analysed to detect putative
monosynaptic connections (Fujisawa et al., 2008), with
crosscorrelograms generated as described by Kohn and
Smith (2005). Pairwise signal correlation allows the mea-
surement of similarity between the response to stimuli; we
calculated it, according to standard usage, as the Pearson
correlation coe�cient between mean responses to stimuli:

rsignal =
E [N1N2]� E [N1]E [N2]

�N1�N2

. (1)

Here E is the expected value and � the standard devi-
ation of the mean spike count Ni. Noise correlation or
spike count correlation measures the tendency of neurons
to covary their firing rate, and is calculated as the Pearson
correlation coe�cient between variations around the mean
responses to stimuli (Bair et al., 2001; Kohn and Smith,
2005):

rsc =
E [�N1�N2]� E [�N1]E [�N2]

��N1��N2

(2)

where�Ni corresponds to the di↵erence between the mean
response of cell i to a particular stimulus and its response
on a particular trial. Signal correlation may reflect shared
inputs driven by the stimuli, whereas noise correlation may
reflect slower network oscillations and synchronous activ-
ity not linked to stimuli (Cohen and Kohn, 2011). The
All-Way Shu✏e Predictor and Jitter Corrector were used
to correct the crosscorrelograms (Kohn and Smith, 2005;
Smith and Kohn, 2008). The shu✏e predictor allows the
removal of correlations locked to the stimulus, while the
jitter corrector removes correlations arising from slow os-
cillations and stimulus-locked correlations. The All-Way
Shu✏e Predictor (Kohn and Smith, 2005) corresponds to
the CCG calculated after shu✏ing the id of the di↵erent
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trials, normalised by the mean firing rates, �i:

CCGshu✏ed(⌧) =

1
M

MP
i=1

NP
t=1

x

i
1(t) · x

ishuffled
2 (t+ ⌧)

⇥(⌧)
p
�1�2

(3)

where M is the number of trials, N is the number of bins
per trial and ⇥(⌧) is a triangular function which corrects
for the amount of overlap between spike trains. The Jitter
Corrector, see (Smith and Kohn, 2008) for details, corre-
sponds to the CCG calculated over surrogate spike trains.
The method for generating the surrogates can be sum-
marised as follows:

• A window for jittering Tj ms is defined.

• Each spike train for each trial is divided in time win-
dows of length Tj . The timestamps of all spikes across
trials within each time window are added to a pool of
spikes.

• On each trial, for each time window, the spikes are
replaced for a spike randomly chosen from the corre-
sponding pool of spikes.

CCGjittered(⌧) =

1
M

MP
i=1

NP
t=1

x

i
jitt1

(t) · xi
jitt2

(t+ ⌧)

⇥(⌧)
p
�1�2

(4)

The timescales of correlations, rccg (Kohn and Smith,
2005; Bair et al., 2001), were characterised to study di↵er-
ence in noise correlations found between this and previous
studies, as this metric allows to study the correlations over
varying time windows with lower variance when timescales
of correlations are shorter than the trial. Defined as the
integral of the CCG over the integration time window, nor-
malised by the geometric mean of the integral of the ACGs
over the same period:

rccg(t) =

tP
⌧=�t

CCG(⌧)

s
tP

⌧=�t
ACG1(⌧) ·

tP
⌧=�t

ACG2(⌧)

(5)

CCG and ACGs were corrected by the shu✏e predictor. It
can be shown that when considering the same time window
rccg is equivalent to spike count correlation (Bair et al.,
2001).
Synchrony measures the tendency of neurons to fire with

short and consistent delay between them. It was charac-
terised using Accg (Smith and Kohn, 2008): the area un-
der the jitter-corrected CCG (slow oscillations and stimu-
lus locked variations are removed before integrating), with
a 50 ms jitter window. The integration was performed
between [-10,10] ms, in order to measure tightly coupled
activity between pairs of neurons while removing loosely
coordinated activity:

Accg =
10X

⌧=�10

[CCG(⌧)� CCGjitter(⌧)] (6)

Accg allowed us to measure synchrony between pairs of
neurons, which could be due to common synaptic inputs
or synaptic connections. The correlation between synapti-
cally connected pairs and synchrony was therefore studied.

Information carried by neurons about the stimulus was
calculated using the software provided by Ince et al.
(2009). We computed Ish and used the NSB estimator
(Nemenman et al., 2001) to compensate for sampling bias
(the bias due to the limited number of trials available un-
der experimental conditions). Information carried by sin-
gle units was calculated using a variable time window to
evaluate the e↵ect of timing on the information conveyed
by the evoked response. On each trial the neuron’s re-
sponse corresponded to a vector with the number of spikes
fired on each time bin. The binning ranged from 40 ms (full
time window, equivalent to spike count analysis) to 5 ms
(at which the information carried by single units started
to saturate). Information analysis for triplets and pairs
of neurons was done with a time window of 40 ms (spike
count) and 10 ms (a time window that allowed a reduced
number of possible response symbols, yet keeping temporal
information). To reduce the number of possible responses
spike counts were thresholded at the 95th percentile for
40 ms time windows and only allowed to be 0/1 for 10 ms
time windows. Response of pairs and triplets was simply
the concatenated vector response of the individual neu-
rons. Information gain for pairs and triplets was calculated
on each case by subtracting the information obtained from
the joint response minus the sum of information obtained
by individual responses.

2.4. Local field potential characterisation

LFP conveys information about synaptic currents
(Buzsáki et al., 2012) and its tuning can be then compared
to tuning seen on the local neuronal population. We in-
cluded the 4-40 Hz frequency range which has been shown
to convey tuning information (Eggermont et al., 2011).
LFP baseline was calculated over the time window minus
12 to 0 ms relative to stimulus onset. The baseline LFP
was then integrated over the 0 to 40 ms time window to
obtain the evoked LFP for each frequency. The best fre-
quency for the LFP was defined as that with the largest
integrated value. LFP latency was measured at this fre-
quency from onset to peak response.

3. Results

3.1. The local columnar population presents similar re-

sponse properties, but large di↵erences are possible

We recorded from 231 neurons from 12 mice. Of these,
82 neurons demonstrated frequency tuning. Our find-
ings (values reported as mean ± s.e.m unless otherwise
stated) are in agreement with previous reports (Rothschild
et al., 2010; Hromádka et al., 2008) of sparse responses in
anaesthetised mouse auditory cortex. Recorded neurons
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were classified as narrow spiking (24.7 %) or broad spik-
ing (75.3 %). Mean spontaneous firing rate was 1.1 ±
0.21 spikes/sec, while mean evoked firing rate was 2.7
± 0.47 spikes/sec. 90% of the cells had evoked firing
rate below 7.1 spikes/sec. These low firing rates are in
agreement with previous reports (Hromádka et al., 2008;
Bandyopadhyay et al., 2010; DeWeese et al., 2003). We
found the mean preferred frequency across neurons to be
16.7 ± 1.4 kHz, mean latency to be 26.8 ± 0.94 ms,
mean LFP latency 27.1 ± 1.1 ms and mean bandwidth
6.3 ± 0.64 kHz. These values are in accordance with
previous reports showing a non-homogeneous representa-
tion of frequencies in primary auditory cortex, with a peak
at around 22 kHz (Rothschild et al., 2010), and the mean
delay in layer five measured to be around 21 ms by Sakata
and Harris (2009).

In Fig. 2 we show data from two representative popula-
tion recordings. In the first column we see the estimated
location of each neuron on the xy plane relative to the
probe, and colour coded their preferred frequency. We can
appreciate that in general they tend to prefer nearby fre-
quencies. Qualitatively we can see from the tuning curves
shown on the second column that having similar preferred
frequency, their particular profile across frequencies can
still di↵er greatly. From the third column, showing raster
plots of their evoked responses across trials, we can see that
their temporal response profile can also be very dissimilar
and within each recording we found a variety of temporal
response profiles. These di↵erences on their temporal pro-
file are an indication of the di↵erent processing done by
each neuron and their temporal profile likely determines
temporal windows relevant for downstream neurons.

We found that in deep layers of primary auditory cortex,
neurons tend to share similar response properties. When
comparing simultaneously recorded neurons, the mean dif-
ference in properties exhibited by simultaneously recorded
neurons was small compared to the full range spanned
by the responses, as seen in table 1 (each column list-
ing mean, s.e.m, 95th percentile and maximum di↵erence
respectively). A fractured representation was present in
some recordings, as can be seen from the Voronoi diagrams
in Fig. 3A where we can appreciate smoothness which is
fractured by sudden changes. While the tendency was for
neurons to present similar preferred frequency as the LFP
(Fig. 3B) and for pairs of neurons to share similar response
properties, some pairs displayed quite dissimilar proper-
ties (lying at the opposite ends of the spectrum), as can
be seen in the histograms of Fig. 3C and last column of
table 1 which lists the maximum di↵erence measured be-
tween pairs of neurons.

metric mean s.e.m 95th percentile max

di↵erence preferred frequency KHz 8.1 0.62 32.9 43.2
di↵erence bandwidth KHz 5.1 0.33 17.0 31.4

di↵erence latency ms 7.5 0.39 19.0 27.0
preferred frequency to LFP KHz 10.9 1.4 43.2 43.2

Table 1: Di↵erences in response properties between

simultaneously recorded pairs of neurons

Di↵erence seen in preferred frequency, bandwidth, delay and

best frequency to LFP.

metric under 100 um above 150 um

di↵erence preferred frequency KHz 8.6 ±0.87 5.2 ±0.89
di↵erence bandwidth KHz 5.2 ±0.44 5.4 ±0.78

di↵erence latency ms 7.0 ±0.48 7.8 ±0.92

Table 2: Changes in di↵erence of response properties over

distance

We compare for all response properties (preferred frequency,

bandwidth, latency) the mean±sem for neurons located close

(under 100 µm appart) and far (over 150 µm away). Di↵erences

were not statistically significant

The similarity in terms of stimulus preference was quan-
tified by the signal correlation, which was high on average
(0.58 ±0.023 ), however this large signal correlation does
not reflect di↵erences on the temporal profiles of the cells
seen on the raster plots in Fig. 2 which might indicate that
a more complex stimuli would yield a lower signal corre-
lation. A relatively large proportion of pairs of neurons
exhibited quite similar response properties at all separa-
tions up to several hundred microns apart, as indicated by
the large fraction of neurons at all separations with signal
correlation approaching 1.0 in Fig. 4A. Nevertheless, there
was also a significant tail of neurons showing quite dissim-
ilar tuning (neurons with signal correlation close to zero
in Fig. 4A). There was no significant linear correlation be-
tween signal correlation and distance (Pearson r = -0.024
), with pairs spanning the full range of signal correlation
at all distances.

There was no significant dependence of di↵erence in re-
sponse properties and distance between cells, as shown in
Fig. 4B-D. When comparing the mean for neurons located
closer than 100 µm apart versus neurons more than 150
µm apart from each other, as listed in table 2, we found
that: for di↵erences in preferred frequency, although ap-
parently decreasing with distance, the change was not sta-
tistically significant(Mann-Whitney U-test); di↵erences in
bandwidth did not show change with distance; di↵erences
in latency, although apparently increasing on average with
distance, this change was not statistically significant.

3.2. Correlation and synchrony decay with distance and

during evoked activity

Noise correlation measures the tendency of the trial to
trial fluctuations of neuronal responses to the same stim-
ulus to correlate with each other. This can be due to
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slow oscillations (such as the changes seen during up and
down states) or faster synchronous activity generated by
shared inputs unrelated to the stimulus. We measured the
noise correlation between pairs of neurons over the 40 ms
time window used above to compute the signal correlation.
Noise was positively correlated with signal correlation as
seen in Fig. 5A, meaning that neurons that share more
stimuli related inputs also share more substrate inputs.
Noise correlation was not heavily dependent on distance as
seen in Fig. 5B, but larger values only occurred at shorter
distances. The 95th percentile could be bound by an ex-
ponential of decay constant 169.7 µm, which implies that
over this distance the largest values of noise correlation are
reduced on approximately 60%.
Our population average noise correlation of 0.057 ±

0.0051 is in agreement with Sakata and Harris (2009),
but is 4 times smaller than that reported by Rothschild
et al. (2010). This could be attributed to the time win-
dow used to compute noise correlation, since as seen in
Fig. 5C our correlation saturates at similar mean values
seen in (Rothschild et al., 2010) when increasing the time
window to match the 200 ms used in that study. However,
large windows are unlikely to be relevant when consider-
ing processing of information done by downstream neurons
(Cohen and Kohn, 2011).
The noise correlation rccg observed during spontaneous

activity was greater than that observed during evoked ac-
tivity (as seen in Fig. 5D for varying integration windows
from 0 to 200 ms). Mean rccg of 0.13 ± 0.0063 for spon-
taneous, compared to 0.097 ± 0.0050 for evoked at T =
40 ms which corresponds to the time window used to char-
acterize tuning and signal correlation; p=0.00014 at 5%
significance, n=263.0 pairs of tunned neurons, Wilcoxon
rank sum test). We interpret this as de-correlation of the
local population during sensory stimulation.
To study changes in synchrony (correlation at very short

timescales), we measured the area under the crosscorrel-
ogram Accg. We observed a greater synchrony in sponta-
neous as compared to evoked activity: 0.029 ± 0.00048
and 0.024 ± 0.00033 coincidences per spike respectively.
This is reminiscent of similar results observed in primate
visual cortex (Kohn and Smith, 2005). Synchrony during
evoked activity was 42.6 % (best fitting line) of the levels of
synchrony measured during spontaneous, this compares to
70.1 % seen in correlation, the comparison of spontaneous
versus evoked can be seen qualitatively in Fig. 5D and E.
This means that the loss of synchrony was more significant
that changes at slower timescales. Therefore we can con-
clude that di↵erent network configurations are active dur-
ing evoked and spontaneous activity, driving neurons on
the local population to di↵erent correlation and synchrony
regimes, this particular stimulus did not change signifi-
cantly slower oscillations but had a significant impact on
synchrony. In terms of its dependance on distance, the
largest recorded values of synchrony decayed faster during
evoked activity than during spontaneous, as can be seen
from Fig. 5F where a exponential was fitted to the 95th

percentile with decay constants of 317.1 and 446.8 µm

for evoked and spontaneous activity respectively, which
could imply overlaping network configurations that dif-
fer on their physical coverage being more confined during
evoked activity.

3.3. Groups of neurons carry redundant information on

average, but high information gains are achieved on

similarly tuned pairs

We calculated the information carried by single units,
pairs and triplets of neurons. Single unit analysis was done
over varying size of binning time window, starting from 40
ms (equivalent to evaluating the information carried by
spike count) we decreased the time window to see the im-
pact of timing on the information carried by each neuron.
From Fig. 6A we see that information started to saturate
at 5 ms when the average information carried per neuron
was 4.5 ±0.48 bits/sec and the average information car-
ried by a single spike was of 0.96 ±0.073 bits (Fig. 6B).
The distribution of information carried by single spikes was
not homogenous as seen in Fig. 6C, the distribution was
skewed and only a tail of neurons carried a large amount
of information per spike. There was no di↵erence between
broad spiking and narrow spiking neurons (mean: 0.95
±0.079 bits/spike versus 0.98 ±0.15 bits/spike, p=0.80 ,
Mann-Whitney U-test)

We then measured the information gain obtained when
considering the response of ensembles formed by pairs and
triplets of neurons. The gain corresponds to the di↵er-
ence between the information obtained from the ensemble
minus the sum of informations obtained when considering
each neuron individually. This is identical to the percent-
age synergy measure used in some previous studies (e.g.
Panzeri et al. (1999); Montani et al. (2007)). We studied
information using a 40 ms time window (information car-
ried by spike count) and 10 ms time window (a shorter
time window produces a response space too large in order
to estimate probabilities), by comparing both cases we can
study how sensitive to timing is the information carried by
the ensembles.

In Fig. 6D, we show the information carried by pairs ver-
sus information carried independently by the constituent
neurons. Comparing the 40 ms binning (left) with the 10
ms binning (middle) we can appreciate that more pairs of
neurons deviate from a full independent regime (diagonal)
when timing is included on the vector response. This can
be also seen from the information gain histograms (right
panel) where we see that the spread of the fitted gaussian
(red line) is larger for the 10 ms window (continuous line)
and there is also an increase in the number of pairs with
high information gain. While the maximum absolute in-
formation gain with a 40 ms window was 4.4 bps, the
maximum gain with a 10 ms window was of 4.9 bps. In
the mean time, the maximum relative gain for each time
window was of 62.6 % and 231.3 % respectively. 3.8 %
of the pairs had an information gain over 50% when us-
ing a 10 ms window, these pairs had on average a signal
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correlation of 0.76 ±0.066 , higher than the average for
all pairs (Mann-Whitney U-test, pval=0.048 , 5% signifi-
cance). These results tell us that while spike count does
not have a large impact on information gain, when consid-
ering timing on the responses there is a gain for ensembles
of neurons which have a high signal correlation corrobo-
rating the richness of the responses across the population
despite their tuning similarity. On average however pairs
of neurons carried redundant information as seen from the
negative mean on the information gain histograms.
From Fig. 6E we see that a similar picture can be ex-

tracted for triplets of neurons. The relative information
gain when using a 40 ms window was smaller than when
using a 10 ms window (10.6 versus 5.5 bps of absolute
gain and 43.3 versus 138.3 % of relative gain). Therefore,
maximum relative gain for triplets was smaller than for
pairs and the percentage of triplets with information gain
above 50% was much lower than for pairs: 0.54 %. Also
the percentage of triplets that showed synergy (gain of in-
formation) was smaller than the percentage of synergistic
pairs (24.8 versus 39.8 %).

3.4. Local connectivity is highly non-random

The role that neurons play within microcircuits is de-
termined both by their intrinsic properties and by feeding
connections or interactions with other neurons. Previous
studies have highlighted the importance of local connec-
tivity, since it is expected that responses to stimuli are
shaped by sensory related input (feedforward from thala-
mus in the input layers and upper layers in the case of layer
V) and local interactions which in general have been as-
sumed to further shape functional response. We therefore
characterised connectivity for local populations of layer V
neurons, in order to elucidate the role that these connec-
tions play.
Putative monosynaptic connections were detected based

on crosscorrelograms. From our population of 231 neurons
we found 21 to be exciting other neurons, with 20 of them
corresponding to broad spiking neurons (putative excita-
tory neurons) and one possibly being excitatory with nar-
row spike waveform. The excited neurons (18) included
both broad and narrow spiking (putative inhibitory) neu-
rons: 10 and 8 neurons respectively. Considering that only
nearly 20% of recorded cells are inhibitory (Meinecke and
Peters, 1987; Xu et al., 2010), our results are consistent
with a previous report that showed that probability of
connection was higher on inhibitory neurons compared to
excitatory, Yoshimura and Callaway (2005). This classifi-
cation can be seen graphically in Fig. 7A left, were we can
appreciate the correspondence between the excitatory and
broad spiking class. In Fig. 7A right panel we can see that
most of the neurons exciting others had a short refractory
period and high burst index, which might suggest that
they are large pyramidal cells from layer V, whose firing
pattern matches that previously described by Christophe
et al. (2005). Large pyramidal cells of layer V are known

to be highly interconnected (Thomson and Lamy, 2007),
in agreement with our observations.

In our dataset we found a low probability of connec-
tion: 0.0074 , which matches low connection probabili-
ties reported elsewhere (Song et al., 2005; Bartho et al.,
2004). Despite this low probability, motifs of highly in-
terconnected neurons were common, triplets of connected
neurons occurred in 7 of the 10 recordings where synaptic
connections were detected despite their low probability of
occurrence: 0.00005 . This result agrees with a previous
in-vitro connectivity characterisation of layer V pyramidal
neurons (Song et al., 2005), and is suggestive of highly non-
random connectivity, with neurons forming sub-networks
instead of loose pairs of synaptically connected neurons.
The mean signal correlation between synaptically con-
nected pairs was higher than the average signal correlation,
but the di↵erence was not statistically significant (Mann-
Whitney U-test): 0.73 ± 0.081 versus 0.58 ± 0.023 , re-
spectively. The mean noise correlation was higher (pval=
0.024 , Mann-Whitney U-test) on average between con-
nected pairs than the mean among all pairs: 0.14 ± 0.041
versus 0.057 ± 0.0051 (see Fig. 7D). A more complex
stimulus might enhance di↵erences on signal correlation
while mantaining levels of noise correlation.

Synaptically connected pairs of neurons were on aver-
age synergistic when using a 10 ms binning window for
the response vector (i.e. including timing e↵ects), having
on average 18.9 ±12.4 percent of information gain. The
maximum gain among these pairs was of 86.0 % and only
2 pairs carried redundant information (negative informa-
tion gain). In Fig. 7C we show an example of a triplet
formed by a pair carrying redundant information (-18.2 %
information gain, bottom row) and the other being slightly
synergistic (3.5 % gain, top row), seeing the response pat-
tern on these neurons across trials it would be interesting
to explore the functional role these kind of synaptic con-
nections play.

The mean separation along the rostro-caudal (X) axis
between synaptically connected neurons was 28.3 µm,
while the mean vertical (Y) separation was 48.9 µm. The
mean total distance was of 61.0 µm. 90 % of detected
pairs were located at less than 44.1 , 99.1 and 105.8 µm
along the X, Y axis and total distance. These measure-
ments are in agreement with Song et al. (2005), where the
authors report for pyramidal neurons of layer V that 82%
of the connections are located less than 50 µm apart, with
the remaining 18 % being separated by less than 110 µm.
Our findings also agree with a connectivity study (Levy
and Reyes, 2012), of layer 4 of auditory cortex reporting
that the probability of connection is well fitted by a gaus-
sian with a spread of 85-114 µm, implying that the prob-
ability of synaptic connections decays as we move away in
the coronal plane. Minicolumns have been proposed as a
functional unit, with several mini columns interacting and
being synaptically connected (Krieger et al., 2007), on that
study synaptic connections were equally probable between
neurons on the same bundle versus neurons belonging to
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neighbouring bundles. In contrast in our dataset we found
that most of the connections, 87.5 %, were between neu-
rons located over 10 µm appart along the horizontal axis
(rostro caudal) with 41.7 % of connections being between
pairs located between 30 and 40 µm. Although the colum-
nar distribution in our dataset was not determined, given
the columnar distribution of the electrodes themselves, we
would argue that our findings are in agreement with the
multi minicolumn interaction theory.
We measured how synchrony changed on spontaneous

versus evoked activity. In the previous section we showed
that for the whole population synchrony during evoked
activity was a 42.6 % of that seen during spontaneous.
For synaptically connected pairs we found this to be 62.6
%. This means that even for monosynaptically connected
pairs, synchrony decreases when going from spontaneous
to evoked activity, although the decrement is smaller than
for the general population of neurons. Changes in synaptic
strength have been reported previously (Fujisawa et al.,
2008) and could imply di↵erent subnetworks operating on
a local columnar population.

4. Discussion

Recent studies (Rothschild et al., 2010; Bandyopadhyay
et al., 2010; Hackett et al., 2011; Guo et al., 2012) have
examined the response properties of the superficial lay-
ers of A1. They have reported tonotopy when recording
multi unit activity and LFP, but fractured tonotopy at the
single neuron scale, with neighbouring neurons exhibiting
very di↵erent frequency preferences. Tonotopy has been
reported to be stronger in the thalamo-cortical recipient
layer, and degraded in downstream layers. In this study
we examined tonotopic structure in local neuronal popu-
lations in the main output layer of A1 (layer 5) with the
aim of characterizing their response properties.
Our study, the first use of dense columnar recording

technology to map tonotopy in mouse auditory cortex,
revealed fractured tonotopy at the level of single neu-
rons: neighbouring neurons tend to share frequency pref-
erences, but with occasional large di↵erences in tuning.
Previous multi-electrode array electrophysiological studies
have shown tonotopy at a scale of hundreds of microns
(e.g. (Guo et al., 2012) which used a sparse array and
(Hackett et al., 2011) which used a high density linear
array shifted in position over hundreds of µm), but due
to relatively sparse spatial sampling, these studies were
unable to provide evidence of the detailed topographic or-
ganisation of auditory cortex on small volumes (From our
estimated locations, the maximum scanned volume was
of 0.0015 mm3, spanning 84.2 µm rostro-caudal, 277.2
µm vertical and 64.2 µm lateral). Several recent stud-
ies, using two photon calcium imaging, found a high de-
gree of heterogeneity in the tuning of spiking-related cal-
cium signals at the single neuron scale (Rothschild et al.,
2010; Bandyopadhyay et al., 2010). One possible reason
for the di↵erence between our finding and these studies

may be that they are e↵ectively sampling from a single
coronal plane covering layers II/III, whereas we densely
sampled in the columnar axis targeting only layer V. The
groups of similarly tuned neurons we observed could have a
physical correlate, for example micro columns or bundles
(Maruoka et al., 2011; Krieger et al., 2007; Ohki et al.,
2005), while being compatible with neighbouring groups
exhibiting large di↵erences in their preferred frequency as
found by our study and the aforementioned imaging stud-
ies. The incidence of large di↵erences in preferred fre-
quency might be related to the angle of insertion, with
slightly tilted angles increasing the probability of finding
large di↵erences between neighbouring neurons.
The specific pattern across frequencies varied substan-

tially between neighbouring neurons, despite their ten-
dency to operate on the same frequency band, we found
a large variability within the local population. On av-
erage simultaneously recorded neurons exhibited similar
preferred frequency and bandwidth, but large di↵erences
were possible at all separations between cells. This is
also seen from the large variability in signal correlation
found in the local population at all distances, with a higher
mean signal correlation than found in the previous stud-
ies which made use of two photon microscopy (Rothschild
et al., 2010; Bandyopadhyay et al., 2010). This di↵er-
ence in mean signal correlation could be explained by the
columnar sampling of the population targeted by us as
opposed to the spanning of larger surfaces in the coronal
plane: in the former case, a larger amount of common in-
put might be expected. The use of iso-intensity tones also
increases the signal correlation since di↵erences in inten-
sity tuning are not considered. Despite the simplicity of
the stimuli used, we can conclude that local populations
in layer V constitute a set of complex and diverse filters.
Further studies with complex stimuli might help elucidate
how di↵erent spectrotemporal filters coexisting in the local
columnar population complement each other.

The temporal response patterns seen on local popula-
tions were also diverse, despite their tendency to have
similar peak latency from onset, with nearby neurons ex-
hibiting di↵erent temporal profiles (for example on/o↵ re-
sponse, sustained, transient). This again tells us about
the richness of response properties among the local popu-
lation, with neighbouring neurons potentially performing
very di↵erent processing tasks. The temporal profile de-
termines the time windows and temporal dynamics with
which neurons convey information about the stimuli, and
is defined by both the neuron’s intrinsic properties, and
those of upstream feeding neurons.

Noise correlation was congruent with previous reported
values when analysing over similar time window. Noise
correlation was found to decrease during evoked activity,
therefore the stimulus used e↵ectively decorrelated the ac-
tivity of the local population. Synchrony was also found to
decrease during evoked activity, which indicates that even
neurons having a tighter connectivity see a change on their
connectivity strenght when stimulated. Average levels of
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noise correlation and synchrony didn’t show a dependance
with distance. However, the largest recorded values de-
cayed with distance in both cases, noise correlation de-
cayed faster than synchrony which in turn decayed faster
during evoked activity compared to spontaneous. This in-
dicates that networks directly involved on the transmision
of evoked activity are more localized than networks sus-
taining spontaneous activity. The superposition of com-
mon inputs driving the local population (providing sub
threshold oscillations, for example) and non random local
connectivity with the presence of hubs of connected neu-
rons, as seen in our recordings, would explain the faster
decay with distance of noise correlation compared to syn-
chrony. In support of this Yoshimura and Callaway (2005)
showed that synaptically connected neurons do not always
share common excitatory inputs, a fact which can be ex-
plained by complex fine-scale networks at a sub-columnar
scale (Yoshimura et al., 2005; Yoshimura and Callaway,
2005). There could be overlapping subnetworks which
might be activated under di↵erent stimuli conditions (Fu-
jisawa et al., 2008) as hinted by the reduction in synchrony
seen between synaptically connected neurons when switch-
ing from spontaneous to evoked.
When analysing the information carried by single neu-

rons we found that the rate of transmision and the in-
formation carried by each spike grew as we decreased the
binning window, which means that the code used by neu-
rons in mouse A1 to transmit information has a resolution
below 5 ms, or conversely, downstream neurons could po-
tentially decode responses at at least this time scale. A
more complex stimulus might yield an even higher gain as
the window is reduced, as shown in (Liu and Schreiner,
2007) for information carried by primary auditory cortex
neurons of mothers when stimulated with pup’s crying
sounds. The distribution of information carried by sin-
gle spikes was not uniform but skewed in agreement with
previous observations from macaque auditory cortex (Ince
et al., 2013).
Pairs of simultaneously recorded neurons were found to

carry redundant information on average, but large gains
(synergy) were observed for pairs of neurons when tempo-
ral information was included on the response vector, these
levels of synergy were not seen when considering only spike
counts. We found that the mean signal correlation among
pairs which had a large synergy (above 50% information
gain) was higher than the average signal correlation, which
means that even when pairs showed similar response to
the stimulus they still carried complementary information
on the temporal profile of their responses. Also pairs of
monosynaptically connected neurons were on average syn-
ergistic, which implies that despite their common activ-
ity due to direct connectivity they can still carry comple-
mentary information. However we found few examples of
synaptic pairs operating in redundant mode and looking
at their response it would be worth investigating their role,
specially given their location on the main output layer of
cortex.

Triplets of neurons showed a similar result, by having
large synergy when temporal information was included on
the response vector. However, the largest gain seen on
triplets was lower than that measured for pairs and the
percentage of triplets with large gains was smaller than
the percentage of pairs. The percentage of triplets operat-
ing on synergistic mode was smaller than the percentage of
synergistic pairs, this results concords with findings from
rat motor cortex (Narayanan et al., 2005) which found
around 20% of pairs to be synergistic, while 99% of larger
groups (8 neurons) were redundant. We could expect to
find more synergy and less redundancy when using a more
complex stimulus, since a simple stimulus can increase the
level of redundancy by unexploiting the encoding capacity
of the neurons. Low levels of redundancy are also expected
according to a study from cat auditory cortex (Chechik
et al., 2006) which reported that redundancy decreases as
we move along the auditory pathway. The analysis per-
formed for groups of neurons rely on the assumptions done
about the decoding scheme used by downstream neurons,
such as not pooling spikes coming from di↵erent neurons,
which might not be the case if the feeding neurons synapse
on equivalent locations (see (Schultz et al., 2009) for a dis-
cussion of this issue in a quite di↵erent circuit, that of
the cerebellum). Synergy can be increased by pooling if
there is signal anticorrelation (Panzeri et al., 1999); con-
versely, for positive signal correlation, synergy is improved
by considering each neuron independently. It is likely that
both cases are produced by the connectivity patterns seen
in cortex. There are also cases where redundancy is de-
sirable, gaining reliability to the detriment of information
rate (Barlow, 2001).

Modelling studies (Kaschube et al., 2010) have suggested
that long range suppressive connections are in charge of
shaping maps and the existence of pinwheels, while local
connectivity might dictate arrangement in areas lacking
orderly maps as is the case of mouse auditory (and visual)
cortex. However, connectivity patterns and the role they
play might di↵er across layers. A previous report from the
upper layers of auditory cortex (Rothschild et al., 2010)
explained their findings by a tonotopically arranged input
(local neurons sharing common input) and random local
connectivity. This would explain the decrease in corre-
lation they observed as the distance in the coronal plane
increases and the variability seen at short distances, which
could be explained by overlapping sub-networks. The ex-
istence of such networks has been reported from studies
in rat visual cortex (Yoshimura et al., 2005; Yoshimura
and Callaway, 2005). In this study we found evidence for
functional sub-networks in deep layer of A1, however the
connectivity seen di↵ered from random.
In layer V, we found that connectivity was highly non-

random, and triplets of synaptically connected neurons
were the most common motif, despite their extremely low
probability of occurance, in agreement with a previous in-
vitro study (Song et al., 2005). Columnar processing has
long been assumed to be a hallmark of cortex, and a in-
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vitro study (Krieger et al., 2007) has suggested that an
aggregation of mini columns might act as a single func-
tional unit. Supporting this concept, we found that most
monosynaptic connections were between neurons located
on di↵erent vertical bundles (given by their separation
along the rostro-caudal axis), the fact that synaptic pairs
were on average synergistic supports the idea of functional
aggregation of adjacent columns. Further studies with
recording arrays spanning several mini columns may al-
low a thorough characterization of connectivity between
them, and the determination of their functional correlates
in-vivo.
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Figure 1: Extracellular recordings with high-density electrode array targeted microcolumns in A1. (A) We targeted layer five of
contralateral primary auditory cortex, inserting the probe parallel to midline to maximise rostral to caudal coverage and perpendicular to
the brain surface. (B) A typical recording, here highlighting two isolated neighbouring units. (C) Single units from (B) illustrated
independently, showing the average spike waveform measured on each channel and the corresponding heatmap depicting strength of the
signal across channels. D) Three dimensional plot showing estimated location of the soma of all single unit on the dataset
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Figure 2: Within micro columns we found a variety of response profiles with a tendency to share similar preferred frequency. For two
recordings we show details of the response to our stimulus left xy plane showing the edges of the probe and the location of each neuron
relative to the probe, the colour corresponds to its preferred frequency middle for the same units we show the tuning curve (frequency
versus probability of firing) right raster plots of the neurons’ response after stimulus onset (40 ms) across trials (di↵ering on frequency).
Top right corner shows the temporal profile (over 200 ms after stimulus onset) for the LFP across frequencies.
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Figure 3: Microcolumns exhibited fractured representations of response features. (A) For three recordings we show Voronoi diagrams colour
coded in terms of preferred frequency, bandwidth and latency from onset. Here we can see that the smoothness is broken by sudden
di↵erences between neighbouring neurons.(B) Neurons tend to have similar preferred frequency as the LFP, but large deviations from it
were also possible.(C) Histograms of di↵erence in latency and bandwidth versus di↵erence in preferred frequency. Neurons tend to have
similar properties, but large di↵erences were also possible.
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Figure 4: Di↵erences in response properties versus distance showed no significant relationship. (A) Signal correlation between
simultaneously recorded pairs showed no significant trend with distance (bars represent mean±sem, as in all other raster plots), at all
distances signal correlation spanned the full range. (B) Di↵erence in preferred frequency versus distance. Larger di↵erences were more
common at short separations, but the mean di↵erence showed no significant correlation with distance. (C) Di↵erence in bandwidth also
showed no significant correlation with distance and the full range was spanned at all distances. (D) Di↵erence in peak latency versus
distance. There was no significant linear correlation and small and large di↵erences were found at all distances.
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Figure 5: Low average noise correlation and stimulus induced decorrelation. (A) Signal and noise correlation were positively correlated.(B)

Noise correlation was lower on average than previously shown and showed no significant dependence with distance, but larger values were
more common at shorter distances. Black bars correspond to mean±sem, segmented black line 95th percentile and red line exponential
decay fitted to it.(C) When analysing the timescales of correlation (rccg) we found that saturation values are similar to values previously
reported, although such large time windows are unlikely to be relevant for upstream neurons. (D) rccg measured during evoked versus
spontaneous activity, colour coded by time window. (E) Synchrony (Accg) measured during evoked versus spontaneous activity. (F)

Synchrony versus distance between neurons, measured during evoked (top) and spontaneous (bottom). Black bars represent mean±sem, red
line the exponential decay fitted to the 95th percentile

14

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 17, 2016. ; https://doi.org/10.1101/059493doi: bioRxiv preprint 

https://doi.org/10.1101/059493
http://creativecommons.org/licenses/by/4.0/


0 20 400

10

20

30

40

Info Pair (40ms bin) bps

Su
m

 o
f I

nd
ep

 In
fo

 b
ps

0 20 400

10

20

30

40

Info Triplet (40ms bin) bps

Su
m

 o
f I

nd
ep

 In
fo

 b
ps

0 20 400

0.5

1

1.5

Binning Window ms

In
fo

rm
at

io
n 

bi
t/s

pi
ke

0 20 400

2

4

6

Binning Window ms

In
fo

rm
at

io
n 

bp
s

0 20 400

10

20

30

40

Info Pair (10ms bin) bps

Su
m

 o
f I

nd
ep

 In
fo

 b
ps

A B

D

E

0 20 400

10

20

30

40

Info Triplet (10ms bin) bps

Su
m

 o
f I

nd
ep

 In
fo

 b
ps

0 2 40

5

10

15

20

bits per spike

nu
m

be
r o

f c
el

ls

−100 0 1000

50

100

150

200

Percent Info Gain

N
um

be
r o

f P
ai

rs

−100 0 1000

100

200

300

Percent Info Gain

N
um

be
r o

f T
rip

le
ts

C

Figure 6: Information carried by single units, pairs and triplets. (A) Information in bits/sec (black bars represent mean±sem) carried by
single units as a function of the binning window used to construct the vector response. (B) Information in bits/spike (mean±sem) also as a
function of the window size. (C) Histogram of information in bits/spike carried by recorded neurons. (D) Rasters showing the information
carried independently by neurons on a pair and the information carried by their joint response vector. Values deviate more from a fully
independent regime (diagonal, red line) when including timing e↵ects (10 ms binning window, middle) than when using rate code (40 ms
window, left). This can also be seen on the histograms of percent information gain (percentage synergy) in the last column where black lines
correspond to recorded distribution, and red line to a gaussian fit, larger gains are only present for the 10 ms binning window (continuous
lines) compared to 40 ms window (segmented line). On average the population operated in a redundant regime (negative information gain,
mean value for the normal distribution). (E) Results arranged as in (D), but for triplets. Similars conclusions can be drawn from them.
Larger gains were achieved when including timming information (10 ms window, right) and also a larger spread on the distribution of
information gains. Again for triplets the population on average operated on a redundant regime.
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Figure 7: Highly non random connectivity. (A) left Neurons were classified as broad (red square) or narrow spiking (blue circle). Detected
monosynaptic connections are also indicated here, excitatory neurons are indicated by a red diamond and excited neurons by a green
diamond. right Characterisation of the firing pattern allowed to confirm classification of excitatory neurons as bursty neurons (putative
large pyramidal neurons from layer 5).(B) Example of synaptic connections detected, for each the autocorrelogram of each neuron and
crosscorrelogram are depicted along with tuning curves. Neurons are colour coded according to preferred frequency. (C) Example of
synaptic pair corresponding to pair on adjacent B plot. The pair on the top row was slightly synergistic while the bottom was redundant
(only 2 synaptic pairs carried redundant information). (D) Signal versus noise correlation for all (black circle) and synaptically connected
(red asterisk), only di↵erence in mean noise correlation was significantly di↵erent between both groups.
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