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Insight, Innovation and Integration

Prioritizing 2nd and 3rd order interactions via support
vector ranking using sensitivity indices on static Wnt
measurements - Part A T [work in progress]
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It is widely known that the sensitivity analysis plays a major role in computing the strength of the
influence of involved factors in any phenomena under investigation. When applied to expression
profiles of various intra/extracellular factors that form an integral part of a signaling pathway, the
variance and density based analysis yields a range of sensitivity indices for individual as well
as various combinations of factors. These combinations denote the higher order interactions
among the involved factors that might be of interest in the working mechanism of the pathway. For
example, in a range of fourth order combinations among the various factors of the Wnt pathway, it
would be easy to assess the influence of the destruction complex formed by APC, AXIN, CSKI and
GSK3 interaction. In this work, after estimating the individual effects of factors for a higher order
combination, the individual indices are considered as discriminative features. A combination,
then is a multivariate feature set in higher order (>2). With an excessively large number of factors
involved in the pathway, it is difficult to search for important combinations in a wide search space
over different orders. Exploiting the analogy of prioritizing webpages using ranking algorithms, for
a particular order, a full set of combinations of interactions can then be prioritized based on these
features using a powerful ranking algorithm via support vectors. The computational ranking sheds
light on unexplored combinations that can further be investigated using hypothesis testing based
on wet lab experiments. Here, the basic framework and results obtained on 2nd and 3rd order
interactions on a toy example data set is presented. Subsequent manuscripts will examine higher
order interactions in detail. Part B of this work deals with the time series data.

of prioritizing webpages using ranking algorithms, for a particu-
lar order, a full set of combinations of interactions can then be

Sensitivity analysis computes the strength of the influence of in-
volved factors in any phenomena under investigation. When ap-
plied to expression profiles of various intra/extracellular factors
in a signaling pathway, the variance and density based analysis
yields a range of sensitivity indices for individual & different com-
binations of factors. With an excessively large number of involved
factors, it is difficult to search for important combinations in a
wide search space over different orders. Exploiting the analogy

* Corresponding Author : shriprakash sinha

@ Author is a buddhist monk and currently working as an independent researcher.
Address - 104-Madhurisha Heights Phase 1, Risali, Bhilai - 490006, INDIA; E-mail :
sinha.shriprakash@yandex.com

t Electronic Supplementary Information (ESI) available: [details of any supplemen-
tary information available should be included here]. See DOI: 10.1039/b000000x/

prioritized based on these indices/features using support vector
ranking. The computational ranking sheds light on unexplored
combinations and gives a chance to examine the biological hy-
pothesis of interest regarding their positive/negative roles in the
Wnt pathway.

1 Introduction

1.1 A short review

Sharma s accidental discovery of the Wingless played a pioneer-

ing role in the emergence of a widely expanding research field
of the Wnt signaling pathway. A majority of the work has fo-
cused on issues related to e the discovery of genetic and epige-
netic factors affecting the pathway (Thorstensen et al. 2 & Baron
and Kneissel3), e implications of mutations in the pathway and
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Fig. 1 A cartoon of Wnt signaling pathway contributed by Verhaegh
etal.'”. Part (A) represents the destruction of B-catenin leading to the
inactivation of the Wnt target gene. Part (B) represents activation of Wnt
target gene.

its dominant role on cancer and other diseases (Clevers?), e in-
vestigation into the pathway’s contribution towards embryo de-
velopment (Sokol®), homeostasis (Pinto et al.®, Zhong et al.”)
and apoptosis (Peé¢ina-Slaus®) and e safety and feasibility of drug
design for the Wnt pathway (Kahn®, Garber!®, Voronkov and
Krauss 1, Blagodatski et al. > & Curtin and Lorenzi!®). Approxi-
mately forty years after the discovery, important strides have been
made in the research work involving several wet lab experiments
and cancer clinical trials (Kahn?, Curtin and Lorenzi!3) which
have been augmented by the recent developments in the vari-
ous advanced computational modeling techniques of the pathway.
More recent informative reviews have touched on various issues
related to the different types of the Wnt signaling pathway and
have stressed not only the activation of the Wnt signaling path-
way via the Wnt proteins (Rao and Kiihl!4) but also the on the
secretion mechanism that plays a major role in the initiation of
the Wnt activity as a prelude (Yu and Virshup1%).

The work in this paper investigates some of the current aspects
of research regarding the pathway via sensitivity analysis while
using static (Jiang et al. 16y data retrieved from colorectal cancer
samples.

1.2 Canonical Wnt signaling pathway

Before delving into the problem statement, a brief introduction to
the Wnt pathway is given here. From the recent work of Sinha '8,
the canonical Wnt signaling pathway is a transduction mechanism
that contributes to embryo development and controls homeostatic
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self renewal in several tissues (Clevers?). Somatic mutations in
the pathway are known to be associated with cancer in different
parts of the human body. Prominent among them is the colorectal
cancer case (Gregorieff and Clevers 19y In a succinct overview,
the Wnt signaling pathway works when the Wnt ligand gets at-
tached to the Frizzled(FZD)/LRP coreceptor complex. FZD may
interact with the Dishevelled (DVL) causing phosphorylation. It
is also thought that Wnts cause phosphorylation of the LRP via
casein kinase 1 (CK1) and kinase GSK3. These developments
further lead to attraction of Axin which causes inhibition of the
formation of the degradation complex. The degradation com-
plex constitutes of AXIN, the B-catenin transportation complex
APC, CK1 and GSK3. When the pathway is active the disso-
lution of the degradation complex leads to stabilization in the
concentration of B-catenin in the cytoplasm. As B-catenin en-
ters into the nucleus it displaces the GROUCHO and binds with
transcription cell factor TCF thus instigating transcription of Wnt
target genes. GROUCHO acts as lock on TCF and prevents the
transcription of target genes which may induce cancer. In cases
when the Wnt ligands are not captured by the coreceptor at the
cell membrane, AXIN helps in formation of the degradation com-
plex. The degradation complex phosphorylates 3-catenin which
is then recognized by FBOX/WD repeat protein 3-TRCP. (-
TRCP is a component of ubiquitin ligase complex that helps in
ubiquitination of B-catenin thus marking it for degradation via
the proteasome. Cartoons depicting the phenomena of Wnt being
inactive and active are shown in figures 1(A) and 1(B), respec-
tively.

2 Problem statement

It is widely known that the sensitivity analysis plays a major role
in computing the strength of the influence of involved factors in
any phenomena under investigation. When applied to expression
profiles of various intra/extracellular factors that form an integral
part of a signaling pathway, the variance and density based anal-
ysis yields a range of sensitivity indices for individual as well as
various combinations of factors. These combinations denote the
higher order interactions among the involved factors. Computa-
tion of higher order interactions is often time consuming but they
give a chance to explore the various combinations that might be of
interest in the working mechanism of the pathway. For example,
in a range of fourth order combinations among the various fac-
tors of the Wnt pathway, it would be easy to assess the influence
of the destruction complex formed by APC, AXIN, CSKI and GSK3
interaction. Unknown interactions can be further investigated by
transforming biological hypothesis regarding these interactions in
vitro, in vivo or in silico. But to mine these unknown interactions
it is necessary to search a wide space of all combinations of input
factors involved in the pathway.

In this work, after estimating the individual effects of factors
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for a higher order combination, the individual indices are con-
sidered as discriminative features. A combination, then is a mul-
tivariate feature set in higher order (>2). With an excessively
large number of factors involved in the pathway, it is difficult to
search for important combinations in a wide search space over
different orders. Exploiting the analogy with the issues of priori-
tizing webpages using ranking algorithms, for a particular order,
a full set of combinations of interactions can then be prioritized
based on these features using a powerful ranking algorithm via
support vectors (Joachims2%). The computational ranking sheds
light on unexplored combinations that can further be investigated
using hypothesis testing based on wet lab experiments. In this
manuscript both local and global SA methods are used.

Similar higher order interactions can be computed and priori-
tized. This gives a chance to examine the biological hypothesis of
interest regarding the positive/negative roles of unexplored com-
binations of the various factors involved in the Wnt pathway, in
tumor and normal cases. Using recordings in time, it is possi-
ble to find how the prioritization of a specific combination of in-
volved factors is changing in time. This further helps in revealing
when an important combination like destruction complex formed
by APC, AXIN, CSKI and GSK3 interaction could be influenced
via an intervention. Thus a powerful computational mechanism
is presented to explore the interactions involved in Wnt pathway.
The framework can be used in any other pathway also.

3 Sensitivity analysis

Seminal work by Russian mathematician Sobol’2! lead to devel-
opment as well as employment of SA methods to study various
complex systems where it was tough to measure the contribution
of various input parameters in the behaviour of the output. A re-
cent unpublished review on the global SA methods by Iooss and
Lemaitre?2 categorically delineates these methods with the fol-
lowing functionality e screening for sorting influential measures
(Morris?® method, Group screening in Moon et al. 24 & Dean
and Lewis 2%, Iterated factorial design in Andres and Hajas 20, Se-
quential bifurcation in Bettonvil and Kleijnen?” and Cotter28 de-
sign), e quantitative indicies for measuring the importance of con-
tributing input factors in linear models (Christensen?®, Saltelli
et al.3%, Helton and Davis3! and McKay et al.32) and nonlin-
ear models (Homma and Saltelli33, Sobol34, Saltelli3, Saltelli
et al. 30, Saltelli et al. 37, Cukier et al. 38, Saltelli et al. 3, & Taran-
tola et al. 4© Saltelli et al. %1, Janon et al. #2, Owen“3, Tissot and
Prieur*, Da Veiga and Gamboa?®, Archer et al. 46 Tarantola
et al.*7, Saltelli et al. #! and Jansen*®) and e exploring the model
behaviour over a range on input values (Storlie and Helton*° and
Da Veiga et al.>?, Li et al.>! and Hajikolaei and Wang>2). Iooss
and Lemaitre2% also provide various criteria in a flowchart for
adapting a method or a combination of the methods for sensitiv-
ity analysis. Figure 3 shows the general flow of the mathematical

formulation for computing the indices in the variance based Sobol
method. The general idea is as follows - A model could be repre-
sented as a mathematical function with a multidimensional input
vector where each element of a vector is an input factor. This
function needs to be defined in a unit dimensional cube. Based
on ANOVA decomposition, the function can then be broken down
into fo and summands of different dimensions, if fo is a constant
and integral of summands with respect to their own variables is
0. This implies that orthogonality follows in between two func-
tions of different dimensions, if at least one of the variables is
not repeated. By applying these properties, it is possible to show
that the function can be written into a unique expansion. Next,
assuming that the function is square integrable variances can be
computed. The ratio of variance of a group of input factors to the
variance of the total set of input factors constitute the sensitivity
index of a particular group. Detailed derivation is present in the
Appendix.

Besides the above Sobol’2!’s variance based indicies, more
recent developments regarding new indicies based on density,
derivative and goal-oriented can be found in Borgonovo®3, Sobol
and Kucherenko°* and Fort et al. >°, respectively. In a more recent
development, Da Veiga>® propose new class of indicies based on
density ratio estimation (Borgonovo®3) that are special cases of
dependence measures. This in turn helps in exploiting measures
like distance correlation (Székely et al.®”) and Hilbert-Schmidt
independence criterion (Gretton et al. 58) as new sensitivity in-
dicies. The basic framework of these indicies is based on use of
Csiszar et al. °? f-divergence, concept of dissimilarity measure and
kernel trick Aizerman et al. °. Finally, Da Veiga®® propose fea-
ture selection as an alternative to screening methods in sensitivity
analysis. The main issue with variance based indicies (Sobol’ 21y is
that even though they capture importance information regarding
the contribution of the input factors, they e do not handle mul-
tivariate random variables easily and e are only invariant under
linear transformations. In comparison to these variance methods,
the newly proposed indicies based on density estimations (Bor-
gonovo®°3) and dependence measures are more robust. Figure 4
shows the general flow of the mathematical formulation for com-
puting the indices in the density based HSIC method. The gen-
eral idea is as follows - The sensitivity index is actually a distance
correlation which incorporates the kernel based Hilbert-Schmidt
Information Criterion between two input vectors in higher dimen-
sion. The criterion is nothing but the Hilbert-Schmidt norm of
cross-covariance operator which generalizes the covariance ma-
trix by representing higher order correlations between the input
vectors through nonlinear kernels. For every operator and pro-
vided the sum converges, the Hilbert-Schmidt norm is the dot
product of the orthonormal bases. For a finite dimensional input
vectors, the Hilbert-Schmidt Information Criterion estimator is a
trace of product of two kernel matrices (or the Gram matrices)
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Exploiting the analogy of prioritizing webpages using ranking algorithms, for a
particular order, a full set of combinations of interactions can then be prioritized based
on these features using a powerful ranking algorithm via support vectors. Ranking
points to important interactions in Wnt-Tumor case.

RANK HSIC rbf HSIC laplace HSIC linear
T
3 0&' -3 Lj TN 4 DACT3SFRP1LEF1 SFRP1SFRP2SFRP4 | DKK3-1SFRP2SFRP4
3 DACT3SFRP1SFRP4 DACT3SFRP1SFRP4 DKK3-1SFRP1SFRP4
. . . 2 DACT3SFRP1SFRP2 DACT3SFRP1LEF1 DACT3SFRP1SFRP2
A combination denotes higher order
interaction within the pathway 1 DACT3SFRP1SFRP3 DACT3SFRP1SFRP3 DKK3-1DACT3SFRP4
5 Ranking points to important interactions in Wnt-Tumor case.

Fig. 2 A graphical view of the general idea behind the current work. (1) Sensitivity indices capture the influence of involved factors in a pathway. (2)
Generate sensitivity indices for individual and combinations of involved factors. Note that for a combination, the indices for the involved factors in the
combination are generated separately. (3) Vectorize the indices per combination. (4) Rank these combinations based on the sensitivity indices using
support vector ranking as web pages are ranked using a ranking algorithm. (5) Obtained is a prioritized list of interactions that could point to important

interactions in the pathway in cancer cases.

with a centering matrix such that HSIC evalutes to a summation
of different kernel values. Detailed derivation is present in the
Appendix.

It is this strength of the kernel methods that HSIC is able to
capture the deep nonlinearities in the biological data and provide
reasonable information regarding the degree of influence of the
involved factors within the pathway. Improvements in variance
based methods also provide ways to cope with these nonlineari-
ties but do not exploit the available strength of kernel methods.
Results in the later sections provide experimental evidence for the
same.

3.1 Relevance in systems biology

Recent efforts in systems biology to understand the importance of
various factors apropos output behaviour has gained prominence.

4| 1-31

Sumner et al. ! compares the use of Sobol’2! variance based in-

23 screening method which uses a One-at-a-
time (OAT) approach to analyse the sensitivity of GSK3 dynam-
ics to uncertainty in an insulin signaling model. Similar efforts,
but on different pathways can be found in Zheng and Rundel] 62
and Marino et al. 5.

dices versus Morris

SA provides a way of analyzing various factors taking part in a
biological phenomena and deals with the effects of these factors
on the output of the biological system under consideration. Usu-
ally, the model equations are differential in nature with a set of
inputs and the associated set of parameters that guide the output.
SA helps in observing how the variance in these parameters and
inputs leads to changes in the output behaviour. The goal of this
manuscript is not to analyse differential equations and the param-
eters associated with it. Rather, the aim is to observe which in-
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function defined in unit-n-dimensional cube with u as

scalar [Sobol:1990]

u= f(x), x=(x1,%2, .0, Xn)

orthogonality follows
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Fig. 3 Computation of variance based sobol sensitivity indices. For detailed notations, see appendix.

put genotypic factors have greater contribution to observed phe-
notypic behaviour like a sample being normal or cancerous in
both static and time series data. In this process, the effect of fold
changes in time is also considered for analysis in the light of the
recently observed psychophysical laws acting downstream of the
Wnt pathway (Goentoro and Kirschner 64,

There are two approaches to sensitivity analysis. The first is the
local sensitivity analysis in which if there is a required solution,
then the sensitivity of a function apropos a set of variables is esti-
mated via a partial derivative for a fixed point in the input space.
In global sensitivity, the input solution is not specified. This im-
plies that the model function lies inside a cube and the sensitivity
indices are regarded as tools for studying the model instead of the
solution. The general form of g-function (as the model or output
variable) is used to test the sensitivity of each of the input factor
(i.e expression profile of each of the genes). This is mainly due to
its non-linearity, non-monotonicity as well as the capacity to pro-
duce analytical sensitivity indices. The g-function takes the form

fx)= n[d: L w

+a;

were, d is the total number of dimensions and a; > O are the in-
dicators of importance of the input variable x;. Note that lower
values of a; indicate higher importance of x;. In our formulation,
we randomly assign values of X; € [0, 1]. For the static (time se-
ries) data d = 18 (factors affecting the pathway). The value of
d varies from 2 to 17, depending on the order of the combina-
tion one might be interested in. Thus the expression profiles of

€3]

the various genetic factors in the pathway are considered as input
factors and the global analysis conducted. Note that in the prede-
fined dataset, the working of the signaling pathway is governed
by a preselected set of genes that affect the pathway. For com-
parison purpose, the local sensitivity analysis method is also used
to study how the individual factor is behaving with respect to the
remaining factors while working of the pathway is observed in
terms of expression profiles of the various factors.

Finally, in context of Goentoro and Kirschner®¥’s work regard-
ing the recent development of observation of Weber’s law work-
ing downstream of the pathway, it has been found that the law is
governed by the ratio of the deviation in the input and the abso-
lute input value. More importantly, it is these deviations in input
that are of significance in studing such a phemomena. The cur-
rent manuscript explores the sensitivity of deviation in the fold
changes between measurements of fold changes at consecutive
time points to explore in what duration of time, a particular fac-
tor is affecting the pathway in a major way. This has deeper im-
plications in the fact that one is now able to observe when in
time an intervention can be made or a gene be perturbed to study
the behaviour of the pathway in tumorous cases. Thus sensitiv-
ity analysis of deviations in the mathematical formulation of the
psychophysical law can lead to insights into the time period based
influence of the involved factors in the pathway. Thus, both global
and local anaylsis methods are employed to observe the entire be-
haviour of the pathway as well as the local behaviour of the input
factors with respect to the other factors, respectively, via analysis
of fold changes and deviations in fold changes, in time.
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Sensitivity index based on distance correlation [Da Veiga:2015]

S =RtpU) g -

The cross-covariance operator generalizes the covariance
matrix by representing higher order correlations between X and
U through nonlinear kernels. For every linear operator C : B ->
A and provided the sum converges, the Hilbert-Schmidt norm of

Cis given by
1Cl[frs = i {ax, Cby) o

a &b are orthonormal bases of A & B , respectively l
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Fig. 4 Computation of density based hsic sensitivity indices. For detailed notations, see appendix.

Given the range of estimators available for testing the sensitiv-
ity, it might be useful to list a few which are going to be employed
in this research study. Also, a brief introduction into the funda-
mentals of the derivation of the three main indicies and the choice
of sensitivity packages which are already available in literature,
has been described in the Appendix.

4 Ranking Support Vector Machines

Learning to rank is a machine learning approach with the idea
that the model is trained to learn how to rank. A good intro-
duction to this work can be found in8. Existing methods in-
volve pointwise, pairwise and listwise approaches. In all these
approaches, Support Vector Machines (SVM) can be employed to
rank the required query. SVMs for pointwise approach build var-
ious hyperplanes to segregate the data and rank them. Pairwise
approach uses ordered pair of objects to classify the objects and
then utilize the classifyer to rank the objects. In this approach,
the group structure of the ranking is not taken into account. Fi-
nally, the listwise ranking approach uses ranking list as instances
for learning and prediction. In this case the ranking is straightfor-
ward and the group structure of ranking is maintained. Various
different designs of SVMs have been developed and the research
in this field is still in preliminary stages. In context of the gene
expression data set employed in this manuscript, the objects are
the genes with their RECORDED EXPRESSION VALUES FOR NORMAL
AND TUMOR CASES. Both cases are treated separately.
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5 Description of the dataset & design of ex-
periments

A simple static dataset containing expression values measured for
a few genes known to have important role in human colorectal
cancer cases has been taken from Jiang et al. 1°. Most of the ex-
pression values recorded are for genes that play a role in Wnt sig-
naling pathway at an extracellular level and are known to have
inhibitory affect on the Wnt pathway due to epigenetic factors.
For each of the 24 normal mucosa and 24 human colorectal tu-
mor cases, gene expression values were recorded for 14 genes
belonging to the family of SFRP, DKK, WIF1 and DACT. Also,
expression values of established Wnt pathway target genes like
LEF1, MYC, CD44 and CCND1 were recorded per sample.

Note that green (red) represents activation (repression) in the
heat maps of data in Jiang et al. 1°. Figures 5 represent the heat
maps for the static data. The reported results will be based on
scaled as well as unscaled datasets. For the static data, only the
scaled results are reported. This is mainly due to the fact that the
measurements vary in a wide range and due to this there is often
an error in the computed estimated of these indices. Bootstrap-
ping without replicates on a smaller sample number is employed
to generate estimates of indices which are then averaged. This
takes into account the variance in the data and generates confi-
dence bands for the indices.

GENERAL ISSUES - @ Here the input factors are the gene expres-
sion values for both normal and tumor cases in static data. For
the case of time series data, the input factors are the fold change
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Fig. 6 A cartoon of experimental setup. IMPORTANT NOTE - In this figure, Gx, Gy and G represent a combination. Step - (1) Segregation of data
into normal and tumor cases. (2) Further data division per case and bootstrap sampling with no repetitions for different iterations. (3) Assembling
bootstrapped data and application of SA methods. (4) Generation of SI's for normal and tumor case per gene per iteration. (5) Generation of averaged

Sl and confidence bands per case per gene.

(deviations in fold change) expression values of genes at different
time points (periods). Also, for the time series data, in the first
experiment the analysis of a pair of the fold changes recorded
at to different consecutive time points i.e t; & ti+1 is done. In
the second experiment, the analysis of a pair of deviations in fold
changes recorded at t; & ti+1 and tj+1 & ti+2. In this work, in
both the static and the time series datasets, the analysis is done
to study the entire model/pathway rather than find a particular
solution to the model/pathway. Thus global sensitivity analysis is
employed. But the local sensitivity methods are used to observe
and compare the affect of individual factors via 15t order analysis
w.r.t total order analysis (i.e global analysis). In such an exper-
iment, the output is the sensitivity indices of the individual fac-
tors participating in the model. This is different from the general
trend of observing the sensitivity of parameter values that affect
the pathway based on differential equations that model a reac-

tion. Thus the model/pathway is studied as a whole by observing
the sensitivities of the individual factors.

Note that the 24 normal and tumor cases are all different from
each other. The 18 genes that are used to study in 1° are the input
factors and it is unlikely that there will be correlations between
different patients. The phenotypic behaviour might be similar at a
grander scale. Also, since the sampling number is very small for a
network of this scale, large standard deviations can be observed in
many results, especially when the Sobol method is used. But this
is not the issue with the sampling number. By that analysis, large
deviations are not observed in kernel based density methods. The
deviations are more because of the fact that the nonlinearities
are not captured in an efficient way in the variance based Sobol
methods. Due to this, the resulting indicies have high variance in
numerical value. For the same number of samplings, the kernel
based methods don’t show high variance.

1-31 |7


https://doi.org/10.1101/059469

bioRxiv preprint doi: https://doi.org/10.1101/059469; this version posted October 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

- For all k no. of genes compute nCk combinations
SA1 ( n - Total No. of genes
k - number genes >=2 & <=(n-1)
for all noObsCp combinations of samples,

SA2 noObs - total no. of observations, p - >= 2 & (noObs-1)
.~ Tumor | .~ Tumor | ~ Tumor
® G Normal G Normal G Normal
® 00
® | Tumor Tumor | | Tumor |
® Gy Normal = G Normal Gy Normal
SAm jth combination jth combination jth combination
d 2 fork =2, SA1l fork =2, SA2 3 fork =2, SAn
p samples 4
SVMRank-model : train N
< VMRan
vest SVMRank-model
> scores for (Gx,Gy)’s
for Normal and Tumor
classify () mean over all
— ® comb;nations qf Gx Gy Gx Gy
training & testing
noObs-p samples sort (Gx,Gy)’s for Normal and SIs for bth iteration

Tumor for best combination for k = 2, SAe, on noObs

Fig. 7 A cartoon of experimental setup. IMPORTANT NOTE - In this figure, Gx, Gy and G represent separate genes. Step - (1) Assembling p training
indices and noObs — p testing indices for every pt" order of samples in Cg"o"s. Thus there are a total of CgOObS training and corresponding test
sets. (2) For every SA, combine (say for k = 2, i.e interaction level 2) SI's of genetic factors for normal and tumor separately, for each observation in
training and test data. (3) For noObs = 20 different replicates, per SAe and a particular combination of < Gy, Gy > in normal and tumor, a matrix of
observations is consturcted. (4) Using indices in (1) SVM;Z‘;’;‘; is employed on p training data to generate a model. This model is used to generate a
ranking score on the test data via S VM’;;(’]’;’;W. These score are averaged over CI’;"O"S test data sets. Further, mean of scores over noObs — p test

replicates per < Gx, Gy > are computed and finally the combinations are ranked based on sorting for each of normal and training set.

The procedure begins with the listing of all C Q combinations for
k number of genes from a total of n genes. kis > 2 and < (n—1).
Each of the combination of order k represent a unique set of inter-
action between the involved genetic factors. While studying the
interaction among the various genetic factors using static data, tu-
mor samples are considered separated from normal samples. For
the experiments conducted here on a toy example, 20 bootstrap
replicates were generated for each of normal and tumor samples
without replacement. For each bootstrap replicate, the normal
and turmor samples are divided into two different sets of equal
size. Next the datasets are combined in a specifed format which
go as input as per the requirement of a particular sensitivity anal-
ysis method. Thus for each pt" combination in C Q combinations,

8| 1-31

the dataset is prepared in the required format from both normal
and tumor samples (See .R code in mainscript-1-1.R in google
drive and step 3 in figure 6). After the data has been transformed,
vectorized programming is employed for density based sensitivity
analysis and looping is employed for variance based sensitivity
analysis to compute the required sensitivity indices for each of
the p combinations. Once the sensitivity indices are generated
for each of the pt" combination, for every bootstrap replicate in
normal and tumor cases, confidence intervals are estimated for
each sensitivity index. This procedure is done for different kinds
of sensitivity analysis methods.

After the above sensitivity indices have been stored for each of
the pth combination, each of the sensitivity analysis method for
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Fig. 5 Heat map for gene expression values for each of the 24 normal
mucosa and 24 human colorectal tumor cases from Jiang et al. '

normal and tumor cases per bootstrap replicates, the next step
in the design of experiment is conducted. Here, for a particular
kth order of combination, a choice is made regarding the num-
ber of sample size (say p), where 2 < p < noObs—1 (noObs
is the number of observations i.e 20 replicates). Then for all
sample sets of order p in C7°0PS | generate training index set
of order p and test index set of order noObs — p. For each of
the sample set, considering the sensitivity index for each indi-
vidual factor of a gene combination in the previous step as de-
scribed in the foregoing paragraph, a training and a test set is
generated. Thus an observation in a training and a test set repre-
sents a gene combination with sensitivity indices of involved ge-
netic factors as feature values. For a particular gene combination
there are p training samples NoObs — p test samples. In total
there are C ZOObS training sets and corresponding test sets. Next,

SVM@%% (Joachims?29) is used to generate a model on default
value C value of 20. In the current experiment on toy model C
value has not been tunned. The training set helps in the gener-
ation of the model as the different gene combinations are num-
bered in order which are used as rank indices. The model is then
used to generate score on the observations in the testing set us-

ing the S VM?&:ZI;U‘y (Joachims29). Next the scores are averaged

across all C"°9bS test samples. The experiment is conducted for
normal and tumor samples separately. This procedure is executed

for each and every sensitivity analysis method. Finally, for each
sensitivity analysis method, for all k" order combinations, the
mean across the averaged p scores is computed. This is followed
by sorting of these scores along with the rank indices already as-
signed to the gene combinations. The end result is a sorted order
of the gene combinations based on the ranking score learned by
the SVMRAnK algorithm. These steps are depicted in figure 7.

Note that the following is the order in which the files
should be executed in R, in order, for obtaining the de-
sired results (Note that the code will not be explained here)
- e use source("mainScript-1-1.R") with arguments for Static
data e use source("Combine-Static-files.R"), if computing in-
dices separately via previous file, ® source("Store-Results-S.R"), @
source("SVMRank-Results-S.R"), again this needs to be done sep-
arately for different kinds of SA methods and e source("Sort-n-
Plot-S.R") to sort the interactions.

6 Results and Discussion

6.1 279 Order interactions
6.2 37 Order Interactions

7 Code Availability

Code has
https://drive.google.com/folderview?id=
0B7Kkv8wlhPU-V1Fkd1ldMSTd5ak0&usp=sharing

been made available on Google drive at

8 Conclusions

GENERAL

A workflow has been presented that can prioritize the entire
range of interactions among the constituent or subgroup of in-
tra/extracellular factors affecting the pathway by using powerful
algorithm of support vector ranking on interactions that have sen-
sitivity indices of the involved factors as features. These sensitiv-
ity indices compute the influences of the factors on the pathway
and represent nonlinear biological relations among the factors
that are captured using kernel methods. SVM ranking then scores
the testing data which can be sorted to find the highly prioritized
interactions that need further investigation. Using this efficient
workflow, it is possible to analyse any combination of involved
factors in a signaling pathway.

PRIPORITIZED 29 ORDER INTERACTIONS

Initial results on prioritization of 2nd order interactions learnt
from support vector ranking using these sensitivity indices sug-
gest the following. For a training sample size of 4 and test sample
size of 16, from a total of 20 bootstraps for each of the interac-
tions, in tumor cases, it was found that interactions between 1.
SFRP1 & SFRP3 and 2. DACT3 & SFRP3, obtained high prior-
ity from a total of 153 (C %8) interactions. These highly prior-
itized interactions were observed using all variants of Fdiv and
HSIC. Other interactions between families of SFRP, DACT3, LEF1
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Tumor Case
High priority interactions
Ranking Fdiv HSIC Sobol
chi2 hellinger Kkl tv rbf laplace 2007 jansen martinez
10 SFRP1LEF1 SFRP1IMYC | SFRPSLEF1 | SFRPSLEF1 | SFRP2SFRP4 | SFRP1IMYC |DACT3WIF1| SFRP3LEF1 | SFRP3LEF1
9 SFRP1SFRP5 | DACT3LEF1 |DACT3SFRPS | DACT3SFRPS | SFRP2SFRP3 | SFRPSLEF1 | SFRP1LEF1 | DKK2LEF1 | DKK3-1MYC
8 DACT3SFRP2 | SFRP1SFRP2 | SFRP5MYC SFRPSMYC | DACT3LEF1 | DACT3MYC |DACT3LEF1|DACT1LEF1 [DKK3-1DACT2
7 SFRP1SFRP2 | SFRP1LEF1 SFRP1IMYC SFRP1IMYC | SFRP1LEF1 | SFRP2LEF1 | SFRP4LEF1 |DKK3-1WIF1| DKK2LEF1
6 SFRP2SFRP4 | SFRP2SFRP4 | DACT3SFRP4 | DACT3SFRP4 | SFRP1SFRP4 | DACT3LEF1 |DKK3-1WIF1| DKK2DKK4 | DACT1LEF1
5 SFRP1SFRP4 | SFRP2SFRP3 | DACT3MYC | DACT3MYC |DACT3SFRP4| SFRP1WIF1 [DACTI1LEF1 |IDKK3-2DKK4] SFRPSLEF1
4 SFRP2SFRP3 | SFRP1SFRP4 | DACT3LEF1 | DACT3LEF1 | SFRP1SFRP2 | DACT3WIF1 |DKK3-2LEF1| SFRP4LEF1 | DKK3-1LEF1
3 DACT3SFRP4 | DACT3SFRP4| SFRP1LEF1 | SFRP1LEF1 |DACT3SFRP2|DACT3SFRP3|SFRP4WIF1 |DKK3-2LEF1| DKK3-1WIF1
2 DACT3SFRP3 | DACT3SFRP3 [ DACT3SFRP3 | DACT3SFRP3 | DACT3SFRP3 | SFRP1LEF1 |DACT2LEF1 [DKK3-1DKK4] DKK2DKK4
1 SFRP1SFRP3 | SFRP1SFRP3 | SFRP1SFRP3 | SFRP1SFRP3 | SFRP1SFRP3 | SFRP1SFRP3 | SFRPSLEF1 | SFRPSLEF1 | DKK3-1DKK4
Low priority interactions

153 DKK3-1SFRP1|DKK3-1SFRP1|DKK3-1SFRP1|DKK3-1SFRP1| DKK4DACT3 | DKK4DACT3 | DKK4MYC |LEF1CCND1| DKK4SFRP3
152  [DKK3-1DACT3|DKK3-1DACT3|DKK3-1DACT3[DKK3-1DACT3|DACT2DACT3|DKK3-1SFRP5/DKK4DACT2| DKK4MYC | DKK1DKK3-1
151 DKK3-1SFRP2|DKK3-1SFRP2|DKK3-1SFRP2|DKK3-1SFRP2|DKK3-1SFRP5| DKK4SFRP1 | DKK1IMYC |DKK1SFRP5| DKK1SFRP3
150 |DKK3-1SFRP5|DKK3-1SFRP5|DKK3-1SFRP5|DKK3-1SFRP5| DKK1DACT3 [DACT2DACT3| LEFIMYC |DKK4SFRP4| DKK4DACT1
149 SFRP3SFRP5 | SFRP3SFRP5 | SFRP3SFRPS5 | SFRP3SFRPS5 | DKK1SFRP1 |DKK3-1SFRP2IDKK4CCND1| DKK4SFRP3 | DKK4SFRP4
148 SFRP4SFRP5 | SFRP4SFRPS5 | DACT1SFRP1 | DACT1SFRP1 | DACT1SFRP1 [DACT2SFRP1|[DKK1DACT2| DKK4SFRPS5| DKK4CD44
147 DKK4SFRP1 | DACT1SFRP1 | SFRP4SFRPS5 | SFRP4SFRPS5 |DKK3-2DACT3|DACT2SFRP1|DKK4SFRPS |DKK4DACT1| DKK1DKK2
146 DKK4DACT3 | DACT1SFRP2 |[DACT1DACT3|DACT1DACT3| DKK2SFRP1 | DKK4SFRP2 | DACT2MYC [DKK4CCND1| DKK1DACT1
145 DACT1SFRP1 |[DACT1DACT3| DACT1SFRP5 | DACT1SFRPS | DACT2SFRP1 [DACT1SFRP1|LEF1CCND1 |DKK1DKK3-2| DKK4MYC
144 DKK3-2SFRP5| DKK4SFRP1 | DKK2DACT3 | DKK2DACT3 | DKK4SFRP1 | DKK2SFRP1 |DKK1CCND1[DKK1CCND1| LEF1CCND1

Table 1 Ranking of second order interactions in Tumor case using density and variance based sensitivity indices. Here 1 has high priority and 153
has low priority.

and MYC take high priority (but using different variants of den-
sity base sensitivity methods). In contrast to these, 153. DKK3-1
& SFRP1, 152. DKK3-1 & DACT3, 151. DKK3-1 & SFRP2, 150.
DKK3-1 & SFRP5 and 149 SFRP3 & SFRP5 showed lowest priority
using all variants of Fdiv. On a majority basis, DKK3-1 & SFRP5
showed the lowest priority across Fdiv and HSIC. DACT1/2 and
families of DKK occupied lowest priorities in tumorous cases, this
indicating their non-significance. For the normal case, the fam-
ilies of DKK take the heighest priority thus indicating their ma-
jor role. Interaction between DKK2 & DKK4 were found to be
on top using Fdiv and HSIC variants. On the other hand, DKK4
along with other genes occupied lowest priority in normal case.
There was greater deviation in the rankings using variance based
methods. Through wet lab experiments it is possible to test the
prioritized interactions of interest for any significant role in Wnt

pathway.

PRIPORITIZED 3rd ORDER INTERACTIONS

9 Acknowledgement

The author thanks Mr. Prabhat Sinha and Mrs.

financially supporting the project.

10 |

1-31

Rita Sinha for

References

N

R. A. Lothe, Neoplasia, 2005, 7, 99-108.

[<) NN, B NSOV ]

17, 1709-1713.

~N

opmental Biology, 2014, 3, 489-500.

R. Sharma, Drosophila information service, 1973, 50, 134-134.
L. Thorstensen, G. E. Lind, T. Lgvig, C. B. Diep, G. I. Meling, T. O. Rognum and

R. Baron and M. Kneissel, Nature medicine, 2013, 19, 179-192.
H. Clevers, Cell, 2006, 127, 469-480.
S. Sokol, Wnt Signaling in Embryonic Development, Elsevier, 2011, vol. 17.

D. Pinto, A. Gregorieff, H. Begthel and H. Clevers, Genes & development, 2003,

N. Peéina-Slaus, Cancer Cell International, 2010, 10, 1-5.

9 M. Kahn, Nature Reviews Drug Discovery, 2014, 13, 513-532.

10
11
12
13
14
15
16

L. W. Stanton, E. T. Liu et al., Cancer cell, 2008, 13, 529-541.

17

Antonio Breast Cancer Symposium, 2011, 71, 524-525.

S. Sinha, Integr: Biol., 2014, 6, 1034-1048.

Z. Zhong, N. J. Ethen and B. O. Williams, Wiley Interdisciplinary Reviews: Devel-

K. Garber, Journal of the National Cancer Institute, 2009, 101, 548-550.
A. Voronkov and S. Krauss, Current pharmaceutical design, 2012, 19, 634.
A. Blagodatski, D. Poteryaev and V. Katanaev, Mol Cell Ther, 2014, 2, 28.
J. C. Curtin and M. V. Lorenzi, Oncotarget, 2010, 1, 552.

T. P. Rao and M. Kiihl, Circulation research, 2010, 106, 1798-1806.
J. Yu and D. M. Virshup, Bioscience reports, 2014, 34, 593-607.

X. Jiang, J. Tan, J. Li, S. Kivimé&e, X. Yang, L. Zhuang, P. L. Lee, M. T. Chan,

W. Verhaegh, P. Hatzis, H. Clevers and A. van de Stolpe, Cancer Research, San


https://doi.org/10.1101/059469

bioRxiv preprint doi: https://doi.org/10.1101/059469; this version posted October 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Normal Case

High priority interactions

Ranking Fdiv HSIC Sobol
chi2 hellinger kl tv rbf laplace 2007 jansen martinez
10 DACT3CCND1| DKK2WIF1 | DKK2DKK4 | DACT3MYC | DKK2SFRP5 |DACT3SFRP1 | DKK3-2CD44 | SFRP3LEF1 [DKK3-1DACT2
9 SFRP5SWIF1 | DKK2SFRP5 | DKK2LEF1 DKK2WIF1 | DKK2WIF1 |DACT3CCND1| SFRP2LEF1 | DKK2LEF1 | SFRP3WIF1
8 WIF1LEF1 |DACT3SFRP2| DKK2DACT2 |DACT3SFRP2| SFRP5LEF1 | DKK2DACT2 | DKK3-2WIF1 | DACT1LEF1| SFRP3LEF1
7 DKK2MYC SFRPSLEF1 DKK2MYC | SFRPSLEF1 |DACT3SFRPS| DKK4SFRPS |DKK3-2DACT2| DKK2DKK4 | DACT1LEF1
6 DKK1DKK4 [DACT3CCND1| DACT3LEF1 |DACT3CCND1|DACT3CCND1{SFRPSCCND1| WIFIMYC | SFRP4LEF1 | DKK2DKK4
5 DACT2MYC | DKKIMYC [DACT3CCNDI1| DACT3LEF1 |SFRPSCCND1|DACT3SFRPS| DKK4MYC |DKK3-2DKK4 SFRPSLEF1
4 SFRPSLEF1 | DKK2MYC | SFRPS5LEF1 | DKK2MYC | DKK2LEF1 | DKK2SFRPS5 | DKK3-2DKK4 [DKK3-1DKK4 DKK2LEF1
3 DKK2DACT?2 | DKK2DACT2 | DACT3SFRP2 | DKK2DACT2 | DKKIMYC | DKK3-1CD44 | DKK3-2MYC [DKK3-1WIF1| DKK3-1LEF1
2 DKK2LEF1 | DKK2LEF1 | DKK2WIF1 | DKK2LEF1 |DKK2DACT2 | DKK2DKK4 LEFIMYC |DKK3-2LEF1| DKK3-1WIF1
1 DKK2DKK4 | DKK2DKK4 | DACT3MYC | DKK2DKK4 | DKK2DKK4 DKKIMYC | DKK3-2LEF1 | SFRP5LEF1 | DKK3-1DKK4
Low priority interactions
153 DKK4CCND1 | DKK4LEF1 DKK4CD44 | DKK4CD44 |DKK1DKK3-2| DKK4LEF1 DKK1DKK4 |LEF1CCND1| DKK4SFRP3
152 DKK1CCND1 | DKK1DKK3-2 | DKK4DACT3 | DKK4DACT3 | DKK4SFRP3 | DKK1DKK3-2| DKKILEF1 |DKK1SFRPS |DKK1DKK3-1
151 LEF1CCND1 | DKK4SFRP1 | DKK4MYC DKK4MYC | DKK4SFRP1 | DKK1WIF1 DKK4LEF1 DKK4MYC | DKK4DACT1
150 DKK4MYC | DKK4SFRP3 | DKK4SFRP3 | DKK4SFRP3 | DKK4LEF1 | DKK4SFRP1 | DKK1WIF1 |DKK4SFRP3| DKK1SFRP3
149 DKK1DKK2 | DKK4DACT1 | DKK1DKK2 | DKK1DKK2 | DKK1SFRP3 | DKK3-2CD44 | WIF1CD44 |DKK4SFRP4| DKK4SFRP4
148 DKK4WIF1 | DKK4DACT3 | DKK4DACT1 | DKK4DACT1 [ DACT2SFRP3 |DKK3-2SFRP3| DKK1DKK3-2 [DKK1DKK3-2| LEF1CCND1
147 WIF1CCND1 | DKK4CD44 | DKK4SFRP1 | DKK4SFRP1 | DKK4DACT1 |DKK3-2DACT3| DACT2LEF1 | DKK4SFRP5| DKK4CD44
146 DKK4CD44 | DKK1SFRP1 | LEF1CCND1 | LEF1ICCND1 | DKK1WIF1 |DKK3-2DACT1| DKK4SFRP2 [DKK1CCND1| DKK1DKK2
145 DKK4DACT3 | DKK1SFRP3 | DKK1DKK3-2 [ DKK1DKK3-2| DKK1SFRP1 |DKK3-2SFRP4| DKK1SFRP2 |[DKK4DACT1| DKK1DACT1
144 DKK1SFRPS |DACT2SFRP3|DACT2SFRP3 | DACT2SFRP3| WIF1CD44 |DKK3-2SFRP1| DKK4CD44 |DKK4CCND1| DKK1SFRP5

Table 2 Ranking of second order interactions in Normal case using density and variance based sensitivity indices. Here 1 has high priority and 153
has low priority.
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Tumor Case | Normal Case
Ranking HSIC
rbf [ laplace [ linear [ rbf [ laplace [ linear
High priority interactions
10 SFRP1SFRP2SFRP4| DACT3SFRP1WIF1 IDKK3-1DACT3SFRP1| DKK2DKK4WIF1 |[DKK3-1DACT3SFRP5| DKK4LEF1IMYC
9 DACT3SFRP2SFRP4| SFRP1SFRP2LEF1 |DKK3-1SFRP3SFRP4| DKK2DKK4MYC DKK2DACT2LEF1 DKK1DKK4MYC
8 SFRP1SFRP2LEF1 | DACT3SFRPSLEF1 [DKK3-1DACT1SFRP4| DKKI1LEF1IMYC DACT3SFRPSMYC | WIF1LEF1CCND1
7 DACT3SFRP2LEF1 | DACT3SFRP2LEF1 | DACT3SFRP1SFRP4 [DACT3SFRPSCCND1| DACT3WIF1CCND1 | SFRPSWIF1CCND1
6 SFRP1SFRP2SFRP3|DACT3SFRP2SFRP4DKK3-1DACT3SFRP3| DACT3LEF1CCND1 | DACT3SFRP2SFRPS5 | DKK4SFRP2CCND1
5 DACT3SFRP2SFRP3|IDACT3SFRP1SFRP2| DACT3SFRP2SFRP4 [DACT3SFRP2CCND1|DKK3-1DACT3CCND1| DACT2LEF1CCND1
4 DACT3SFRP1LEF1 |SFRP1SFRP2SFRP4|DKK3-1SFRP2SFRP4| DACT3WIF1CCND1 | DACT3SFRP5CCND1 | DKK1SFRP2CCND1
3 DACT3SFRP1SFRP4|DACT3SFRP1SFRP4|DKK3-1SFRP1SFRP4| DKK2DACT2LEF1 |DACT3SFRP2CCND1 | DKK4LEF1CCND1
2 DACT3SFRP1SFRP2| DACT3SFRP1LEF1 | DACT3SFRP1SFRP2| DKK2DKK4DACT2 | DKK2DKK4DACT2 | SFRP2LEF1CCND1
1 DACT3SFRP1SFRP3[DACT3SFRP1SFRP3[DKK3-1DACT3SFRP4| DKK2DKK4LEF1 DKK2DKK4LEF1 DKK1LEF1CCND1
Low priority interactions
816 DKK2DKK3-1SFRP5|SFRP1SFRP3SFRP5| DKK1DACT2LEF1 DKK4SFRP1LEF1 | DKK1DKK3-2SFRP5 | DKK4DACT2LEF1
815 |DACT3SFRP3SFRP5DACT3SFRP4SFRP5| DKK1DKK2DACT3 | DKK1DKK2SFRP3 | DKK1DKK3-2SFRP2 | DKK4WIF1LEF1
814 DKK1DKK3-1SFRP2|SFRP2SFRP4SFRP5| DKK1DKK2WIF1 | DKK4DACT2SFRP3 | DKK4DACT2SFRP1 DKK1DKK2LEF1
813 SFRP1SFRP3SFRP5|SFRP1SFRP4SFRP5( DKK1DKK4LEF1 DKK1DKK2SFRP5 | DKK1DKK3-2CCND1 | DKK1DKK2DKK4
812 SFRP1SFRP4SFRP5|SFRP2SFRP3SFRP5|DKK3-2DKK4DACT3| DKK4SFRP1WIF1 | DKK1DKK3-2SFRP4 | DACT2WIF1LEF1
811 DKK1DKK4SFRP1 [DKK1DKK3-1SFRP5| DKK1DKK4WIF1 | DKK4DACT3SFRP1 | DKK1DKK4SFRP3 [DACT2DACT3SFRPS
810 DACT3SFRP4SFRP5|DKK1DKK3-1SFRP2| DACT2SFRPSLEF1 |DKK1DKK3-2CCND1| DKK1SFRP2SFRP3 DKK1DKK2WIF1
809 DKK2DKK4SFRP1 [DACT3SFRP3SFRPS5S|IDKK3-2DACT3SFRP1| DKK4DACT1SFRP3 | DKK1DKK3-2SFRP3 | DKK4DACT3SFRPS
808 DKK1DKK4DACT3 |[DKK1DKK3-2SFRP1| DACT3SFRP1IWIF1 | DKK4SFRP3CCND1 | DKK4SFRP1LEF1 DKK1DKK2DACT2
807 SFRP2SFRP4SFRPS|DKK1DACT1SFRP2 |[DKK1DKK3-2CCND1| DKK4DACT2SFRP1 | DKK1DKK3-2SFRP1 DKK1MYCCD44

Table 3 Ranking of third order interactions in Tumor and Normal case using variance based sensitivity indices. Here 1 has high priority and 816 has
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Appendix
10 Sensitivity indices

10.1 Variance based indices

The variance based indices as proposed by Sobol’?! prove a the-
orem that an integrable function can be decomposed into sum-
mands of different dimensions. Also, a Monte Carlo algorithm
is used to estimate the sensitivity of a function apropos arbitrary
group of variables. It is assumed that a model denoted by function
u=f(x),x=(x1,x2,...,Xn), is defined in a unit n-dimensional
cube K" with u as the scalar output. The requirement of the
problem is to find the sensitivity of function f(x) with respect
to different variables. If u* = f(x*) is the required solution,
then the sensitivity of u™ apropos Xk is estimated via the partial
derivative (du/0Xk)x=x*. This approach is the local sensitivity.
In global sensitivity, the input X = x* is not specified. This im-
plies that the model f(x) lies inside the cube and the sensitivity
indices are regarded as tools for studying the model instead of the
solution. Detailed technical aspects with examples can be found
in Homma and Saltelli®3 and Sobol®°.

Let a group of indices (1, (2, ..., s exist, where 1 < i1 <... <
is <nand 1 <s<n. Then the notation for sum over all different
groups of indices is -

i =Z Ti+Z]_ PacicjenTij+...+T1,2,.n (2)

,,,,,,

Then the representation of f(x) using equation 2 in the form -

fX) = fo+Zfui...is

= fo+Zfix)+Zi<ifij(xi, X)) +... +f1,2,...,n(X1, X2,

is called ANOVA-decomposition from Archer et al. ° or expansion
into summands of different dimensions, if fo is a constant and
integrals of the summands fj, i,
variables are zero, i.e,

,,,,, is with respect to their own

fo =f fF(x)dx 4
}Cn

1
J fir oo is(Xig» Xips o0 X)X, =0,1 <k <s (5)
0

It follows from equation 4 that all summands on the right hand
side are orthogonal, i.e if at least one of the indices in i1, i2, ..., is
and j1,J2,...,ji is not repeated i.e

1
ffil,iz ..... s (Xiv, Xins oo s Xi Win,jar o jt Xjrs Xy o2, Xj )X =0
0

(6)

Sobol’2! proves a theorem stating that there is an existence of a
unique expansion of equation 4 for any f(x) integrable in K. In

brief, this implies that for each of the indices as well as a group of
indices, integrating equation 4 yields the following -

1 1
f f F()dx/dx;
0 0

1 1
J J F(x)dx/dxdx;
0 0

fo+filxd) )

So+filxi)) +fj(x;))+fi,j(xi, XB)

were, dx/dXi is [lykeq1,. n}igkdXk and dx/dxdx; is
[ Tvke {1,..,n};ijek dXk. For higher orders of grouped indices,
similar computations follow. The computation of any sum-
mand fi, i,....is(Xiy» Xiy, ..., Xi;) is reduced to an integral in the
cube K. The last summand f1,2,.. n(X1,X2,...,Xn) is f(X) —
fo from equation 4. Homma and Saltelli33 stresses that use
of Sobol sensitivity indices does not require evaluation of any
fiv,iz,...,is(Xiy» Xiy, ..., Xi;) nor the knowledge of the form of f(x)
which might well be represented by a computational model i.e a
function whose value is only obtained as the output of a computer
program.

Finally, assuming that f(X) is square integrable, i.e f(x) € £>,
then all of fi,i,,...,i. (Xiy, Xiy» -+, Xi,) € L2. Then the following
constants

fAydx-f = D
ICI'I

1 1
i J ]’1.21,[2 ..... is(xil,xiz,...,x,-s)dxl-ldx,-z...dx,-s
@8y 0

are termed as variances. Squaring equation 4, integrating over

+s Xgh and using the orthogonality property in equation 6, D evalu-

ates to -
D = ZDll 0,..., is (11)
Then the global sensitivity estimates is defined as -
Dil,lz ..... is
Sil,lz ..... ls D (12)
It follows from equations 11 and 12 that
£Siyi,.ie =1 (13)

Clearly, all sensitivity indices are non-negative, i.e an index
tial of Sobol indices is observed when variables X1, X2,...,Xn
are divided into m different groups with y1, y2, ..., ¥m such that
m < n. Then f(xX)=f(y1,Y2,...,¥m). All properties remain the
same for the computation of sensitivity indices with the fact that
integration with respect to yx means integration with respect to
all the x{’s in yk. Details of these computations with examples can
be found in Sobol®°. Variations and improvements over Sobol in-
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dices have already been stated in section 3.

10.2 Density based indices

As discussed before, the issue with variance based methods is
the high computational cost incurred due to the number of in-
teractions among the variables. This further requires the use of
screening methods to filter out redundant or unwanted factors
that might not have significant impact on the output. Recent
work by Da Veiga®® proposes a new class of sensitivity indicies
which are a special case of density based indicies Borgonovo>3.
These indicies can handle multivariate variables easily and relies
on density ratio estimation. Key points from Da Veiga>® are men-
tioned below.

Considering the similar notation in previous section, f : R" —
R (u=f(x)) is assumed to be continuous. It is also assumed that
Xk has a known distribution and are independent. Baucells and
Borgonovo ®° state that a function which measures the similarity
between the distribution of U and that of U|Xk can define the
impact of Xx on U. Thus the impact is defined as -

Sx =€(d(U, UIXk)) 14

were d(+, +) is a dissimilarity measure between two random vari-
ables. Here d can take various forms as long as it satisfies the
criteria of a dissimilarity measure. Csiszér et al. >®’s f-divergence
between U and U| Xk when all input random variables are consid-
ered to be absolutely continuous with respect to Lebesgue mea-
sure on R is formulated as -

pu(u)

_ u)du (15)
pU|Xk(U) )pUle( )

dr(U[IUIXKk) = | F(
R

were F is a convex function such that F(1) =0 and py and
puix, are the probability distribution functions of U and U|Xk.
Standard choices of F include Kullback-Leibler divergence F(t) =
—loge(t), Hellinger distance (Vt—1)2, Total variation distance
F(t)=|t—1]|, Pearson x?2 divergence F(t) =t? — 1 and Neyman
X2 divergence F(t) = (1 —t2)/t. Substituting equation 15 in
equation 14, gives the following sensitivity index -

S%, J dr(UIUIX)px, (x)dx
R

f f UMY (WP, COdxdu
rJIR  PuX(U)

J - pu(U)px, (x) YPuix, (Wpx, () dxdu
R2

puix(Wpx, (x)

[ AP s a6
R2

px,u(x, u)
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were px, and px,,y are the probability distribution functions of
Xk and (Xk, U), respectively. Csiszdr et al.>? f-divergences im-
ply that these indices are positive and equate to 0 when U and
Xk are independent. Also, given the formulation of SF % it is in-
variant under any smooth and uniquely invertible transformation
of the variables Xx and U (Kraskov et al.%7). This has an ad-
vantage over Sobol sensitivity indices which are invariant under
linear transformations.

By substituting the different formulations of F in equation 16,
Da Veiga®®’s work claims to be the first in establishing the link
that previously proposed sensitivity indices are actually special
cases of more general indices defined through Csiszar et al. >®’s
f-divergence. Then equation 16 changes to estimation of ratio
between the joint density of (X, U) and the marginals, i.e -

1 1
st =] F x, u)dxdu = & F(————
Xe Lzz (r(X,u))pxk,u( u)dxdu = &x,,u) (r(Xk,U))

an
were, r(X,y) = (px,,u(x, u))/(pu(u)px,(x)). Multivariate ex-
tensions of the same are also possible under the same formula-
tion.

Finally, given two random vectors X € RP and Y € RY, the de-
pendence measure quantifies the dependence between X and Y
with the property that the measure equates to O if and only if
X and Y are independent. These measures carry deep links (Se-
jdinovic et al. ) with distances between embeddings of distribu-
tions to reproducing kernel Hilbert spaces (RHKS) and here the
related Hilbert-Schmidt independence criterion (HSIC by Gretton
et al. °8) is explained.

In a very brief manner from an extremely simple introduction
by Daumé II1%° - "We first defined a field, which is a space that
supports the usual operations of addition, subtraction, multipli-
cation and division. We imposed an ordering on the field and
described what it means for a field to be complete. We then de-
fined vector spaces over fields, which are spaces that interact in
a friendly way with their associated fields. We defined complete
vector spaces and extended them to Banach spaces by adding a
norm. Banach spaces were then extended to Hilbert spaces with
the addition of a dot product.” Mathematically, a Hilbert space
‘H with elements r, S € H has dot product (r, s}y and r-s. When
‘H is a vector space over a field F, then the dot product is an el-
ement in F. The product (r,s)y follows the below mentioned
properties when r,s,t € H and for alla € F -

e Associative : (ar)-s = a(r-s)
e Commutative : r-S =5-r
e Distributive : r-(s+t) =r-s+r-t

Given a complete vector space V with a dot product (-, -), the
norm on V defined by ||r||y = \/Z(r, r)) makes this space into a
Banach space and therefore into a full Hilbert space.
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A reproducing kernel Hilbert space (RKHS) builds on a Hilbert
space H and requires all Dirac evaluation functionals in H are
bounded and continuous (on implies the other). Assuming H
is the £ space of functions from X to R for some measurable
X. For an element X € X, a Dirac evaluation functional at x is a
functional éx € H such that 6x(g) = g(x). For the case of real
numbers, X is a vector and g a function which maps from this
vector space to R. Then 8 is simply a function which maps g to
the value g has at x. Thus, 6x is a function from (R" — R) into
R.

The requirement of Dirac evaluation functions basically means
(via the Riesz 70 representation theorem) if ¢ is a bounded linear
functional (conditions satisfied by the Dirac evaluation function-
als) on a Hilbert space H, then there is a unique vector £ in A such
that ¢g = (g, L)y for all £ € H. Translating this theorem back into
Dirac evaluation functionals, for each éx there is a unique vector
kx in H such that 6xg = g(x) = (g, kx)#. The reproducing ker-
nel K for H is then defined as : K(X, x”) = (kx, kx’), were kx and
kx' are unique representatives of §x and 8x’. The main property
of interest is (g, K(X, x"))# = g(x’). Furthermore, Ky is defined
to be a function y — K(X, y) and thus the reproducibility is given
by (K(x, ), K(y, ))n = K(x,y).

Basically, the distance measures between two vectors represent
the degree of closeness among them. This degree of closeness is
computed on the basis of the discriminative patterns inherent in
the vectors. Since these patterns are used implicitly in the dis-
tance metric, a question that arises is, how to use these distance
metric for decoding purposes?

The kernel formulation as proposed by Aizerman et al. 0, is
a solution to our problem mentioned above. For simplicity, we
consider the labels of examples as binary in nature. Let X; € R",
be the set of n feature values with corresponding category of the
example label (y;) in data set D. Then the data points can be
mapped to a higher dimensional space H by the transformation
¢:
P:xeRT— P(X)EH (18)

This H is the Hilbert Space which is a strict inner product space,
along with the property of completeness as well as separability.
The inner product formulation of a space helps in discriminat-
ing the location of a data point w.r.t a separating hyperplane in
‘H. This is achieved by the evaluation of the inner product be-
tween the normal vector representing the hyperplane along with
the vectorial representation of a data point in /. Thus, the idea
behind equation( 18) is that even if the data points are nonlin-
early clustered in space R", the transformation spreads the data
points into H, such that they can be linearly separated in its range
inH.

Often, the evaluation of dot product in higher dimensional
spaces is computationally expensive. To avoid incurring this cost,

the concept of kernels in employed. The trick is to formulate ker-
nel functions that depend on a pair of data points in the space
R", under the assumption that its evaluation is equivalent to a
dot product in the higher dimensional space. This is given as:

K(Xi, Xj) =< ¢(x1), p(x;) > 19

Two advantages become immediately apparent. First, the eval-
uation of such kernel functions in lower dimensional space is
computationally less expensive than evaluating the dot product
in higher dimensional space. Secondly, it relieves the burden of
searching an appropriate transformation that may map the data
points in R to H. Instead, all computations regarding discrimi-
nation of location of data points in higher dimensional space in-
volves evaluation of the kernel functions in lower dimension. The
matrix containing these kernel evaluations is referred to as the
kernel matrix. With a cell in the kernel matrix containing a ker-
nel evaluation between a pair of data points, the kernel matrix is
square in nature.

As an example in practical applications, once the kernel has
been computed, a pattern analysis algorithm uses the kernel func-
tion to evaluate and predict the nature of the new example using
the general formula:

f2) = <w,¢(@)>+b

N
= <D aixyix¢(x), ¢(2) > +b
i=1
N
= D aixyix <¢(x), ¢(2) > +b
i=1

N
= Zai X yixK(Xi,2)+b
i=1

(20

where w defines the hyperplane as some linear combination of
training basis vectors, Z is the test data point, y; the class label
for training point X;, a; and b are the constants. Various trans-
formations to the kernel function can be employed, based on the
properties a kernel must satisfy. Interested readers are referred
to Taylor and Cristianini”! for description of these properties in
detail.

The Hilbert-Schmidt independence criterion (HSIC) proposed
by Gretton et al. >8 is based on kernel approach for finding depen-
dences and on cross-covariance operators in RKHS. Let X € X
have a distribution Px and consider a RKHS A of functions
X — R with kernel kyx and dot product (-,:) 4. Similarly, Let
U € Y have a distribution Py and consider a RKHS B of func-
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Fig. 8 A geometrical interpretation of mapping nonlinearly separable
data into higher dimensional space where it is assumed to be linearly
separable, subject to the holding of dot product.

tions U — R with kernel kg and dot product (:,-). Then the
cross-covariance operator Cx,y associated with the joint distribu-
tion Pxy of (X, U) is the linear operator B — A defined for every
ac€Aand beBas -

{(a, Cxub)a =Exula(X), b(U)] - Exa(X)Eub(U) (21)

The cross-covariance operator generalizes the covariance ma-
trix by representing higher order correlations between X and U
through nonlinear kernels. For every linear operator C : B — A
and provided the sum converges, the Hilbert-Schmidt norm of C
is given by -

IICI13s = Zk,({ak, Cbi) 4 (22)

were dk and b are orthonormal bases of A and B, respectively.
The HSIC criterion is then defined as the Hilbert-Schmidt norm
of cross-covariance operator -

lICxull?s =

Ex,x,u,urkx (X, X )ky (U, U")+
Ex,x kx (X, X" )eu,u ku (U, U")—
2&x,y[Exkx (X, X")eurky (U, U]

HSIC(X, U) 4 5 = (23)

were the equality in terms of kernels is proved in Gretton et al. 8.
Finally, assuming (X;, U;) (i=1,2,...,n) is a sample of the ran-
dom vector (X, U) and denote Ky and K, the Gram matrices with

16 | 1-31

entries Kx (i, j)) = kx (Xi, Xj) and Ky (i, j) = ky(U;, Uj). Gretton
et al. °® proposes the following estimator for HSICp (X, U) 4.5 -

1
HSIC (X, U) 4.5 = — Tr(KxHKyH) (24)

were H is the centering matrix such that H(i,j) = 6;;— % Then
HSICp (X, U) 4,5 can be expressed as -

S0k (Xi, Xpku (Ui, U))

HSIC(X, U)as=3 +aZlioq kX X)) 72 2]
_%zyzl[lz;':lkx(x[,x,-)

n

ky (Ui, Uj)
n
Finally, Da Veiga>® proposes the sensitivity index based on dis-
tance correlation as -

HSIC
Sx, " =RXk,U)as (26)

were the kernel based distance correlation is given by -

, HSIC(X,U) 4,5
Re(X,U)aB= 7)
V(HSIC(X, X) 4, AHSIC(U, U),5)

were kernels inducing .A and B are to be chosen within a universal
class of kernels. Similar multivariate formulation for equation 24
are possible.

10.3 Choice of sensitivity indices

172 and Iooss and

The SENSITIVITY PACKAGE (Faivre et a
Lemaitre?2) in R langauge provides a range of functions to com-
pute the indices and the following indices will be taken into ac-

count for addressing the posed questions in this manuscript.

1. sensiFdiv - conducts a density-based sensitivity analysis
where the impact of an input variable is defined in terms
of dissimilarity between the original output density function
and the output density function when the input variable is
fixed. The dissimilarity between density functions is mea-
sured with Csiszar f-divergences. Estimation is performed
through kernel density estimation and the function kde of
the package ks. (Borgonovo>3, Da Veiga>®)

2. sensiHSIC - conducts a sensitivity analysis where the im-
pact of an input variable is defined in terms of the distance
between the input/output joint probability distribution and
the product of their marginals when they are embedded in
a Reproducing Kernel Hilbert Space (RKHS). This distance
corresponds to HSIC proposed by Gretton et al. °8 and serves
as a dependence measure between random variables.

3. soboljansen - implements the Monte Carlo estimation of the
Sobol indices for both first-order and total indices at the

SEL ku(Ug, U]

(25)
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same time (all together 2p indices), at a total cost of (p+2)
x n model evaluations. These are called the Jansen estima-
tors. (Jansen“® and Saltelli et al. 41)

4. sobol2002 - implements the Monte Carlo estimation of the
Sobol indices for both first-order and total indices at the
same time (all together 2p indices), at a total cost of (p+2)
xn model evaluations. These are called the Saltelli esti-
mators. This estimator suffers from a conditioning problem
when estimating the variances behind the indices computa-
tions. This can seriously affect the Sobol indices estimates
in case of largely non-centered output. To avoid this ef-
fect, you have to center the model output before applying
"sobol2002". Functions ”soboljansen" and "sobolmartinez"
do not suffer from this problem. (Saltelli3>)

5. s0bol2007 - implements the Monte Carlo estimation of the
Sobol indices for both first-order and total indices at the
same time (all together 2p indices), at a total cost of (p+2)
x n model evaluations. These are called the Mauntz estima-
tors. (Saltelli et al. #1)

6. sobolmartinez - implements the Monte Carlo estimation of
the Sobol indices for both first-order and total indices using
correlation coefficients-based formulas, at a total cost of (p
+ 2) x n model evaluations. These are called the Martinez
estimators.

7. sobol - implements the Monte Carlo estimation of the Sobol
sensitivity indices. Allows the estimation of the indices of
the variance decomposition up to a given order, at a total
cost of (N + 1) x n where N is the number of indices to
estimate. (Sobol’21)

11 Optimization and Support Vector Ma-
chines

Aspects of SVMs from Sinha’? are reproduced for completeness.

11.1 Optimization Problems

11.1.1 Introduction

The main focus in this section is optimization problems, the con-
cept of Lagrange multipliers and KKT conditions, which will be
later used to explain the details about the SVMs.

11.1.2 Mathematical Formulation

Optimization problems arise in almost every area of engineering.
The goal is to achieve an almost perfect and efficient result, while
carrying out certain procedures of optimization. Our main source
of reference on this topic derives from Bletzinger’4. We will be

using notations used in Bletzinger’4. In mathematical terms the

general form of optimization problem can be represented as :
minimize
such that

f(x); xeR"
gj(x) <0;j=1,..p
hi(x)=0;j=1,...q.

(28)

where f, gj and hj are the objective function, equality constraints
and inequality constraints. Generally, the number of constraints is
less than the number of variables used to formulate the optimiza-
tion problem. For a problem to be linear, both the constraints
and the objective function need to be linear. Quadratic problems
require only the objective function to be quadratic, while the con-
straints remain linear in formulation. Besides these, if any one of
the functions is nonlinear, then the problem becomes nonlinear in
nature. A graphical view of the types of the problems can be seen
in fig. 9).

£ = constant and a quadrati
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| /)( — N
NN T\
| N N ". NN
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_ [ =constant

‘. _— ‘ -
g f o~
L B
\ ™ [ N
\ ™ I
L AN L N
1 . N | - .
| - N
. \ V- ANy
T RN 1 D
| N \ ™, A
. N
' E— e N -
g2 ]

Noulinear problem with linear constraints Noulinear problem with nonlinear constraints

Fig. 9 Kinds of optimization problems.

11.1.3 Lagrange Multipliers

In unconstrained optimization problems, where the first order
derivatives are assumed continuous, the solution is found by solv-
ing:

of

Vxf=—=0;i=1,....n.

29
90X

where f is a function of X. Since most of the optimization prob-
lems are constrained, the concept of Lagrange multipliers is in-
troduced in order to solve the problem. Thus, the Lagrangian
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formulation, for Eqn. 28 becomes:

p q
LA, 1) =F(0) + Y Ajgi(0) + Y wihi(x)  (30)
j=1 j=1

where L is the Lagrangian, A and u are the vectors of the La-
grange multipliers for inequality and equality constraints, respec-
tively.

Next comes the solving of the Lagrangian. We try to derive a
solution in terms of variables used and show that the final solu-
tion achieved by Equ. 28 and Eqn. 30 remains the same. For the
sake of derivation, we assume that each of the vectors X, A and
U have a single element and also there exists a single optimal so-
lution. We will then generalize the solution to vectors containing
various elements. Let X *, A* and U™ be the optimal solution for
the Lagrangian. Let x' be the optimal solution for f(x). To begin
with, our Lagrangian has the form:

LOx, A, 1) =f(x)+Ag(x)+uh(x) (31)

Derivation:

e Step 1: Differentiate the Lagrangian in Eqn 31 w.r.t X and

equate it to zero.
aL 9 2 oh
= —f )\—g u—=20 (32)
X

ax  ax  ax
e Step 2: Find X in terms of A and y, such that x = X(A, u).

e Step 3: Differentiate the Lagrangian in Eqn. 31 w.r.t A and
equate it to zero.
oL

e gx)=0 (33)

e Step 4: Differentiate the Lagrangian in Eqn 31 w.r.t y and

equate it to zero.

oL
—=h(x)=0 (34)
ou

e Step 5: Substitute x(A, u) in Equ. 33 and Eqn. 34 to get
two equations in two unknowns A and u and solve to get
the optimal values.

gx(A,u))=0 (35)
h(x(A,u))=0 (36)

Let A*, u* be the solution.
X(A, 1), we get X *.

Substituting these in x =

e Step 6: Combining Eqn. 33 and Eqgn. 34 in Eqn. 31, along

18 | 1-31

with A*, u* and x*, we have:

Lo A, u*)=f(x*)+A*g(x*)+u*h(x*) =f(x*)
37
Since, it is assumed that there exist only one optimal solu-
tion we have:

L(x*, A%, u*) fOx*)=f(x")
x* = X!

(38)

Lastly, since g(x) in Eqn. 33 is a inequality constraint, we have:

Ag(x)=0

A>0 (39

11.1.4 Dual Functions

For sake of simplicity, let us for a moment ignore the equality
constraint. Then the Lagrangian becomes:

LOGA, @) =f(Xx)+Ag(x). (40)

It is sometimes easy to transform the Lagrangian into a simpler
form, in order to find an optimal solution. We can represent the
Lagrangian as a Dual function in such a manner that the optimal
solution defined as minimum of L(X,A*) w.r.t X where A = A*,
can be represented as the maximum of dual function D(A) w.r.t
A. For a given A, the dual is evaluated by finding the minimum of
L(x, A) w..t X. Thus to find the optimal point we evaluate:

m)gx D()\)=mxin L(x,A™*) (41)

So the basic steps to solve the dual problem are as follows: Step
1: Minimize L(X,A) w.r.t X, and find X in terms of A. Step 2:
Substitute x(A) in L s.t. D(A) =L(x(A),A). Step 3: Maximize
D(A) w.rt A.

11.1.5 Karush Kuhn Tucker Conditions

The derivation in the last part (Eqn. 31 to Eqn. 39)gives us a set
of equations that need to be evaluated along with the considera-
tion of constraints present. These set of equations and constraints
in terms of the Lagrangian, form the Karush Kuhn Tucker Condi-
tions. We give here the generalized KKT conditions and explain
the necessary details.

aL _ of 4] 9g) P ohj _ .
%—a_xl'i'zlzl)\]a_xj"kzj:luja—le—o i=1,...,n
7 =0i(x)=0 P j=1...p
oL . | —

w =hix)=0 : j'—l,...,q
Ajgi=0 o j=1,...,p
)\120 : j=1,,[(342)

where L is Eqn. 30.
The KKT conditions specify a few points which are as follows:
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1. The first line states that the linear combination of objective
and constraint gradients vanishes.

2. A prerequisite of the KKT conditions is that the gradients
of the constraints must be continuous (evident from second
and third lines in Eqn. 42).

3. The last two lines in Eqn. 42 state that at optimum either the
constraints are active or the constrains are inactive.

11.2 Support Vector Machines

Armed with the knowledge of optimization problems and concept
of Lagrange multipliers, we now delve into the workings of sup-
port vector machines. Burges’® provides a good introduction to
SVMs and is our main reference. Interested readers should refer
to Cristianini and Shawe-Taylor”®, Schélkopf and Smola’’ and
Vapnik and Vapnik 78 for detailed references.

11.2.1 Separable Case

Let us suppose that we are presented with a data set that is
linearly separable. We assume that there are m examples of
data in the format {x;, y;}, s.t. X;€R"; i = 1,....,m, where
yi € {—1, 1} is the corresponding true label of x;. We also sup-
pose there is an existence of a linear hyperplane in the n dimen-
sional space that separates the positively labeled data from the
negatively labeled data. Let this separating hyperplane be given
by

w-x+b=0. (43)

where, w is the normal vector L to the hyperplane and |b|/||w||
is the shortest perpendicular distance of the hyperplane to the
origin. ||wl]| is the Euclidean norm of w. The margin of a hyper-
plane is then defined as the minimum of the distance of the pos-
itively and negatively labeled examples, to the hyperplane. For
the linear case, the SVM searches for the hyperplane with largest
margin. We now have three conditions, based on the location of
an example X; w.r.t the hyperplane:

w-Xi+b=0 example lying on the hyperplane. (44)
w-X;+b>+1 positively labeled example. (45)
w-X;+b<-1 negatively labeled example. (46)

Combining the equality and the two inequalities we have:
yi(w-xi+b)—-12>0 47

Since the SVMs search for the largest margin, we now try to
find a mathematical expression of the margin. Considering the
examples that satisfy equality in Eqn. 45, the distance of the clos-
est positive example can be expressed as |1 — b|/||w]|. Similarly,
considering the negative examples that satisfy equality in Eqn. 46,

. Positive Example
& Negative Example
% Support Vectors

Normal Vector w

&
N N Separating Hyperplane
. N N N EEN N N R /
b e\ & -
liwll | AN
Origin @ - X \/)
® o o ~

Margin = 2/liwll

Fig. 10 Linear hyperplane for separable data. Adapted from Burges (A
Tutorial on Support Vector Machines)

the distance of the closest negative example can be expressed as
|—1—>b]|/||w||. On summation of the two shortest distances, we
get the margin of the hyperplane as 2/||w||. Since the labels are
{—1, 1}, no example lies inside the hyperplanes representing the
margin in this case. Taking into account that the SVM searches for
the largest margin, we can say that it can be achieved by minimiz-
ing ||w]|2, subject to the constraints in Eqn. 47. Examples lying
on the hyperplanes of the margins are termed support vectors, as
their removal would change the margin and thus the solution.
Figure 10 represents the conceptual points about separating hy-
perplanes.

11.3 Lagrangian Representation: Separable Case

Clearly, the previous paragraph shows that finding the margin is a
problem of optimization as the goal is to minimize ||w||? subject
to constraints in Eqn. 47. Employing the ideas of Chapter 3, the
Lagrangian for the above problem, is:

1 m m
L(w, b, @)=~ [l = > awyi(xi-w+b)+ 3 o (48)
i=1 i=1

where %llwll2 is the objective function, a is the Lagrangian mul-
tiplier and the Eqn. 47 is the inequality constraint. Since the min-
imization of the objective function is required, we employ the
ideas of the derivation of KKT conditions (Eqn. 42) to Eqn. 48.
In short, we would require the L(w, b, @) to be minimized w.r.t w
and b and also require its derivative w.r.t all a;’s to vanish. Thus
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the KKT conditions take the form:

aavl;j =wj— Zzai)/ixij= 0 j=1,..,n
glLD lml aiyi=0 : i=1,..,m
ag‘ = Z, 1yl(xl W+b)+z =0 : i=1,..m
ai(yi(xi*w+b)-1)=0 : i=1,..m
a; =0 : i=1,..m
(49)

Thus solving the SVMs is equivalent to solving the KKT conditions.
While w is determined by the training set, b can be found by
solving the penultimate equation in Eqn. 49 for which a; # 0.
Also note that examples that have a; # 0 form the set of support
vectors.

The dual problem for the same Lagrangian is:
1
D= Zai -3 Zaiaj)’i)/jxi - Xj (50)
7 0

Solving for Eqn. 50 requires maximization of D w.r.t a;, subject
to second line of Eqn. 49 and positivity of a;, with the solution
given by first line of Eqn. 49.

To classify or predict the label of a new example Xpew, the
SVM has to evaluate (Xpew +W + b) and check the sign of the
evaluated value. A positive sign would lead to assignment of a
+1 label and a negative sign to —1.

11.4 Nonseparable Case

For many classification problems, the data present is nonsepara-
ble. To extend the idea to nonseparable case, some amount of
cost is added, which takes care of particular cases of examples.
This is achieved by introducing slack in the constraints Eqn. 45
and Eqn. 46 (Burges’®, Vapnik and Vapnik’8). The equations
then becomes

wW:-Xi+b>1-§; positively labeled example. (51)

w-X;+b<-14+§; negatively labeled example. (52)

For an error to occur, the §; value must exceed unity. To take care
of the cost of errors, a penalty is introduced which changes the
objective function from ||w]|2/2 to ||w||2/2 + C(Zi&)k. Thus
Z(E,' represents the upper bound on the training error. For
quadratic problems, k can be 1 or 2.

11.5 Lagrangian Representation: Nonseparable Case

Since the formulation of the Lagrangian and its dual follow the
same procedure, as mentioned before, we only mention the equa-
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. Positive Example
® . Negative Example
% Support Vectors

% Positive example on
opposite side

Normal Vector w

N Separating Hyperplane
° L a
i @
Origin R /
® ® N
Margin = 2/liwll

Fig. 11 Linear hyperplane for nonseparable data. Adapted from Burges
(A Tutorial on Support Vector Machines)

tions. The Lagrangian for nonlinear nonseparable case is:

L(w,b,a&) = _”""”2+C25‘ Zal{y,(x, w+b)
i=1 i=1
m
—1+&} - D uiEi (53)
i=1
The corresponding KKT conditions are:
aav%/, =Wj— 2 0yiXj=0 ji=1....n
a———Z( 10yi=0 i=1,....m
(;%—yl(xl WHb)-1+E=0 : i=1,..,m
& =C-ai—pi=0 i=1,...,m
; ; 54)
ai{yi(xi-wW+b)—1+&} =0 i=1,...m
Mi&i=0 i=1,....m
a;i =0 i=1,...,m
&=0 i=1,....,m
Hi=0 i=1,...,m

The dual formulation k = 1 for the Lagrangian just discussed is:
1
D= Z aj— 5 Z AiOGY Y Xi* X (55)
7 0

All the previous conditions remain same, except that the La-
grangian multiplier a; now has a upper bound of value C. The
solution for the dual is given by w= Zf\lzsl aiyiX;. Ns is the num-
ber of support vectors. Figure 11 depicts the nonseparable case.
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11.6 Kernels and Space Dimensionality Transformation

The above cases were for linear separating hyperplanes. In or-
der to generalize for nonlinear cases, Boser et.al”® employed the
idea of Aizerman® as follows; Since the Dual in Eqn. 55 and
its corresponding constraint equations employ the dot product of
the examples, X; - X;, it was proposed to map the data in a higher
dimensional space using a function ¢ s.t. the algorithm would de-
pend only on dot products in the higher space. Next, the existence
of a function called kernel, dependent on X; and X;, was assumed
s.t. the value reported by the kernel was equal to the value re-
sulting from the dot product in the higher space. A mathematical
representation of the above concept is -

¢:R"—H (56)

K(xi, %) = ¢(xi) - (X)) (57)

where H is a higher dimensional space.

This technique drastically reduces the amount of work required
while dealing with nonlinear separating hyperplanes, concerning
search for appropriate ¢. Instead, one only works with K(x;, X;),
in place of X;- X;. For classification purpose, where the sign of the
function (Xpew - W + b) is evaluated, the formulation employing
kernels become:

fXnew) = (W-Xpew+Db)

Y aiyip(s0): (Xnew) +b (58)
20, OiyiK(si, Xnew) +b

where s; are the support vectors.
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Fig. 16 FdivChi2; Training sample size - 4; Test sample size - 16; Case - Normal
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Fig. 18 HSIClaplace; Training sample size - 4; Test sample size - 16; Case - Normal
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Fig. 20 HSICrbf; Training sample size - 4; Test sample size - 16; Case - Normal
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