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Experiments in model organisms report abundant genetic interactions underlying 16	
biologically important traits, whereas quantitative genetics theory predicts, and data 17	
support, that most genetic variance in populations is additive. Here we describe 18	
networks of capacitating genetic interactions that contribute to quantitative trait 19	
variation in a large yeast intercross population. The additive variance explained by 20	
individual loci in a network is highly dependent on the allele frequencies of the 21	
interacting loci. Modeling of phenotypes for multi-locus genotype classes in the epistatic 22	
networks is often improved by accounting for the interactions. We discuss the 23	
implications of these results for attempts to dissect genetic architectures and to predict 24	
individual phenotypes and long-term responses to selection. 25	
 26	
When the combined phenotypic effect of alleles at two or more loci deviates from the sum of 27	
their individual effects, it is referred to as a genetic interaction or epistasis. Most biological 28	
traits are regulated by a complex interplay between multiple genes and environmental factors. 29	
Despite this underlying complexity, data and theory have shown that it is expected that most 30	
of the genetic variance in a population will be additive1–3. The apparent contradiction between 31	
the complexity of the biological mechanisms that determine quantitative traits, and the 32	
observation that most genetic variance can be captured by an additive model, has led to a 33	
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long-standing debate in genetics: Does the predominant role of the additive genetic variance 1	
mean that strictly additive models are always sufficient to describe the relationship between 2	
the genotype and the phenotype of an organism1,4, or could there be added value in explicitly 3	
modeling genetic interactions despite the lower levels of epistatic genetic variance5–8?  4	
 5	
There are some situations where data and theory has suggested that it might be particularly 6	
important to account for genetic interactions. One is when the aim is to predict phenotypes of 7	
individuals based on their genotype. If interactions lead to extreme phenotypes for some 8	
genotypes, these phenotypes are unlikely to be captured by additive models, particularly if 9	
they are rare. This has, for example, been illustrated for sporulation efficiency in yeast9. 10	
Another is in the prediction of long-term selection response. Under additivity, both the 11	
additive variance and the response are expected to be near constant over the first few 12	
generations. As generations proceed, allele frequencies change to alter the additive variance 13	
and consequently the response to selection. This change is more rapid for traits regulated by 14	
fewer loci with larger effects than for traits regulated by many loci with smaller effects. It is 15	
known that genetic interactions can contribute to the additive genetic variance in a 16	
population1,7. The contribution, however, varies depending on the joint allele frequencies 17	
across all the interacting loci as well as on the types and strengths of the genetic 18	
interactions10,11. The changes in the additive variance, and hence the response, during ongoing 19	
selection is therefore more complex in the presence of genetic interactions. As a result, 20	
genetic interactions can make the long-term selection response more dynamic12,13 and result in 21	
a realized response beyond predictions based on the additive genetic effects and allele 22	
frequencies at the individual loci10,11. However, as little is known about how prevalent and 23	
strong genetic interactions are in real populations, and how much they contribute to the 24	
additive variance as the allele frequencies change during selection, it has been difficult to 25	
obtain any empirically based conclusions about how influential interactions are expected to be 26	
in these situations.  27	
 28	
Here we analyze a panel of 4,390 yeast recombinant offspring (segregants) from a cross 29	
between a lab strain (BY) and a vineyard strain (RM), generated in Bloom, et al. 20153. In 30	
this population, each segregant is genotyped for 28,220 SNPs and phenotyped for 20 end-31	
point growth traits. Across these traits, a total of 939 QTL with additive, and 330 with 32	
epistatic, effects were mapped previously3. Since the individuals in this population are 33	
haploids, the sample size is large and all allele frequencies are close to 50%, this dataset 34	
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presents a unique opportunity to accurately estimate how allelic combinations across large 1	
numbers of loci influence quantitative traits. Using phenotype information for multiple 2	
segregants with each possible allelic combination across many loci, we directly estimate how 3	
high-order genetic interactions contribute to complex trait variation in this segregating 4	
population. We quantify how well quantitative genetics models can capture the empirically 5	
revealed relationships between multi-locus genotypes and phenotypes.   6	
 7	
We observe networks of epistatic loci for most of the traits in the study, and find that some 8	
highly interactive loci in these networks can hide, or reveal, the effects of their interactors. 9	
We show that additive genetic models capture much of the genetic variance contributed by the 10	
interacting genes in these networks. However, when used to estimate the phenotypes for 11	
individual segregants, they often fail to fully capture the effects of multi-locus genotypes that 12	
lead to extreme phenotypes. Accounting for interactions in the models led to more accurate 13	
phenotypic predictions for such genotypes. We illustrate this by analyzing an individual 14	
network in detail, and then generalize the results across the other revealed networks. We 15	
discuss the potential impact of these findings on prediction of individual phenotypes that is of 16	
importance in for example personalized medicine, prediction of long-term selection response 17	
in breeding and evolution, and interpretation of results from QTL and genome-wide 18	
association studies. 19	
 20	
Results 21	
Many epistatic QTL are part of highly connected networks 22	
Most epistatic QTL3 interacted with one or a few loci, while a smaller subset were involved in 23	
pairwise interactions with several loci (Figure 1A). By visualizing the 330 statistically 24	
significant epistatic QTL as nodes, and the interactions between them as edges, we revealed 25	
many networks of interacting loci. These were often connected in hub-and-spoke type of 26	
architectures where QTL involved in many interactions tied larger networks together (Figure 27	
1B). We refer to these as radial networks, with a hub-QTL in the center that connects the 28	
radial QTLs. Hub-radial QTL interactions were, on average, more significant than interactions 29	
that did not involve a hub (Supplementary Figure 1), supporting that the radial architecture is 30	
a prominent feature of the networks. The available genotype and phenotype data allowed us to 31	
accurately estimate the phenotypes for individual six-locus genotype-classes (see below). We 32	
therefore selected the 15 six-locus radial networks where a hub-QTL interacted with at least 33	
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five other QTL, for further in-depth studies (Figure 1B). The selected networks contributed to 1	
11 of the 20 studied traits, and included 81 QTL. 2	
 3	

 4	
Figure 1. Many QTL involved in pairwise interactions are part of highly interconnected epistatic networks. 5	
A) A histogram of the number of interactions each epistatic QTL is involved in. Most of the 330 epistatic loci 6	
detected for the 20 traits are involved in few pairwise interactions. Few QTL are involved in many interactions, 7	
here defined as five or more, but their role is prominent since they are the hubs that tie the networks together 8	
(B). B) The pairwise QTL interactions contributing to growth in 11 different media form highly interconnected 9	
epistatic networks. Each circle represents a QTL and the lines represent significant pairwise interactions3. Red 10	
circles highlight hub-QTL involved in five or more pairwise interactions.  11	
 12	
Below, we first illustrate our analyses and results for the network regulating growth on 13	
medium containing indoleacetic acid (IAA-network) and then extend them to all networks.  14	
 15	
Hub-QTL alleles often moderate the phenotypic effects of radial QTL alleles 16	
The hub-QTL in the IAA-network explained the most additive genetic variance of any locus 17	

for this trait !!!
!!!
= 11% 3. The phenotypic variance was 3-fold higher among segregants with 18	

the BY-genotype, than among segregants with the RM-genotype, at this locus. This genetic 19	
variance-heterogeneity is highly significant (! < 1×10!!"). By estimating the narrow sense 20	
heritability (h2) separately among segregants with the BY and RM allele at this hub-QTL we 21	
showed that much of this difference was due to genetics (ℎ!"! = 0.55 vs ℎ!"! = 0.14). We 22	
here call such QTL, where one allele suppresses genetic contributions by other loci and the 23	
other allele uncovers them, genetic capacitors. Across the 15 epistatic networks, 10 hub-QTL 24	
were genetic capacitors with significant differences in h2 between the genotypes ranging from 25	

●

●
●

●
●

●

●
●

●

●
● ●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

Cobalt Chloride

Copper Sulfate

E6 Berbamine Indole Acetic Acid

●

●

●

●●

●

●
●●

●

●
●

●

●

●

●

●

●

●

Lactate

●

●

●

●
●

●

●

● ●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

Manganese Sulfate

●
●

●
●

●

●●

●
●

● ●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

Neomycin

●
●

● ●●

●

●

●

●

●
●●

●

●

●

●

●
● ●

●

Raffinose

●●

●

●

●

●

●

●
●

●
●

●

●

●

Xylose

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

YPD

● ●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

Zeocin

2 4 6 8 10 12

0
50

10
0

15
0

20
0

25
0

N
um

be
r o

f l
oc

i

Number of genetic interactions

A B

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 31, 2016. ; https://doi.org/10.1101/059485doi: bioRxiv preprint 

https://doi.org/10.1101/059485
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 5	

10 !" 42%. By testing 40 randomly selected radial QTL, we found that few (3) of these were 1	
significant genetic capacitors and that they were weaker capacitors than the hubs (mean 2	
difference±SD in ℎ!for radial QTL = 4.3%±3.6 vs 12.5%±9.2% for hub-QTL). We also 3	
revealed a strong correlation (!! = 0.64; ! < 1×10!!") between the level of variance-4	
heterogeneity between the genotypes at the 330 epistatic QTL and the number of interactions 5	
they were involved in (Supplementary Figure 2). Together, this shows that strong genetic 6	
capacitors14,15 often are hubs in epistatic networks. 7	
 8	
Deviations between estimated and modeled phenotypes for individual multi-locus 9	
genotype-classes 10	
The contribution by allelic interactions to complex trait variation in a segregating population 11	
For the six-locus IAA-network, we divided the segregants into 64 groups representing each of 12	
the 64 possible six-locus genotype classes, and calculated their phenotypic means and 13	
variances (Figure 2A). Segregants with the capacitating BY allele at the hub-QTL (green) 14	
display the poorest growth when they have many IAA-sensitizing alleles at the five radial 15	
QTL. In contrast, segregants with the canalizing RM allele at the hub-QTL (grey) have similar 16	
growth regardless of how many IAA-sensitizing alleles they have at the radial QTL. The 17	
RM/BY alleles at the hub-QTL in the network thus decrease (canalize)/increase (capacitate) 18	
the effects of the radial QTL, respectively (Figure 2A).  Similar results are also observed for 19	
several of the other networks with significant differences in h2 between the genotypes at the 20	
hub-QTL (Supplementary Figure 3). 21	
  22	
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 1	
Figure 2. An epistatic network regulates growth on indoleacetic acid containing medium. One allele at the 2	
network hub-QTL hides the phenotypic effects of segregating alleles at the radial QTL. When the other allele 3	
is present, the growth decreasing effects of the radial QTL are combined in a non-linear fashion.  4	
Tukey boxplots illustrating the phenotypic distributions in segregants with different combinations of alleles 5	
across the IAA-network. A) One boxplot for each of the 64 genotype classes, where the color indicates the 6	
genotype at the hub-QTL (chrVIII:114,114bp; Green/grey boxes for BY/ RM alleles). The x-axis gives the six-7	
locus genotype class, where blue/orange dots indicates growth-decreasing/increasing alleles at the five radial-8	
QTL (from top to bottom chrXIV:469,224bp, chrIII:198,615bp, chrIV:998,628bp, chrXIII:410,320bp, and 9	
chrXII:645,539bp). Genotypes with an RM allele at the hub-QTL have less variable (canalized) phenotypes, 10	
whereas genotypes with a BY allele have more variable (capacitated) phenotypes. The black line through the 11	
boxes illustrates the additive model based estimates of the phenotypes for the 64 genotype classes. The number 12	
above the x-axis is the number of segregants in each genotype class. B) One boxplot for each group of 13	
segregants that share the same number of growth decreasing alleles at the five radial QTL. The segregants are 14	
divided and colored based on the genotype at the hub-QTL as in A). The x-axis gives the number of growth 15	
decreasing alleles at the radial QTL and the number of segregants in each group. The regression lines illustrate 16	
the fit for linear additive (black; R2 = 0.34) and non-linear exponential (dashed blue; R2 = 0.39) models, 17	
respectively. 18	
 19	
Across the networks, we detected hub-QTL capacitor alleles of both BY and RM origin. The 20	
most extreme phenotypes in these networks were always observed for a genotype-class with a 21	
combination of BY and RM alleles at the hub and radial loci. The alleles at the radial loci that 22	
required the presence of the capacitating hub allele to reveal their full effect on growth 23	
(Figure 3; Supplementary Figure 3; Supplementary Figure 4) did in 60% of the cases 24	
originate from the same strain as the canalizing hub allele. The two parental strains thus 25	
harbor cryptic, or hidden, genetic variation16–19, whose phenotypic effect is revealed when 26	
combined in the haploid segregants.  27	
 28	
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 1	
Figure 3. The epistatic networks contain hub-QTL capacitor alleles of both BY and RM origin. In some 2	
networks they moderate growth increasing, and in others growth decreasing, effects of segregating alleles at 3	
radial QTL. 4	
The boxplots show phenotypic distributions for groups of segregants with different numbers of growth affecting 5	
alleles at the five radial QTL in six-locus epistatic networks. Each sub-figure corresponds to one epistatic 6	
network where the hub-QTL capacitates the growth-increasing, or growth-decreasing, effects of segregating 7	
alleles at the radial QTL (A: E6-Berbamine, B: Manganese Sulfate, C: Neomycin, D: Copper Sulfate). Within 8	
each network, the segregants are divided based on the genotype at the hub-QTL, and segregants carrying the 9	
RM allele are shown in grey and those with the BY allele are shown in green. The x-axis gives the number of 10	
growth decreasing alleles at the radial QTL. A(B) illustrate networks where the RM(BY) allele at the hub-QTL 11	
maintain low growth in the segregants almost regardless of the genotypes at the radial-QTL. In C(D), the 12	
RM(BY) maintain high growth almost regardless of which alleles segregate at the radial QTL. The regression 13	
lines illustrate the difference in effects of the radial-QTL alleles depending on the genotype at the hub-QTL. 14	
 15	
Non-linear capacitation effects in some epistatic networks  16	
In the IAA-network, the reduction in growth among the segregants with the BY allele at the 17	
hub-QTL decelerates in a multiplicative, rather than a linear, manner as the number of IAA-18	
sensitizing alleles increases (Figure 2B). For segregants with the BY allele at the hub-QTL, 19	
the effect of having 5 IAA-sensitizing alleles is much larger than 5 times the effect of having 20	
one IAA-sensitizing allele. As a result, an exponential model fits this data better than an 21	
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additive model (R2 increases from 0.34 to 0.39; Figure 2B). One other network, affecting 1	
growth in medium containing Copper Sulfate, displayed a similar non-linear capacitation (R2 2	
increased from 34 to 43%; Figure 3D; Supplementary Figure 4). This multiplicative effect 3	
could result from measuring growth as the increase in radius of the yeast colonies, or it could 4	
be a feature of the underlying biology.  5	
 6	
Extreme additive-model based estimates of individual phenotypes are often biased 7	
Many additive-model based estimates of the phenotypes for multi-locus genotype classes in 8	
the IAA network differed substantially from the actual values estimated directly from the data 9	
(Figure 2A). Cross-validated model-based estimates were computed for each multi-locus 10	
genotype class to quantify their accuracy and bias. Accuracy for each genotype class was 11	
measured by the mean square error (MSE), and bias by the difference between the modeled 12	
and actual phenotypes. Twenty-three of the 64 estimates were significantly biased  (! < !.!"

!" ; 13	
two-sided t-test), showing that the additive model was unable to represent the genetic 14	
contributions by the IAA network to many of the individual segregant phenotypes. To 15	
evaluate whether this trend generalized across all networks, and whether alternative 16	
quantitative genetics model parameterizations could perform better, we fitted three different 17	
quantitative genetics models to all six-locus networks: i) additive effects only, ii) additive 18	
effects and pairwise interactions and iii) additive, pairwise and three-way interactions. 19	
 20	
Models with only additive effects captured much of the phenotypic variance for all networks 21	
(on average 28% of !!!). Accounting for epistatic interactions only increased the variance 22	
explained marginally (on average 5% of !!!). The additive model based estimates of the 23	
phenotypes were, however, significantly biased for between one and 23 of the 64 genotype 24	
classes per network in 14 of the 15 examined networks (! < !.!"

!" ; two-sided t-test; Figure 2; 25	
Figure 4; Supplementary Figure 5). Models with pairwise interaction terms provided unbiased 26	
estimates of all 64 measured genotype values for most networks. Only two networks required 27	
three-way interaction terms to remove all detectable bias. In 5 of the 15 networks, the 28	
accuracy was significantly better for at least one of the 64 genotype classes when using 29	
models with pairwise interaction terms (! < !.!"

!" ; two-sided t-test; Supplementary Figure 6). 30	
 31	
The bias for the additive model estimates of the phenotypes of individual multi-locus 32	
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genotypes was largest for the most extreme trait values, i.e. those corresponding to the best or 1	
worst growth in the capacitated group, and the best or worst estimated growth in the canalized 2	
group (Figure 2; Figure 4). In networks where the hub-QTL are capacitors, the direction of 3	
the bias depends on the genotype at the capacitor: Among segregants with the capacitor allele 4	
at the hub-QTL, the models underestimated the phenotypic effect of combining many growth-5	
increasing or growth-decreasing alleles at the radial-QTL (Figure 4A). For segregants with 6	
the canalizing allele at the hub-QTL, the models instead overestimated these phenotypic 7	
effects (Figure 4B). By accounting for epistatic interactions, the bias is reduced or entirely 8	
removed (Figure 4). For the 5 networks where the hub-QTL was not a significant capacitor, 9	
the bias was not dependent on the genotype at the hub-QTL.  10	

 11	
Figure 4. The biases in the additive model based estimates of the phenotypes are largest in the genotype-12	
classes with the largest or poorest expected growth. 13	
The y-axis gives the average estimation-error (bias) from cross-validation for each genotype in the 10 networks. 14	
The x-axis illustrates the genotype at the five radial QTL in the networks with blue/orange dots indicating 15	
growth-increasing/decreasing alleles respectively. Each dot represents the average estimation error (bias) for a 16	
particular six-locus genotype-class in one of the 10 networks. Black dots correspond to models with only 17	
additive effects and green triangles to models with both additive effects and pairwise interactions. The 18	
estimation errors (biases) are calculated as (measured – estimated) phenotypes, and over/under estimations will 19	
therefore result in negative/positive estimation errors (biases) respectively. Across the 10 interaction networks 20	
with a capacitor hub-QTL, the most extreme additive model based representations of individual multi-locus 21	
genotypes are biased. There is a positive correlation between the estimation errors (bias) and the number of 22	
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growth-increasing alleles at the radial-QTL when there is a capacitor allele at the hub-QTL (A; r = 0.54; p < 1	
10-8). The additive model thus underestimates the extremity of the genotypes with many growth-decreasing 2	
alleles at the radial-QTL, and overestimates the extremity of the genotypes with many growth-increasing alleles, 3	
at the radial-QTL. An opposite trend (r = -0.69; p < 10-8) is observed among segregants with a non-capacitor 4	
allele at the hub-QTL (B). There, the additive model over- (under-) estimates the extremity of the segregants 5	
with many growth-decreasing (increasing) alleles at the radial-QTL  6	
 7	
The genetic variances explained by the epistatic networks are highly dependent on allele 8	
frequencies 9	
The additive genetic variance contributed by a locus depends on its effect and allele frequency 10	
in the analyzed population20. When loci interact, the variance explained marginally by each of 11	
the epistatic loci will in addition also depend on the frequencies at the loci with which it 12	
interacts. For example, the additive genetic variance contributed by each individual locus in 13	
the IAA-network varies depending on the allele frequencies of all loci in the network due to 14	
the extensive interactions among them. When considering the entire population of segregants 15	
(all allele frequencies ~0.5), the additive variance (!!!) contributed by the network amounts to 16	
26.8% of the total phenotypic variance in the population. In the subpopulations where the 17	
BY/RM alleles at the hub-QTL are fixed (BY allele frequency 1 or 0), the network instead 18	
contributes 36% and 3% of the total phenotypic variance, respectively. To generalize this 19	
result across the allele-frequency space, we simulated populations with allele frequencies 20	
ranging from 0.05 to 0.95 at increments of 0.15 for the six loci in the network. We then 21	
evaluated how the additive genetic variance contributed by the individual loci varied 22	
depending on the allele frequencies at the other five loci. We also simulated populations 23	
without genetic interactions. In Figure 5 we summarize the results for the simulations based 24	
on the 64 actual genotype-values in the IAA-network. The additive genetic variance 25	
contributed by the hub-QTL varied from 0 to 58% of the total phenotypic variance in the 26	
population, only by changing the allele-frequencies at the five other loci (Figure 5). The result 27	
was similar for the other five QTL, although their ranges were smaller than for the hub-QTL 28	
(Figure 5 blue boxes; average range: 0 to 31% of !!!). As expected, the additive genetic 29	
variance contributed by each locus was much less dependent on the allele frequencies when 30	
loci with the same marginal effects, but no interactions, were simulated (Figure 5 red boxes; 31	
range: 2 to 6% of !!!). The results were similar across all 15 networks, with estimates of 32	
additive genetic variance for individual epistatic loci that were highly dependent on the allele 33	
frequencies at the other loci in the network.   34	
 35	
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 1	
Figure 5. Simulations show that the additive genetic variances contributed by the loci in the epistatic network 2	
regulating growth on indoleacetic acid containing medium is highly dependent on the allele-frequencies at 3	
the other loci in the same network. 4	
The phenotypic variance explained by the individual loci in the IAA-network depends on the allele frequencies at 5	
the other loci with which they interact. Each boxplot shows the additive genetic variances across 16,807 6	
simulated populations. For each locus, we simulated populations where the allele frequency of the loci 7	
themselves were fixed at 0.5, while varying the frequencies at the other 5 loci from 0.05 to 0.95 in increments of 8	
0.15. The light blue boxes represent the variability in the additive genetic variances when simulating populations 9	
based on the observed phenotypic means for the 64 genotype classes in the IAA-network. The red boxes 10	
represent the additive genetic variances when simulating based on the phenotypic means estimated using the 11	
additive genetic model (black line in Figure2A). The x-axis gives the location of the SNP representing each locus 12	
(chromosome:location in bp). The two leftmost boxplots (diagonal lines) show the simulation results for the hub-13	
locus.  14	
  15	
Discussion 16	

The link between the genotype and the phenotype of an organism is immensely complex. 17	
Despite this it can, to a great extent, be captured using models that assume that gene variants 18	
combine their effects in an additive manner. We here used a large experimental yeast cross to 19	
identify six-locus epistatic networks affecting 11 complex traits. We then estimated the 20	
average phenotypes for the groups of segregants sharing each combination of alleles at these 21	
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loci. We evaluated how well different quantitative genetics models captured the phenotypes 1	
of these multi-locus genotype classes. In most networks, the phenotypes for at least one, but 2	
often several, multi-locus genotype classes deviated significantly from what is expected under 3	
additivity. This empirically illustrates the important role of classic epistasis, as defined by 4	
Bateson more than 100 years ago21, in the genetic architecture of complex traits. We provide 5	
several examples of such epistasis, involving multiple loci in highly interconnected genetic 6	
networks.  7	
 8	
An earlier study of this population3 showed that most of the genetic variance for the 20 9	
measured traits is additive. Consistent with this, the additive model based estimates of the 10	
phenotypes for most multi-locus genotype classes in the epistatic networks were reasonable. 11	
However, the most extreme estimates from the additive models were often both inaccurate 12	
and biased (Figure 4). For example, the bias is very large for the most extreme genotype class 13	
in the IAA-network (1.7 !!; Figure 2). Our results highlight the importance of analyzing 14	
collected data with models that can represent the features of the underlying genetic 15	
architectures. They also confirm that, regardless of the underlying genetic architecture, 16	
additive models are likely to capture much of the genetic variation for a trait. This makes 17	
them useful for revealing genes contributing to the phenotypic variance in a particular 18	
population, as well as for predicting short-term response to selection in a population11. 19	
However, we also show that additive models are often unable to represent all key features of 20	
genetic architectures involving networks of epistatic loci. In particular, their most extreme 21	
estimates are often inaccurate and biased for networks with capacitor hub-QTL. Accounting 22	
for epistasis increases estimation accuracy and decreases bias. Modeling genetic interactions 23	
should therefore be considered when it is important to identify and predict the effects of 24	
specific combinations of alleles, or where it is important to identify genotypes that are likely 25	
to lead to extreme phenotypes. Examples of this include prediction of disease risk or drug 26	
responses in individual patients.  27	
 28	
As shown here and in earlier studies1,7,22, most genetic variance in a population is expected to 29	
be additive even in the presence of extensive epistasis. The lack of empirical knowledge about 30	
the pervasiveness and strength of epistasis in the genetic architectures of complex traits makes 31	
it largely unknown how much of the observed additive genetic variance in quantitative 32	
genetics studies is due to genetic interactions. This experimental yeast population allowed us 33	
to directly estimate the phenotypes for individual multi-locus genotype classes in networks of 34	
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interacting loci. With these as a basis, we used simulations to demonstrate that the types of 1	
interactions revealed here have a very large influence on both the estimates of the additive 2	
genetic effects of the individual loci and their contributions to the additive genetic variance. 3	
The IAA-network provides a striking example: the additive variance contributed by the hub in 4	
the epistatic network (Figure 2) ranged from zero to the largest contribution by any single 5	
locus across all networks when we varied the allele frequencies at the 5 radial QTL. This 6	
empirically illustrates how allelic interactions (epistasis) can be the main driver of the 7	
additive genetic variance in a population, and that the importance of epistasis in the genetic 8	
architecture of a complex trait cannot be inferred from the relative levels of additive and 9	
epistatic genetic variance.  10	
 11	
Many interacting loci in this population were part of radial epistatic networks where hub loci 12	
interact with multiple other QTL. In general, this network topology reflected how the loci 13	
contributed to the phenotypic variation in the population. The hub-QTLs acted as genetic 14	
capacitors that modify the effects of the radial loci in the network. These capacitating 15	
interactions are highly influential for the total level of phenotypic variance displayed in a 16	
population, as they can both buffer and release cryptic (standing) genetic variation23,24. 17	
Several genetic capacitors have been studied in molecular detail, including the heat shock 18	
protein HSP9016,25 and EGFR26. Genetic capacitation has also been found to facilitate extreme 19	
selection responses, for example in a long-term experimental selection experiment in 20	
chicken10–12. The finding that genetic capacitor networks are common and influential for 21	
many traits in this population suggests that they should be considered in other studies of 22	
complex traits, including those aiming to genetically dissect, or statistically predict, responses 23	
to long-term selection.  24	
 25	
It is currently unknown how indoleacetic acid affects yeast fitness, but the discovery of the 26	
epistatic network described here may shed some light on its mode of action. The hub-QTL in 27	
the IAA-network maps to the gene GPA1, which is required for the yeast response to mating 28	
pheromone. Although this response is not normally triggered under laboratory growth 29	
conditions, as the yeast is not exposed to mating pheromone, the BY allele of GPA1 leads to 30	
residual expression of the pheromone response pathway27,28. Thus, a model for the 31	
capacitance activity of the BY allele of GPA1 is that indoleacetic acid primarily affects cells 32	
with an activated pheromone response pathway. Interacting radial QTL would then arise if the 33	
underlying variants influence either the response to indoleacetic acid, or the activation of the 34	
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pheromone response pathway by GPA1BY.  The radial QTL include several genes involved in 1	
pheromone response, including MAT, which dictates which pheromones are expressed or 2	
sensed (and is known to interact with GPA1)29, and VPS34, which is required for GPA1’s 3	
activation of the mating pathway30. Further work will be required to elucidate the importance 4	
of the yeast pheromone response pathway for the fitness effects of indoleacetic acid. 5	
 6	
For several other networks, the hub-QTL maps to candidate genes with known 7	
polymorphisms in BY and RM. For example, the networks regulating growth on media with 8	
Copper Sulfate and Manganese Sulfate have hub-QTL that maps to CUP1 and PMR1. The 9	
CUP1BY-allele31 is known to increase copper ion tolerance32 and the PMR1RM allele confers 10	
manganese resistence33. The current data does not allow further functional dissection of the 11	
possible connections between these polymorphisms and the capacitation in the networks. 12	
However, by revealing the allelic dependencies between the loci in the network (Figure 3B; 13	
Figure 3D), it is possible to formulate hypotheses about how these and other known 14	
polymorphisms in hub-QTL could contribute epistatically to growth in the respective media 15	
for testing in future functional studies (Supplementary text). 16	
 17	
In summary, we show that networks of capacitating genetic interactions are common, and that 18	
these networks form a key part of the genetic architectures of multiple complex traits in a 19	
large experimental yeast population. We illustrate how such interactions affect model-based 20	
estimation of individual phenotypes and the inference of genetic architectures. This shows 21	
that epistasis needs to be explored beyond estimates of epistatic genetic variances, in order to 22	
understand its contribution to the phenotypic variability and long-term selection responses in 23	
populations. This is a key discovery in the long-standing debate about how to approach 24	
epistasis in complex trait research.  25	
 26	
Online Methods 27	
The creation of the BYxRM cross, genotyping, phenotyping, quality control of genotypes, 28	
filtering and normalization of growth measurements has previously been described in2,3. The 29	
reanalyzed data are available as supplementary information in8. Additive QTLs were mapped 30	
in Bloom et al.3. All analyses were performed using the R framework for statistical 31	
computing34. All figures were prepared using R. 32	
 33	
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Statistical analysis 1	
Inferring epistatic networks 2	
Pairwise epistatic interactions were mapped by Bloom et al.3. Networks of epistatic loci were 3	
inferred by connecting loci that displayed pairwise interactions. The R-package igraph35 was 4	
used to visualize individual networks and to identify network hubs. The GWA analysis for 5	
growth on indoleacetic acid containing medium among the segregants with the BY-allele at 6	
the hub-locus was performed using the qtscore function in the R-package GenABEL36. 7	
Genome-wide significance was determined using a Bonferroni-corrected significance 8	
threshold for the number of tested markers !.!"

28,220 = 1.8 × 10!! . The additive genetic 9	

variance explained by a certain set of QTL was calculated as the R2 from a fixed effect model 10	
without interactions.  11	
 12	
Exhaustive mapping of loci in the network affecting growth on indoleacetic acid containing 13	
medium 14	
To identify all individual loci that contributed the additional genetic variance in amongst the 15	
segregants carrying the BY allele at the hub-QTL in the IAA-network, we performed a linkage 16	
analysis in this group of segregants. This revealed in total 8 genome-wide significant loci in 17	
the radial network, out of which 6 were the same as the loci in the earlier two-way interaction 18	
analysis3.  19	
 20	
Estimating average phenotypes for multi-locus genotypes 21	
The average phenotypes were estimated for each of the 26 = 64 possible combinations of 22	
alleles for 15 six-locus epistatic networks. Each of these networks had a hub-QTL connected 23	
to five radial loci by pairwise interactions. On average, !,!"#!" ≈ 69 segregants are expected in 24	
each six-locus genotype class in these networks, allowing confident estimation of the average 25	
growth associated with carrying each possible combination of alleles at these loci. Some of 26	
the hub-QTL were connected to more than five other loci in the network in the initial network 27	
analysis. Here we only kept the loci with the strongest statistical interaction with the hub-QTL 28	
as we could not confidently estimate phenotypes for individual genotype-classes in networks 29	
with more than six loci.  30	
 31	
  32	
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Estimation of the genetic variance heterogeneity at a locus 1	
We estimated the difference in the phenotypic variance between segregants that carry 2	
alternative alleles at the epistatic loci using a Double Generalized Linear Model (DGLM)37, as 3	
suggested in Rönnegård et al.14. This allowed us to simultaneously model the effects of every 4	
locus on the phenotypic mean and variance. We fitted a DGLM with linear predictors for both 5	
mean and variance as ! ∼ ! !! +  !!!, !!!!!!2  using the R-package dglm38, where y is the 6	
phenotype, X is the genotype, !! is the effect on the mean, and !! is the effect on the 7	
variance. Coding the genotypes in X as 0 and 1, !! then describes the difference in mean 8	
whereas !!2 describes the fold difference in variance between the segregants with alternative 9	
alleles at the locus.  10	
 11	
Estimating the capacitating effects of the hub-QTL in the epistatic networks 12	
QTL interacting with 5 or more other loci were defined as hubs. We estimated the 13	
capacitating effects of all hub-QTL as follows. For each network containing a hub-QTL, we 14	
divided the segregants into two groups based on their genotype at the hub. We then fitted the 15	
mixed model ! = !" + ! + ! separately for each group. Here, y is a column vector 16	
containing the phenotypes, X is a column vector of ones, ! is the overall mean, 17	
!~! 0,!!!!  and !~! 0,!!! . A is the additive kinship matrix, giving the fraction of the 18	
genome shared between each pair of segregants, !!! is the additive genetic variance captured 19	
by the markers, and !!! is the residual variance. A was calculated using the ibs function in the 20	
R-package GenABEL. We used the GenABEL function polygenic to fit the mixed model. The 21	

narrow sense heritability in each group was calculated as the intra class correlation ! = !!!
!!!!!!!

.  22	

 23	
We performed a permutation test to obtain the significance of the difference !! − !! between 24	
the two groups of segregants in each network. For each of the 20 traits, we randomly divided 25	
the population into two groups and estimated !! and !! in these as described above. This was 26	
repeated 1000 times per trait to obtain 20 empirical NULL distributions. The difference 27	
!! − !! was considered significant at a multiple testing threshold of !.!"!" ≈ 0.003.  28	
 29	
Quantifying non-linear effects after capacitation 30	
To quantify the potential multiplicative action of capacitated radial alleles, we compared the 31	
fit of an additive (! = ! + !" + !) and an exponential (! = ! + !!!!"! + !) model. Here, y 32	
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is the phenotype, x is the number of growth decreasing radial alleles, and e is the residual 1	
variance.  2	
 3	
Modeling the phenotypes for individual multi-locus genotype classes  4	
For each six-locus epistatic network, we estimated the phenotypes for the 64 individual 5	
genotype classes in each network using three different models including i) additive effects, ii) 6	
additive effects and pairwise interactions and iii) additive, pairwise and three-way 7	
interactions, respectively. For ii) and iii), the included interaction-terms that, together with all 8	
additive terms, minimized the !"# = 2! − 2!" ! . Here, k is the number of included 9	
parameters and L is the maximum likelihood value for the model. We used the R-function 10	
step in the stats package to perform the backward elimination34. The performances of the final 11	
models (bias and accuracy) were evaluated using 10-fold cross-validation, where the variable 12	
selection for i) and ii) above was performed within the training data in every fold. 13	
 14	
Within each of the 64 genotype-classes, defined by the six loci in each network, we calculated 15	
the CV estimation errors as ! = ! − !. Here, y is the actual and y the estimated phenotype. 16	
We tested if e significantly deviated from 0 using a t-test. If the deviation was significant at a 17	
multiple testing threshold of !.!"!" ≈ 7.8×10!!, we considered the estimate for that particular 18	
genotype-class biased. The accuracy of the estimates was measured by e2, and for each 19	
genotype-class, we tested the difference in e2 between models with and without interaction-20	
terms using a t-test. If the e2 was significantly lower for the interaction model, at a multiple 21	
testing threshold of !.!"!" ≈ 7.8×10!!, we considered these estimates more accurate. 22	
 23	
Simulations 24	
In the simulations, we used the phenotypic means !!⋯ !!" in each of the 26 = 64 classes for 25	
each of the 15 six-locus networks, and the total phenotypic variance !!! for each trait, 26	
obtained in the analyses above as a representation of the genetic architectures of these traits. 27	
In every simulation, we generated populations with the same number of segregants as in the 28	
original dataset (n = 4,390). The number of segregants in each genotype class was determined 29	
by the allele frequencies !!⋯!! at the six loci. For example, the number of observations with 30	
genotype ABcDef, where the big/small letters indicate the alternative alleles at the six loci, 31	
would be !!×!!× 1− !! ×!!× 1− !! × 1− !! ×!. To evaluate the effect of different 32	
combinations of allele-frequencies at the loci on the results, we simulated populations with 33	
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!! ∈ 0.05,0.20,0.35,0.50,0.65,0.80,0.95 , where ! = 1⋯ 6. This leads to, in total, 76 allele 1	
frequency combinations. The phenotypes for the individuals in each genotype class were then 2	
simulated as !!~! !! ,!! , where ! = 1⋯ 64. 3	
 4	
As a comparison, we also simulated populations where the genetic architectures (i.e. the 5	
phenotype for each of the 64 multi-locus genotypes) for the 15 networks were given by the 6	
estimates obtained from a six-locus additive model fitted to the respective loci. The linear 7	
model used was ! = !" + !, where y is a column vector containing the phenotypes, X is a 8	
4,390×7 matrix, the first column consisting of ones and columns 2-7 of the genotypes of the 9	
six loci, ! is a 1×7 column vector with the intercept and the additive genetic effects, and e is 10	
the residual variance. Using this model, estimates !!⋯ !!" were obtained for each genotype 11	
class. The simulations were then performed across the different combinations of allele-12	
frequencies as described above, with phenotypes given by !!~! !! ,!! .  13	
 14	
The additive genetic variance contributed by each locus was estimated as the R2 from the 15	
linear model ! = !" + !, fitted to the respective subset of the 76 simulated populations where 16	
the allele frequency of the locus itself was 0.5 (!! = 0.5), and the frequency at the other five 17	
loci varied in !! ∈ 0.05,0.20,0.35,0.50,0.65,0.80,0.95 , where ! = 2⋯ 6. In this model, X 18	
is a column vector with the genotype of the locus whose allele frequency is 0.5. The additive 19	
genetic variances were estimated in such subsets to analyze the effect of the individual locus 20	
across variable genetic backgrounds for the other loci, without the estimates being influenced 21	
by changes to the allele frequency of the analyzed locus itself.  22	
 23	
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Supplementary text 
 
Accounting for genetic interactions improves modeling of individual quantitative trait 
phenotypes in yeast. 
Simon K. G. Forsberg, Joshua S. Bloom, Meru J. Sadhu, Leonid Kruglyak & Örjan Carlborg 
 
The additive effects and variance-heterogeneity of the hub-QTL depends on the genotypes at 
the radial loci  
The average phenotypes for segregants with the BY allele in the IAA-network range from 
being very similar to that of the segregants with the RM allele at the hub-QTL, when 
combined with growth-increasing alleles at all five radial QTL, to being considerably lower 
when combined with several growth-decreasing alleles at the five radial loci (Figure 2B main 
manuscript). This illustrates several properties of the connection between the functional 
contribution by the hub-QTL to growth, and how this contribution will be represented in a 
statistical analysis based on quantitative genetics models.  
 
In a classic quantitative genetics model, the main effect of the hub-QTL is modeled as an 
additive allele-substitution effect. The additive effect is estimated as the difference in average 
phenotype between the groups of segregants in the population that carry the BY allele (green) 
and RM allele (grey) at this locus. In a population where the BY and RM alleles of the hub-
QTL segregate, but the radial loci are fixed for IAA-resistant alleles, there will be no, or a 
very small, difference in the average phenotype between the groups of segregants carrying the 
RM and BY alleles (the two leftmost boxplots in Figure 2B). The hub-QTL will thus in this 
population have an additive effect close to zero. By contrast, in a population where the BY 
and RM alleles segregate, but the radial loci are fixed for IAA-sensitising alleles, there will be 
a very large difference in average phenotype for the segregants carrying the RM and BY 
alleles (the two rightmost boxplots in Figure 2B). This will result in a very large additive 
effect of the hub-QTL, resulting from the total sensitising effects of all six loci in the network. 
The additive effect of this hub-QTL does thus not represent merely a property of this 
individual locus, but rather to which extent it has capacitated the effects of segregating alleles 
at the radial QTL in the network.  
 
In a quantitative genetics model, the variance-heterogeneity effect of the hub-QTL is modeled 
as the difference in phenotypic variance between the groups of segregants that carry the BY 
and RM alleles at the hub-QTL. In a population where all six loci segregate, there is a large 
genetically controlled phenotypic variation among the segregants carrying the BY allele at the 
hub QTL. This is from the BY allele capacitating the genetic effects of the radial-QTL, as 
discussed above. The phenotypes of the segregants that carry the RM allele are, however, all 
very similar as the RM allele canalizes the effects of the radial loci. In such a population, 
there will thus be a large genetic variance-heterogeneity between the BY and RM alleles. In a 
population fixed for any combination of alleles at the radial loci with less than three growth-
decreasing alleles, there is almost no difference in phenotypic variance between the groups of 
segregants that carry the RM and BY alleles at the hub-QTL. Hence, also the marginal 
variance-heterogeneity effect at the hub-QTL in a quantitative genetic analysis does not only 
represent a property of the individual locus, but is rather highly dependent on the ability of the 
hub-QTL to capacitate the effects of the radial QTL in the network. 
 
Our results thus empirically illustrate how the estimates obtained for the main effects (here 
additivity and variance-heterogeneity) from a quantitative genetics model do not represent 
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how the locus independently contributes to trait variation. Rather, they quantify the total 
contribution of the locus in the genetic context of the analyzed population.  
 
Some radial networks contain hub-QTL with known polymorphic candidate genes  
For two networks, regulating growth on media containing high levels of Copper and 
Manganese, the respective hub-QTL map to genes that are polymorphic between BY and RM 
and involved in heavy-metal ion detoxification. The hub-QTL for growth on medium with 
Copper Sulfate maps to CUP1, a copper-activated metallothionein whose copy number is 
known to vary between the BY and RM strains1. The BY strain possesses fewer copies of 
CUP1 and as reported previously2, this leads to greater copper ion tolerance. Here, however, 
only segregants with three or more sensitizing alleles at the radial loci, and the CUP1RM allele, 
grow more poorly than segregants with the more robust CUP1BY allele (Figure 3D). A hub-
QTL for growth on medium with Manganese sulfate maps to the PMR1 gene, encoding an 
active Mn-ion transporter, for which the PMR1RM allele confers manganese resistence3. The 
multi-locus genotype-values in the network were consistent with this as segregants with a 
PMR1BY allele grow poorly regardless of which alleles they have at the radial loci (Figure 
3B). However, alleles at the radial loci can also contribute to a sensitization of the yeast to 
Manganese, illustrated by the observation that segregants with the PMR1RM allele and low 
growth alleles at all five radial loci grow almost as poorly as those with the PMR1BY allele.  
(Figure 3B). No obvious functional connections between the genes in the radial-QTL and the 
hub were found, for any of these networks. One hub-QTL affecting growth on medium with 
Cobalt chloride maps to HAP1. This gene is a known key regulator of transcription in crosses 
between the BY and RM strains. Cobalt stress is often used to mimic hypoxia4, and HAP1 
encodes a transcription factor involved in the transcriptional responses at many genes to 
levels of heme and oxygen5. The HAP1BY allele has been disrupted by a transposon, causing a 
loss-of-function for some HAP1 functions, but not all5. Here, segregants with the HAP1BY 
allele were less responsive to the positive effects on growth of the alleles at the interacting 
radial loci, which is consistent with a stronger transcriptional activation of other genes in 
response to Cobalt stress in segregants with the non-disrupted HAP1RM allele. Our finding of a 
radial epistatic network around a key transcriptional regulator is coherent with earlier work 
showing that molecular, including expression, networks are generally heavy-tailed6, i.e. 
contain few hubs and many low-degree nodes (Figure 1A). 
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Supplementary Figure 1. LOD-scores for all significant genetic interactions (n = 266) involving the 330 
epistatic QTL detected in this population.  
The left box-plot displays the LOD-scored for the genetic interactions between hubs (involved in more than 4 
interactions) and radial loci. The right box-plot displays the LOD-scores for the genetic interactions the do not 
involve a hub.  
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Supplementary Figure 2. The correlations between the number of genetic interactions that the loci are 
involved in and their marginal additive and variance-heterogeneity effects.  
The X-axis shows the number of pairwise genetic interactions each locus is involved in. The left Y-axis shows the 
marginal additive and the right Y-axis the marginal variance-heterogeneity effect on the phenotype. Each dot in 
the figure represents a locus. The red dots show the marginal effect on the mean of the phenotype (cor = 0.42; p 
< 1 x 10-12), whereas the blue dots show the effect on the phenotypic variability (cor = 0.64; p < 1 x 10-12). 
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Supplementary Figure 3. Phenotypic distributions in segregants with different combinations of alleles across 
the six loci in 14 epistatic networks affecting growth in different media. The networks are divided depending 
on whether the hub-QTL is a significant capacitor or not.  
One Tukey-boxplot is provided for each of the 64 genotypic classes in every network. The color gives the 
genotype at the hub-QTL (Green/grey boxes for BY/ RM alleles). The x-axis represents the six-locus genotype 
class, where blue/orange dots indicate growth-increasing/decreasing alleles at the five radial-QTL in the 
network. The black lines through the boxes illustrates the additive model-based estimates of the phenotypes for 
the 64 genotype-classes. The number above the x-axis shows the number of segregants in each genotype class.  
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Supplementary Figure 4. Phenotypic distributions in segregants with varying number of growth decreasing 
alleles at the radial loci across the six loci in 14 epistatic networks affecting growth in different media. The 
networks are divided depending on whether the hub-QTL is a significant capacitor or not. 
Each Tukey boxplot represents a group of segregants that share the same number of growth decreasing alleles 
at the five radial QTL in the respective networks. The segregants are divided and colored based on the genotype 
at the hub-QTL (Green/grey boxes for BY/ RM alleles). The x-axis gives the number of growth decreasing alleles 
at the radial QTL and the number of segregants in each group. The regression lines illustrate the fit for linear 
additive and non-linear exponential models, respectively. 
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Supplementary Figure 5. Phenotypic estimation bias for the individual multi-locus genotype-classes in the 15 
epistatic networks. The networks are divided depending on whether the hub-QTL is a significant capacitor or 
not. 
Each Y-axis gives the cross-validated estimation error (bias) for the six-locus additive model representation of 
the genotype-value of each individual multi-locus genotype-class as compared to the actual genotype value 
estimated directly from the data. Each boxplot shows the distribution of prediction errors in one of the 64 
genotype-classes in the network. The 32 leftmost boxplots represent the genotype-classes with the capacitor hub-
QTL allele (or that with the highest h2 in the case of a non-significant capacitor hub). Significant biases, i.e. 
where the estimation errors deviate significantly from zero, are colored in yellow.  
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Supplementary Figure 6. Difference in estimation accuracy between additive and epistatic models. The figure 
displays cross-validation results from the 10 epistatic networks where the hub-QTL is a significant capacitor.  
The Y-axis gives the difference in cross-validated mean squared error (MSE) between an additive model 
(MSEadd), and a model including pairwise interactions (MSEepi2). Each dot corresponds to the difference in MSE 
for one genotype class. The difference is measured as !"!!"" −!"!!"#!, meaning that positive values 
correspond to genotype classes where the estimation accuracy is improved when using an epistatic model.  
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