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Abstract

It is well known that auditory nerve (AN) fibers overcome bandwidth limitations

through the “volley principle”, a form of multiplexing. What is less well known is that

the volley principle introduces a degree of unpredictability into AN neural firing

patterns which makes even simple stimulus categorization tasks difficult. We use a

physiologically grounded, unsupervised spiking neural network model of the auditory
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brain with STDP learning to demonstrate that plastic auditory cortex is unable to learn

even simple auditory object categories when exposed to the raw AN firing input without

subcortical preprocessing. We then demonstrate the importance of non-plastic

subcortical preprocessing within the cochlear nucleus (CN) and the inferior colliculus

(IC) for stabilising and denoising AN responses. Such preprocessing enables the plastic

auditory cortex to learn efficient robust representations of the auditory object

categories. The biological realism of our model makes it suitable for generating

neurophysiologically testable hypotheses.

Author Summary

Introduction 1

The hierarchy of the auditory brain is complex, with numerous interconnected 2

subcortical and cortical areas. While a wealth of neural response data has been 3

collected from the auditory brain [1–3], the role of the computations performed within 4

these areas and the mechanism by which the sensory features of auditory objects are 5

transformed into higher-order representations of object category identities are yet 6

unknown [4]. How does the auditory brain learn robust auditory categories, such as 7

phoneme identities, despite the large acoustical variability exhibited by the raw auditory 8

waves representing the different auditory object exemplars belonging to a single 9

category? How does it cope once this variability is further amplified by the spike time 10

stochasticity inherent to the auditory nerve (AN) when the sounds are encoded into 11

neuronal discharge patterns within the inner ear? 12

One of the well accepted theories explaining the information encoding operation of 13

the AN is the so called “volley principle” [5]. It states that groups of AN fibers with a 14

similar frequency preference tend to phase-lock to different randomly selected peaks of a 15

simple sinusoidal sound wave when the frequency of the sinusoid is higher than the 16

maximal frequency of firing of the AN cells. This allows the AN to overcome its 17

bandwidth limitations and represent high frequencies of sound through the combined 18

frequency of firing within groups of AN cells. It has not been considered before, however, 19

that the information encoding benefits of the volley principle may come at a cost. Here 20
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we suggest that this cost is the addition of the so called “spatial jitter” to the AN firing. 21

It is useful to think of the variability in AN discharge patterns as a combination of 22

“temporal” and “spatial jitter”. Temporal jitter arises when the AN fiber propensity to 23

phase lock to temporal features of the stimulus is degraded to a greater or lesser extent 24

by poisson-like noise in the nerve fibers and refractoriness [6]. “Spatial jitter” refers to 25

the fact that neighbouring AN fibers have almost identical tuning properties so that an 26

action potential that might be expected at a particular fiber at a particular time may 27

be observed in one of the neighbouring fibers [5]. In this paper we argue that space and 28

time jitter obscure the similarities between the AN spike rasters in response to different 29

presentations of auditory stimuli belonging to the same class, thus impeding auditory 30

object category learning. 31

The reason why we believe that excessive amount of jitter in the AN can impair 32

auditory object category learning in the auditory cortex is the following. Previous 33

simulation work has demonstrated that one way category learning can arise in 34

competitive feedforward neural architectures characteristic of the cortex is through the 35

“continuous transformation” (CT) learning mechanism [7,8]. CT learning is a 36

biologically plausible mechanism based on Hebbian learning, which operates on the 37

assumption that highly similar, overlapping input patterns are more likely to be 38

different exemplars of the same stimulus class. CT learning then binds these similar 39

input patterns together onto the same subset of higher stage neurons, which, thereby, 40

learn to be selective and informative about their learnt preferred stimulus class. The CT 41

learning principle is a biologically plausible mechanism for learning object 42

transformation orbits as described by [9]. CT learning breaks when the similarity 43

between the nearest neighbour exemplars within a stimulus class become approximately 44

equal to the similarity between the nearest neighbour exemplars in different stimulus 45

classes. A more detailed description of CT learning is provided in the Materials and 46

Methods section. 47

In this paper we argue that the additional spike time variability introduced in the 48

AN input representations of the different exemplars belonging to a single auditory 49

object class break CT learning. We show this by training a simple biologically realistic 50

feedforward spiking neural network model of the auditory cortex with spike timing 51

dependent plasticity (STDP) learning [10] to perform simple categorisation of two 52
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synthesised vowel classes using raw AN firing as input (AN-A1 model shown in Fig. 1B). 53

We show that such a model is unable to solve this easy categorisation task because the 54

reproducibility of AN firing patterns for similar stimuli necessary for CT learning to 55

operate is disrupted by the multiplexing effects of the volley principle in the AN. 56

Fig 1. Schematic representation of the full AN-CN-IC-A1 (A), the reduced AN-A1 (B)
and the simple four-stage (C) models of the auditory brain. Blue circles represent
excitatory (E) and red circles represent inhibitory (I) neurons. The connectivity within
each stage of the models is demonstrated using one excitatory cell as an example: E→I
connection is shown in black, I→E connections are shown in red. feedforward
connections between the last two stages of each model are modifiable through STDP
learning. AN - auditory nerve; CN - cochlear nucleus with three subpopulations of cells:
chopper (CH), primary-like (PL) and onset (ON), each exhibiting different response
patterns by virtue of their distinct connectivity; IC - inferior colliculus; A1 - primary
auditory cortex.

This observation has led us to believe that an extra preprocessing stage was 57

necessary between the AN and the plastic A1 in order to reduce the jitter (noise) found 58

in the temporal and spatial distribution of AN spikes in response to the different 59

exemplars of the same auditory stimulus class. This reduction in jitter would be 60
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necessary to enable the plastic auditory cortex to learn representations of auditory 61

categories through CT learning. We hypothesised that this preprocessing could happen 62

in the intermediate subcortical stages of processing in the auditory brain, such as CN 63

and IC, whereby the essential contribution of the precise microarchitecture and 64

connectivity of the CN and IC would be to help de-jitter and stabilise the AN firing 65

patterns, thereby enabling the plastic cortical area A1 to develop informative 66

representations of vowel categories through CT learning. 67

We tested our hypothesis by comparing the performance of a biologically realistic 68

four stage hierarchical feedforward spiking neural network model of the auditory brain 69

incorporating both subcortical (AN, CN, IC) and cortical (A1) stages (full 70

AN-CN-IC-A1 model shown in Fig. 1A) to the performance of two models that either 71

omitted areas CN and IC (reduced AN-A1 model shown in Fig. 1B), or had the same 72

number of processing stages as the full AN-CN-IC-A1 model, but lacked the precise CN 73

and IC microarchitecture and connectivity (simple four-stage model shown in Fig. 1C). 74

Our simulations demonstrated that both the reduced AN-A1 and simple four-stage 75

models significantly underperformed the full AN-CN-IC-A1 model on the two vowel 76

classification task. 77

The contributions of this work are two-fold: 1) it shows how simple, local synaptic 78

learning rules can support unsupervised auditory category learning if, and only if, 79

stochastic noise introduced when sounds are encoded at the auditory nerve is dealt with 80

by auditory brainstem processes; 2) it provides a quantitative theoretical framework 81

which explains the diverse physiological response properties of identified cell classes in 82

the ventral cochlear nucleus and generates neurophysiologically testable hypotheses for 83

the essential role of the non-plastic CN and IC as the AN jitter removal stages of the 84

auditory brain. 85

Results 86

Quantifying Spike Jitter in the Auditory Nerve 87

In this paper we postulate that the reproducibility of AN firing patterns for similar 88

stimuli necessary for CT learning to operate is disrupted by the multiplexing effects of 89
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the volley principle in the AN. This is supported by a quantitative analysis of the 90

similarity/dissimilarity between AN firing patterns in response to vowel stimuli 91

belonging either to the same or different synthesised vowel classes (see Materials and 92

Methods for calculation details). Indeed, it was found that the AN spike rasters for 93

repeat presentations of the same exemplar of a vowel or of different exemplars of the 94

same vowel category were as dissimilar to each other as the AN responses to the vowels 95

from different vowel categories (see the AN scores in Tbl. 1). 96

/i:/ /a/ /i:/ and /a/
AN IC AN IC AN IC

Same Exemplar Index 0.45 0.9 0.57 1 - -
Different Exemplars Index 0.52 0.91 0.63 1 - -
Different Categories Index - - - - 0.42 0.67

Table 1. Similarity measure scores between the AN and IC spike rasters in response to:
(i) different presentations of the same exemplar of a stimulus (Same Exemplar Index),
(ii) different exemplars of the same stimulus class (Different Exemplars Index), and
different stimulus classes (Different Categories Index). Scores vary between 0 and 1,
with higher scores indicating higher levels of similarity and consequently low levels of
jitter.

Reduced AN-A1 Auditory Brain Model 97

We begin by presenting simulation results from the reduced AN-A1 spiking neural 98

network model of the auditory brain shown in Figure 1B, in which the intermediate CN 99

and IC stages were omitted (see Materials and Methods for model architecture details). 100

The input stage of the AN-A1 model is a highly biologically realistic AN model by [11], 101

and the output stage is a loose and simplified approximation of the A1 in the real brain. 102

We tested the ability of the AN-A1 model to learn robust representations of auditory 103

categories using a controlled yet challenging task, whereby twelve different exemplars of 104

each of two classes of vowels, /i:/ and /a/, were synthesised and presented to the 105

network (Fig. 2) (see Materials and Methods). The biologically plausible unsupervised 106

CT learning mechanism implemented through STDP within the AN→A1 afferent 107

connections was expected to enable the model to learn the two vowel categories (see 108

Materials and Methods for an overview of CT learning). In particular, we investigated 109

whether localist representations of auditory categories emerged, whereby individual 110

neurons would learn to respond selectively to all exemplars of just one preferred 111

stimulus class [12]. 112
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Fig 2. Schematic representation of twelve transforms of two synthesised vowels (/a/ -
blue, /i:/ - red) projected onto the two-dimensional plane defined by the first two
formants of the vowels. Each transform was generated by randomly sampling three
formant frequencies from a uniform 200 Hz distribution centered around the respective
average values reported by [13] for male speakers. It can be seen that the generated
vowel transforms are in line with the vowel distribution clouds produced from natural
speech of a single speaker [14]. All transforms were checked by human subjects to
ensure that they were recognisable as either an /a/ or an /i:/. The ellipses approximate
the 70% within-speaker variability boundary for a particular phoneme class.

The ability of the AN-A1 model to learn robust vowel categories depends on how it 113

is parameterized. A hyper-parameter search using a grid heuristic was, therefore, 114

conducted. Mutual information between the stimuli and the responses of singles cells 115

within the output A1 stage of the model was used to evaluate the performance of the 116

AN-A1 model on the vowel categorization task (see Materials and Methods). It was 117

assumed that the performance of the network changed gradually and continuously as a 118

function of its hyper-parameters, since learning in the real brain has to be robust to 119

mild variations in biological parameters. It was, therefore, expected that the best model 120

performance found through the grid parameter search would be a good approximation 121

of the true maximal model performance. The detailed description of the parameter 122

search can be found in Supplemental Materials. The following parameters were found to 123

result in the best AN-A1 model performance: LTP constant (αp) = 0.05; LTD constant 124

(αd) = -0.02; STDP time constants (τp/τd) = 15/25 ms; initialisation magnitude of 125

AN→ A1 connections (wBL
ij ) ∈ [30, 35] nA; level of inhibition in the A1 (wIE

ij ) = -6 nA. 126

PLOS 7/29

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 17, 2016. ; https://doi.org/10.1101/059428doi: bioRxiv preprint 

https://doi.org/10.1101/059428
http://creativecommons.org/licenses/by-nc-nd/4.0/


The performance of the best AN-A1 model found through the parameter search is 127

shown in Fig. 3 (solid dark blue line). The average information about the vowel class 128

identity among the top ten most informative A1 cells was 0.21 bits and the maximum 129

A1 information was 0.57 bits out of the theoretical maximum of 1 bit. This is not 130

enough to achieve good vowel recognition performance, even though a certain amount of 131

useful learning did occur in the reduced AN-A1 model as evidenced by more A1 132

information after training than before training, and more information in the A1 133

compared to the AN input (Fig. 3, dotted dark blue and solid red lines respectively). 134

Fig 3. Single cell information carried by cells in a specified model neural area during
the vowel classification task. The cells are ordered along the abscissa by their
informativeness. Maximum theoretical entropy for the task is 1 bit. It can be seen that
the output A1 neurons of the full AN-CN-IC-A1 spiking neural network model of the
auditory brain after training carry more information about the two vowel classes than
the input auditory nerve (AN) fibers, or the A1 cells of the reduced AN-A1 model,
simple four-stage model, or any of the models before training.

Removing Auditory Nerve Jitter 135

The reduced AN-A1 model was unable to learn the identities of the two vowel classes 136

through unsupervised CT learning implemented through STDP within the plastic 137

AN→A1 connections. Successful CT learning relies on the discovery of correlations, or 138
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“overlap”, in the neural representations of stimuli that belong to the same “object” or 139

stimulus class. We attribute the failure of the A1 neurons in the reduced model to 140

discover stimulus classes to the fact that the highly biologically realistic AN input to the 141

model contains large amounts of physiological noise or “space” and “time” jitter in the 142

spike times, which obscure the similarities between the AN spike rasters in response to 143

different stimuli belonging to the same vowel class. Since such similarities are necessary 144

for CT learning to operate, the output A1 stage of the reduced AN-A1 model was unable 145

to learn robust representations of the two vowel classes directly from the AN input. 146

Reducing time and space jitter in AN response spike rasters should aid unsupervised 147

learning in the auditory brain, and it can be achieved through the following 148

mechanisms: 1) information from a number of AN fibers with similar characteristic 149

frequencies (CFs) is integrated in order to remove space jitter; and 2) AN spike trains 150

for different cells are synchronised, whereby spikes are re-aligned to occur at set points 151

in time rather than anywhere in continuous time, thus removing time jitter. 152

We consider space and time jitter removal to be one of the key roles of the 153

subcortical areas CN and IC, whereby jitter reduction is initiated in the CN and 154

completed within the IC, as convergent inputs from different subpopulations of the CN 155

are integrated in such a way which facilitates effective stimulus classification by CT-like 156

learning mechanisms in subsequent stages, such as A1. We envisage the following 157

processes: 1) chopper (CH) cells within the CN remove space jitter; 2) onset (ON) cells 158

within the CN remove time jitter; 3) the IC produces spike rasters with reduced jitter in 159

both space and time by combining the afferent activity from the cochlear nucleus CH 160

and ON cells. 161

Space Jitter Removal 162

CH neurons in the CN are suitable for the space jitter removal task due to their afferent 163

connectivity patterns from the AN. Each CH cell receives a small number of afferent 164

connections from AN neurons with similar CFs [15]. The incoming signals are 165

integrated to produce regular spike trains. 166

In the full AN-CN-IC-A1 model shown in Fig. 1A, a CH subpopulation was 167

simulated by adding 1000 Class 1 neurons by [16] with Gaussian topological 168

connectivity from the AN, whereby each CH cell received afferents from a tonotopic 169
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region of the AN. A hyper-parameter search was conducted to maximise the space jitter 170

removal ability of CH neurons (see Supplemental Materials), and the following 171

parameter values were found to be optimal: Gaussian variance of the AN→CH afferent 172

connectivity (σ) = 26 cells; magnitude of the AN→CH afferent connections 173

(wBL
ij ) ∈ [30, 35] nA; within-CH inhibition (wIE

ij ) = 0 nA. The discharge properties of 174

the optimised CH cells corresponded closely to those reported experimentally for 175

biological CH neurons (Fig. 4, right column). 176

Fig 4. Spectra (computed as Fast Fourier Transforms of period histograms) of
primary-like (PL) (left column) and chopper (CH) (right column) cochlear nucleus
neuron responses to a synthetic vowel /a/ generated using the Klatt synthesiser [17].
The ordinate represents the level of phase-locking to the stimulus at frequencies shown
along the abscissa. Dotted lines show the positions of the vowel formant frequencies F1

and F2. Data from chinchilla CN fibers reproduced from [2] is shown in solid blue. Data
collected from the corresponding model CN fibers is shown in dashed red. Similarity
between the real and model fibers’ response properties suggests that the model’s
performance is comparable to the neurophysiological data.

Time Jitter Removal 177

Time jitter removal is thought to be facilitated by ON neurons in the CN. ON cells are 178

relatively rare, constituting approximately 10% of the ventral CN [18]. They have been 179

estimated to each receive connections from up to 65 AN fibers across a wide stretch of 180
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the cochlea, which results in broadly frequency tuned response properties [18]. These 181

cells are characterised by fast membrane time constants, which makes them very leaky, 182

with high spike thresholds. Consequently, ON cells require strong synchronisation from 183

many AN fibers with a wide range of CFs in order to produce a discharge [19]. The 184

cross frequency coincidence detection inherent to the ON cells makes them able to 185

phase-lock to the fundamental frequency (F0) of vowels, as supported by 186

neurophysiological evidence [20]. 187

We propose that the interplay between the converging ON and CH cell inputs to the 188

IC can reduce jitter in the neural representations of vocalisation sounds. Since ON cells 189

synchronise to the stimulus F0, they can introduce regularly spaced afferent input to 190

the IC. Such subthreshold afferent input would prime the postsynaptic IC cells to 191

discharge at times corresponding to the cycles of stimulus F0. If IC cells also receive 192

input from CH cells, then ON afferents will help synchronise CH inputs within the IC 193

by increasing the likelihood of the IC cells firing at the beginning of each F0 cycle. This 194

is similar to the encoding hypothesis described in [21]. 195

In the full AN-CN-IC-A1 model, a population of ON cells was simulated using 100 196

Class 1 neurons by [16] sparsely connected to the AN. A hyper-parameter search was 197

conducted to maximise the ability of ON neurons to synchronise to the F0 of the stimuli 198

(see Supplemental Materials), and the following parameter values were found to be 199

optimal: AN→ON afferent connection weight magnitudes (wBL
ij ) = 21 nA; sparseness of 200

AN-ON connectivity = 0.46 (54% of all possible AN-ON connections are non-zero); 201

within-ON inhibition magnitude (wIE
ij ) = -75 nA. 202

Full AN-CN-IC-A1 Auditory Brain Model 203

The full AN-CN-IC-A1 model of the auditory brain was constructed as shown in Fig. 1A 204

to test whether the addition of the subcortical stages corresponding to the CN and IC 205

would remove space and time jitter contained within the input AN firing rasters as 206

described above, and thus enable the output plastic cortical stage A1 to learn invariant 207

representations of the two vowel categories, /i:/ and /a/ (see Materials and Methods for 208

details of the model architecture). Similarly to the reduced AN-A1 model, the output 209

stage of the full AN-CN-IC-A1 model is a loose and simplified approximation of the A1 210
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in the real brain. 211

In the brain sub-populations of the CN do not necessarily synapse on the IC directly. 212

Instead, they pass through a number of nuclei within the superior olivary complex 213

(SOC). The nature of processing done within the SOC in terms of auditory object 214

recognition (rather than sound localisation), however, is unclear. The information from 215

the different CN sub-populations does converge in the IC eventually, and for the 216

purposes of the current argument we model this convergence as direct. The same 217

simplified connectivity pattern (direct CN-IC projections) was implemented by [22] for 218

their model of the subcortical auditory brain. 219

Apart from the CH and ON subpopulations described above, the CN of the full 220

AN-CN-IC-A1 model also contained 1000 primary-like (PL) neurons. PL neurons make 221

up approximately 47% of the ventral CN in the brain [1], suggesting that they might 222

play a significant role in auditory processing. Although their contribution to the 223

preprocessing of AN discharge patterns is perhaps less clear than that of the CH and 224

ON subpopulations, PL cells were included in the model architecture to investigate their 225

effect on auditory class learning. PL cells essentially transcribe AN firing in the 226

brain [1] and were, therefore, modelled using strong (wBL
ij =1000 nA) one-to-one 227

AN→PL afferent connections and no inhibition (wIE
ij =0 nA) within the PL area. The 228

discharge properties of the model PL neurons were found to correspond closely to those 229

reported experimentally (Fig. 4, left column). 230

A grid search heuristic was applied to the full AN-CN-IC-A1 model to find the 231

hyper-parameters that produce the best model performance on the two vowel category 232

learning task (see Supplemental Materials for details). Similarly to the reduced AN-A1 233

model, mutual information was calculated to evaluate the performance of the full 234

AN-CN-IC-A1 model. The following parameter values were found to result in the best 235

model performance: CH→IC (wBL
ij ) = 400 nA, PL→IC (wBL

ij ) = 400 nA and ON→IC 236

(wBL
ij ) = 3 nA connection magnitudes; the magnitude of the within-IC inhibition (wIE

ij ) 237

= 0 nA; the LTD magnitude of the IC→A1 connections (αd) = -0.015. 238

It was found that, unlike the reduced AN-A1 network, a well parameterized full 239

AN-CN-IC-A1 model of the auditory brain was able to solve the two vowel 240

categorization task by developing many A1 neurons with high levels of vowel class 241

identity information approaching the theoretical maximum of 1 bit (Fig. 3, pink). The 242
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vowel category information carried in the discharges of the A1 neurons of the full 243

AN-CN-IC-A1 model increased substantially during training (Fig. 3, dotted pink vs 244

continuous pink). Our results, therefore, indicated that the presence of the non-plastic 245

CN micro-architecture converging on the IC indeed helped the plastic A1 learn to 246

produce stimulus class selective responses. 247

Generalisation of Learning 248

We have demonstrated that the trained full AN-CN-IC-A1 model was capable of 249

correctly recognising different exemplars of vowels belonging to either vowel class /i:/ or 250

/a/, despite the high variability even between the input AN spike rasters in response to 251

the different presentations of the same vowel exemplar. It was possible, however, that 252

the model overfit the data and only learnt the particular vowel exemplars presented 253

during training, instead of exploiting the statistical regularities within the stimuli to 254

develop generalised representations of the two vowel classes. To test whether this was 255

the case, we synthesised twelve new exemplars for each of the two vowel classes /i:/ and 256

/a/. The formants of the new vowel stimuli were different to those used in the original 257

stimulus set. Each of the new vowels were presented to the network twenty times. It 258

can be seen in Fig. 3 (green) that many of the A1 cells of the full AN-CN-IC-A1 259

network trained on the original and tested on the new vowels reached high (up to 260

0.92 bits) levels of single cell information about the vowel class identity approaching the 261

theoretical maximum of 1 bit. This suggests that the network indeed learnt general 262

representations of vowel classes /i:/ and /a/, rather than overfitting by learning only 263

the particular vowel exemplars presented during training. 264

The Importance of CN and IC Microarchitecture and Connectivity 265

Having shown that, unlike the reduced AN-A1 model, the full AN-CN-IC-A1 model was 266

capable of learning robust representations of vowel class identities, we investigated next 267

whether the particular microarchitecture and connectivity of the subcortical stages CN 268

and IC was important for the improved AN-CN-IC-A1 model performance, and whether 269

the addition of the two subcortical stages was helpful due to their AN jitter removal 270

properties as hypothesised. 271

An additional simulation was run to confirm that the particular microarchitecture of 272
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the CN and its subsequent convergence on the IC, rather than the pure addition of 273

extra processing layers, improved the performance of the four stage AN-CN-IC-A1 274

model compared to the two stage AN-A1 model on the vowel class identity learning 275

task. To this accord, a simple four-stage fully connected model lacking the detailed CN 276

and IC microstructure and connectivity (see Fig. 1C, and Materials and Methods for 277

details) was constructed and evaluated using the original two vowel class learning 278

paradigm. Fig. 3 (teal) demonstrates that this simple four-stage network achieved very 279

little information about the identity of the vowel stimuli (no more than 0.28 bits). This 280

suggests that the pure addition of extra processing stages within a spiking neural 281

network model does not help with auditory category learning. Instead, the 282

pre-processing within the particular microarchitecture of the three subpopulations of 283

the CN followed by their convergence on the IC is necessary for such learning to occur. 284

The Importance of CN Subpopulations 285

In order to verify that each of the three CN subpopulations - CH, ON and PL - was 286

important for enabling the full AN-CN-IC-A1 network to learn robust representations of 287

vowel class identities, the performance of the model was evaluated when each of the CN 288

subpopulations was knocked out one by one. Every time one of the CN subpopulations 289

was eliminated from the model, the network parameters were re-optimised to find the 290

best possible classification performance by the new reduced model architecture. Tbl. 2 291

demonstrates that the removal of any of the three subpopulations of the CN resulted in 292

significantly reduced performance of the AN-CN-IC-A1 model on the vowel class 293

identity recognition task, thus suggesting the importance of all three CN subpopulations 294

in enabling auditory class learning. 295

Quantifying Jitter Removal in CN and IC 296

So far we have demonstrated that the precise microarchitecture and connectivity of the 297

CN and IC are important for enabling the full AN-CN-IC-A1 model to learn robust 298

representations of vowel class identities. Here we test whether the subcortical stages CN 299

and IC indeed remove AN jitter as originally hypothesised. To confirm this, we 300

compared the firing pattern similarity scores between the AN and IC (see Materials and 301

Methods for details). The scores varied between 0 and 1, with high scores indicating 302
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Chopper Onset Primary-Like A1 Information (bits)
Y Y Y 1
Y N Y 0.93
Y Y N 0.89
Y N N 0.81
N Y Y 0.36
N N Y 0.18
N Y N 0

Table 2. Maximum single cell information within the output A1 stage of the best
performing re-optimised full AN-CN-IC-A1 model when different CN subpopulations of
neurons (chopper, onset or primary-like) were selectively knocked out. Y and N indicate
that the relevant subpopulation is either present or absent, respectively. The theoretical
maximum for the single cell information measure for two auditory classes is 1 bit. The
maximum information is only achieved when all three subpopulations are present.

high levels of similarity between the corresponding spike rasters and, consequently, low 303

levels of jitter. The high Same Exemplar and Different Exemplars IC scores in Tbl. 1 304

suggest that the IC firing rasters in response to the different presentations of the same 305

vowel exemplar, or in response to the different exemplars of the same vowel category are 306

highly similar and hence are mostly jitter free. This is in contrast to the corresponding 307

AN scores, which are all significantly lower due to the space and time jitter. 308

Discussion 309

This work has demonstrated that spike-time jitter inherent to the auditory nerve (AN) 310

firing may prevent auditory category learning in the plastic cortical areas of the 311

auditory brain as evidenced by the poor performance of the reduced AN-A1 or the 312

simple four-stage spiking neural network models of the auditory brain on a controlled 313

and very simple vowel categorisation task. While past research suggested that input 314

spike jitter can be reduced by the intrinsic properties of spiking neural networks [23] 315

and STDP learning [24], such jitter reduction works on the scale of a few milliseconds, 316

rather than tens of milliseconds characteristic of the AN jitter. A jitter removal 317

preprocessing stage is, therefore, important in order to enable the plastic auditory 318

cortex to learn auditory categories. Here we have shown that the ventral cochlear 319

nucleus (CN) followed by the inferior colliculus (IC) are able to do just that. In 320

particular, we have demonstrated that chopper (CH) and onset (ON) subpopulations of 321

the CN and their subsequent convergence on the IC have the right connectivity and 322
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response properties to remove space and time jitter in the AN input respectively. 323

Our simulation results also demonstrated the importance of primary-like (PL) 324

neurons in the CN for enabling the auditory cortex to learn auditory categories. The PL 325

subpopulation simply transcribes AN firing and, therefore, is unlikely to play a role in 326

AN jitter removal. We are, therefore, still unsure what its role in auditory category 327

learning might be. It is possible that PL input is necessary to simply introduce a base 328

level of activation within the IC. Our simulations, nevertheless, have demonstrated that 329

the removal of any of the three subpopulations of the CN (CH, ON or PL) resulted in a 330

significant drop in maximum single cell information within the A1 stage of the trained 331

AN-CN-IC-A1 model (Tbl. 2). This suggests that the AN-CN-IC-A1 model has the 332

minimal sufficient architecture for learning auditory categories. 333

In this paper we hypothesised that the full AN-CN-IC-A1 model would utilise the 334

Continuous Transformation (CT) learning mechanism to develop stimulus class selective 335

response properties in the A1. For CT learning to be able to drive the development of 336

output neurons that respond selectively to particular vowel classes, the spike rasters in 337

the preceding neuronal stage in response to the different presentations of the same 338

exemplar of a vowel or of different exemplars belonging to the same vowel class must be 339

similar to each other. The presence of spike jitter at any stage of processing will destroy 340

these similarity relations needed for CT learning to operate. The firing pattern similarity 341

scores shown in Tbl. 1 demonstrated that the spike raster similarity/dissimilarity 342

relations required for CT learning to operate were restored in the IC compared to the 343

AN of the full AN-CN-IC-A1 model through the de-jittering preprocessing within the 344

CN and IC. This, in turn, enabled the plastic A1 of the full AN-CN-IC-A1 model to 345

learn vowel categorisation through the CT learning mechanism. The structurally 346

identical A1 layer of the reduced AN-A1 or the simple four-stage models failed to learn 347

from the unprocessed input AN firing patterns due to the space and time jitter breaking 348

the stable AN firing patterns that are necessary for CT learning by STDP to operate. 349

We hypothesised that space jitter in the AN was removed by CH neurons in the CN, 350

because anatomical studies suggested that CH neurons had the appropriate connectivity 351

from the AN for the task. Similar connectivity, however, is shared by the primary-like 352

with notch (PLn) subpopulation of the CN, suggesting that they may also take part in 353

AN space jitter removal. Neurophysiological evidence, however, suggests that the two 354
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cell types have different intrinsic properties [1, 25], and the response properties of the 355

CH stage of the AN-CN-IC-A1 model optimised for space jitter removal were found to 356

be more similar to those of the real CH rather than PLn cells (i.e. they do not 357

phase-lock to the stimulus). This suggests that CH cells are more likely to be important 358

for auditory category learning in the brain than PLn neurons. 359

The simplicity of the synthesised vowel stimuli and the small number of exemplars in 360

each stimulus class are not representative of the rich auditory world that the brain is 361

exposed to during its lifetime. The model, therefore, needs to be tested on higher 362

numbers of stimuli, as well as on more complex and more realistic stimuli, such as 363

naturally spoken whole words, in future simulation work. The two vowel classification 364

problem, nevertheless, was suitable for the purposes of demonstrating the necessity of 365

subcortical pre-processing in the CN and IC for preparing the jittered AN input for 366

auditory category learning in the cortex. The appropriateness of the task is 367

demonstrated by the inability of the reduced AN-A1 and the simple four-stage models 368

of the auditory brain to solve it. 369

We took inspiration from the known neurophysiology of the auditory brain in order 370

to construct the spiking neural network models described in this paper. As with any 371

model, however, a number of simplifying assumptions had to be made with regards to 372

certain aspects that we believed were not crucial for testing our hypothesis. These 373

simplifications included the lack of superior olivary complex or thalamus in our full 374

AN-CN-IC-A1 model, the nature of implementation of within-layer inhibition in both 375

the AN-A1 and AN-CN-IC-A1 models, and lack of top-down or recurrent connectivity 376

in either model. While we believe that all of these aspects do affect the learning of 377

auditory object categories to some extent, we also believe that their role is not crucial 378

for the task. Therefore, we leave the investigation of these effects for future work. 379

The full AN-CN-IC-A1 model described in this paper possesses a unique 380

combination of components necessary to simulate the emergent neurodynamics of 381

auditory categorization learning in the brain, such as biologically accurate spiking 382

dynamics of individual neurons, STDP learning, neurophysiologically guided 383

architecture and exposure to realistic speech input. Due to its biological plausibility, the 384

model can be used to make neurophysiologically testable predictions, and thus lead to 385

further insights into the nature of the neural processing of auditory stimuli. For 386
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example, one of the proposed future neurophysiological studies would compare the levels 387

of jitter in the real AN and IC in response to the same auditory stimuli, with the 388

expectation being that the level of jitter will be significantly reduced in the IC. 389

Materials and Methods 390

Stimuli 391

A stimulus set consisting of twelve exemplars of each of two vowels, /i:/ and /a/, was 392

generated using the Klatt synthesiser [17]. Each 100 ms long sound was created by 393

sampling each of the three vowel formants from a uniform 200 Hz distribution centered 394

around the corresponding formant frequency as reported by [13] for male speakers. The 395

variability in formant frequencies among the twelve stimulus exemplars was consistent 396

with the range of variation present in natural human speech as demonstrated in Fig. 2. 397

Furthermore, informal tests showed that greater variation in vowel formant frequencies 398

resulted in vowel exemplars that sounded perceptually different to /i:/ or /a/. A 399

fundamental frequency (F0) of 100 Hz was used for all stimuli. 400

The vowel stimuli belonging to the two classes, /i:/ and /a/, were presented in an 401

interleaved fashion and separated by 100 ms of silence. The silence encouraged the 402

models to learn separate representations of each individual vowel class and to avoid 403

learning any transitions between vowel classes. We used 200 training and twenty testing 404

epochs, whereby each epoch consisted of the first exemplar of vowel /i:/ followed by the 405

first exemplar of vowel /a/, followed by the second exemplar of vowel /i:/ and so on up 406

to the last twelfth exemplar of vowel /a/. Twenty (rather than one) test epochs were 407

used because, due to the stochasticity of AN responses, input AN spike patterns in 408

response to repeated presentations of the same sound were not identical. Informal tests 409

demonstrated that on average the order in which the vowel exemplars were presented 410

did not make a qualitative difference to the performance of the trained models. It did, 411

however, introduce higher trial to trial variability. Hence, we fixed the presentation 412

schedule for the simulations described in this paper for a more fair model comparison. 413
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Continuous Transformation Learning 414

The CT learning mechanism was originally developed to account for geometric 415

transform invariance learning in a rate-coded neural network model of visual object 416

recognition in the ventral visual stream [7], but has recently been shown to also work in 417

a spiking neural network model of the ventral visual stream [8]. A more detailed 418

description of CT learning for vision can be found in [26]. 419

In vision, simple changes in the geometry of a scene, such as a shift in location or 420

rotation, can generate a multitude of visual stimuli which are all different views, or 421

“transforms”, of the same object. CT learning was at its origin an attempt to 422

understand how the brain can form representations of visual objects which are not 423

confused by such transformations, i.e. they are “transform invariant”. At first glance it 424

may seem that there is no obvious analogue of such “transformations” in the auditory 425

world. For many classes of natural auditory stimuli, however, their location in 426

“frequency space” depends on the physical characteristics of the sound source. For 427

example, the changes in physical dimensions of the resonators of the vocal tract would 428

create “transformations” of vocalisation sounds. Such changes would happen due to 429

variations in the placement of the tongue or the jaw when the same or different speakers 430

produce the same speech sound. Thus, many natural auditory objects are prone to 431

shifts in frequency space that are not too unlike the shifts in retinotopic space observed 432

when visual objects undergo geometric transformations. We, therefore, propose that CT 433

learning may play a crucial role in auditory category learning. 434

The original CT learning mechanism relies on the presence of a significant overlap 435

between input representations of temporally static stimulus transforms; in other words, 436

neural representations of “snapshots” of the same object taken from somewhat different 437

points of view often exhibit areas of high correlation which can be discovered and 438

exploited by an associative learning mechanism [7,8]. Unlike snapshots of visual objects, 439

auditory stimuli have an essential temporal structure. In order for CT learning to 440

associate similar temporal presynaptic patterns of firing onto the same output neuron 441

by STDP, it is important that the volley of spikes from the presynaptic neurons arrive 442

at the postsynaptic neuron almost simultaneously [8]. If this is not the case, connections 443

corresponding to the presynaptic spikes that arrive after the postsynaptic neuron fires 444
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will get weakened due to the nature of STDP, whereby there is strengthening of 445

connections through long term potentiation (LTP) if the presynaptic spike arrives 446

before the postsynaptic spike and weakening of connections through long term 447

depression (LTD) otherwise, thus preventing effective CT learning of the input patterns. 448

In order to allow CT learning to work for the temporal auditory stimuli, therefore, a 449

distribution of heterogeneous axonal conduction delays needs to be added to the plastic 450

afferent connections. These axonal delays would transform temporal input sequences 451

into patterns of spikes arriving simultaneously at individual postsynaptic cells. The 452

patterns of coincident spikes received by each postsynaptic cell would depend on the 453

cell’s transformation matrix of axonal delays. If an appropriate delay transformation 454

matrix is applied to the input spike pattern, a subset of postsynaptic neurons will 455

receive synchronized spikes from the subset of input neurons encoding similar exemplars 456

of a particular stimulus class, such as a vowel, thus enabling CT learning. 457

Neurophysiological data collected from different species suggests that cortical axonal 458

connections, including those within the auditory brain, may have conduction delays 459

associated with them of the order of milliseconds to tens of milliseconds [27,28]. 460

It is, therefore, suggested that the CT mechanism can enable a spiking neural 461

network to learn class identities of temporal auditory stimuli if over the whole space of 462

different stimulus exemplars belonging to one class, stimuli that are similar to each 463

other physically also evoke similar spatio-temporal firing patterns (i.e. have “sufficient 464

overlap”). Spatial and temporal jitter, for example in the input auditory nerve (AN), 465

add noise to the spatio-temporal firing patterns, and therefore make responses to similar 466

stimuli more dissimilar, hence preventing effective CT learning without additional 467

preprocessing to reduce such jitter. 468

Information Analysis 469

One common way to quantify learning success is to estimate the mutual information 470

between stimulus category and neural response I(S;R). It is calculated as 471

I(S;R) =
∑

s∈S,r∈R p(s, r)log2
p(s,r)

p(s)p(r) , where S is the set of all stimuli and R is the set 472

of all possible responses, p(S,R) is the joint probability distribution of stimuli and 473

responses, and p(s) =
∑

r∈R p(s, r) and p(r) =
∑

s∈S p(s, r) are the marginal 474
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distributions [29]. The upper limit of I(S;R) is given as H(s) =
∑

s p(s)log2
1

p(s) , which, 475

given that we had two equiprobable stimulus classes, here equals 1 bit. 476

Stimulus-response confusion matrices were constructed using a simple binary 477

encoding scheme [12], and used to calculate I(S;R). Binary encoding implies that a cell 478

could either be “on” (if it fired at least once during stimulus presentation), or “off” (if it 479

never fired during stimulus presentation). 480

We used observed frequencies as estimators for underlying probabilities p(s), p(r) 481

and p(s, r), which introduced a positive bias Bias ≈ #bins
2Nlog22

, where #bins is the 482

number of potentially non-zero cells in the joint probability table, and N is the number 483

of recording trials [29]. Given the large value of N = 960 in our tests of model 484

performance, the bias was negligible (Bias = 0.004 bits) and was ignored. 485

Quantifying Spike Raster Similarity 486

As mentioned above, we hypothesise that a spiking neural network can learn auditory 487

categories through the CT learning mechanism. CT learning relies on a high degree of 488

similarity/overlap between spike rasters in response to different exemplars of one 489

particular stimulus class, such as /i:/ or /a/. Here we describe three indices which 490

quantify the degree of similarity/dissimilarity between spike rasters in response to 491

different presentations of the same exemplar of the same stimulus class (Same Exemplar 492

Index ), different exemplars of the same stimulus class (Different Exemplars Index ) or 493

different stimulus classes (Different Category Index ). Each index varies between 0 and 1, 494

with higher scores indicating a higher degree of similarity between the corresponding 495

firing rasters. Lower scores suggest that the firing rasters being compared are dissimilar 496

due to either the inherent differences between the input stimuli, or due to the presence 497

of spike time jitter that diminishes the otherwise high similarity between the firing 498

rasters being compared. 499

Same Exemplar Index 500

The Same Exemplar (SE) index quantifies the degree of similarity between the firing 501

rasters within a particular area (such as AN or IC) in response to different presentations 502

of the same exemplar of a stimulus. Broadly, it calculates the average number of 503
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identical spikes across the different presentations of each exemplar 504

ek(s) ∈ {e1(s), ..., e12(s)} of a stimulus s ∈ {s1, s2} in proportion to the total number of 505

stimulus exemplar presentations (n ∈ [1, N ], where N = 20 testing epochs). For each 506

presentation of each stimulus we, therefore, constructed a TxJ matrix Mn
ek(s)

(where 507

T = 100 ms is the number of 1 ms time bins spanned by the auditory input, and 508

J ∈ {100, 1000} neurons is the size of the chosen neural area of the model). Each 509

element mtj of matrix Mn
ek(s)

contained the number of spikes produced by the particular 510

neuron j ∈ [1, J ] within the time bin t ∈ [1, T ] in response to the stimulus exemplar 511

ek(s). 512

If the firing rasters of the chosen area of the model in response to the different 513

presentations n ∈ [1, N ] of the same stimulus exemplar ek(s) are similar to each other, 514

then the same slots of the firing pattern matrices Mn
ek(s)

should be non-zero for different 515

n ∈ [1, N ]. Consequently, the following becomes more likely when the proportion of 516

stimulus presentation epochs n for which elements of Mn
ek(s)

are non-zero across the 517

different presentations of the same stimulus exemplar becomes large: 1) the firing 518

responses within the model area are more likely to be similar; 2) it is likely that less 519

jitter is present in the chosen area of the model; 3) CT learning is more likely to enable 520

postsynaptic cells to learn that the similar, stable, jitter-less responses within the model 521

area belong to the same stimulus class. 522

We, therefore, computed the matrix Mek(s)
=< Mn

ek(s)
>, where < >̇ signifies the 523

mean over all the presentation epochs n ∈ [1, N ], and then identified the mean µek(s)
of 524

the hundred largest elements of Mek(s)
. These were used to compute the final SEs score 525

for each stimulus s ∈ {s1, s2} as SEs =< µek(s)
>, where < >̇ signifies the mean over 526

all exemplars ek(s) of stimulus s. A higher SEs index points to more similarity between 527

the chosen firing rasters in response to the different presentations of the same exemplar 528

of stimulus s. Consequently, this also signifies lower levels of jitter present within the 529

layer, since high levels of jitter would disrupt the similarity in firing patterns and result 530

in a lower SEs index. 531

Different Exemplars Index 532

The Different Exemplars (DE) index quantifies the similarity of the firing rasters 533

within a chosen neural area of the model in response to the different exemplars of the 534
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same stimulus class. It is somewhat similar to the SEs index described above, however, 535

instead of comparing the firing matrices across the different presentations n of the same 536

stimulus exemplar ek(s), the firing matrices are compared across the different exemplars 537

ek(s) of each stimulus class s ∈ {s1, s2}. Consequently, firing raster matrices Mn
ek(s)

were 538

calculated once again, but this time the average was taken over all the different 539

exemplars ek(s) ∈ {e1(s), ..., e12(s)} of stimulus s ∈ {s1, s2}. That is, we computed 540

Mn
s =< Mn

ek(s)
>, where < >̇ signifies the mean over all the stimulus exemplars. We 541

then identified the mean µn
s of the hundred largest elements of Mn

s and used them to 542

compute the final DEs score for each stimulus s ∈ {s1, s2} as DEs =< µn
s >, where 543

< >̇ signifies the mean over all n ∈ [1, N ] presentation epochs of each exemplar ek(s) of 544

stimulus s. A higher DEs index points to more similarity between the firing rasters 545

within the chosen model neural area in response to the different exemplars ek(s) of 546

stimulus s. Consequently, this also signifies lower levels of jitter present within the layer, 547

since high levels of jitter would disrupt the similarity in firing patterns and result in a 548

lower DEs index. 549

Different Category Index 550

The Different Category (DC) index quantifies the similarity of the different firing 551

rasters within a chosen neural area of the model in response to different stimulus classes. 552

This score is somewhat similar to the SEs and DEs scores described above, however, 553

here the rasters are compared across the different stimulus categories s ∈ {s1, s2}. To 554

this accord, firing raster matrices Mn
ek(s)

were calculated once again, but this time the 555

average Mn =< Mn
ek(s)

> was taken over all the different exemplars 556

ek(s) ∈ {e1(s), ..., e12(s)} and over all the stimuli s ∈ {s1, s2}. We then identified the 557

mean µn of the hundred largest elements of each matrix Mn and used them to compute 558

the final DC score as DC =< µn >, where < >̇ signifies the mean over all n ∈ [1, N ] 559

presentation epochs. A lower DC index points to more differences between the chosen 560

firing rasters in response to the different stimulus categories s. 561
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Spiking Neural Network Models 562

Neuron Model 563

Apart from the AN, all other cells used in this paper were modelled according to the 564

spiking neuron model by [16]. The model by [16] was chosen because it combines much 565

of the biological realism of the Hodgkin-Huxley model with the computational efficiency 566

of integrate-and-fire neurons. We implemented our models using the Brian simulator 567

with a 0.1 ms simulation time step [30]. The native Brian exponential STDP learning 568

rule with nearest mixed weight update paradigm was used [30]. A range of conduction 569

delays between layers is a key feature of our models. In real brains, these delays might 570

be axonal, dendritic, synaptic or due to indirect connections, but in the model, for 571

simplicity, all delays were implemented as axonal. The [0, 50] ms range was chosen to 572

approximately match the range reported by [31]. 573

Excitatory Cells: Neurophysiological evidence suggests that many neurons in the 574

subcortical auditory brain have high spiking thresholds and short temporal integration 575

windows, thus acting more like coincidence detectors than rate integrators [32, 33]. This 576

is similar to the behaviour of Izhikevich’s “Class 1” neurons [16]. All subcortical (CN, 577

IC) excitatory cells were, therefore, implemented as Class 1. To take into account the 578

tendency of neurons in the auditory cortex to show strong adaptation under continuous 579

stimulation [34] Izhikevich’s Spike Frequency Adaptation neurons were chosen to model 580

the excitatory cells in the auditory cortex (A1). 581

Inhibitory Cells: Since inhibitory interneurons are known to be common in most 582

areas of the auditory brain [34,35] except the AN, each stage of the models apart from 583

the AN contained both excitatory and inhibitory neurons. Inhibitory cells were 584

implemented as Izhikevich’s Phasic Bursting neurons [16]. Sparse connectivity between 585

excitatory to inhibitory cells within a model area was modelled using strong one-to-one 586

connections from each excitatory cell to an inhibitory partner. Each inhibitory cell, in 587

turn, was fully connected to all excitatory cells. Such inhibition implemented dynamic 588

and tightly balanced inhibition as described in [36], which resulted in competition 589

between excitatory neurons, and also provided negative feedback to regulate the total 590

level of firing within an area. Informal tests demonstrated that the exact 591
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implementation of within-layer inhibition did not have a significant impact on the 592

results presented in this paper, as long as the implementation still achieved an 593

appropriate level of within-layer competition and activity modulation. 594

Reduced AN-A1 Model Architecture 595

The reduced AN-A1 spiking neural network model of the auditory brain consisted of two 596

fully connected stages of spiking neurons, the AN (input) and the A1 (output) (Fig. 1B). 597

The AN consisted of 1000 medium spontaneous rate neurons modeled by [11] with CFs 598

between 300-3500 Hz spaced logarithmically, and with a 60 dB threshold. The firing 599

characteristics of the model AN cells were tested and found to replicate reasonably 600

accurately the responses of real AN neurons recorded in neurophysiology studies. 601

The AN and A1 stages were fully connected using feedforward connections 602

modifiable through spike-time dependent plasticity (STDP) learning. The connections 603

were initialised with a uniform distribution of axonal delays (∆ij) between 0 and 50 ms. 604

The randomly chosen axonal delay matrix was fixed for all simulations described in this 605

paper to remove the confounding effect of different delay initialisation values on 606

learning. Informal testing demonstrated that the choice of the axonal delay matrix did 607

not qualitatively affect the simulation results. The initial afferent connection strengths 608

(wBL
ij ) were randomly initialised using values drawn from a uniform distribution. A 609

grid search heuristic was used to find the optimal model hyperparameters (see Tbl. S1 610

in Supplemental Materials for full model parameters). 611

Full AN-CN-IC-A1 Model Architecture 612

The full AN-CN-IC-A1 spiking neural network model of the auditory brain consisted of 613

four stages of spiking neurons as shown in Fig. 1A. In contrast to the reduced AN-A1 614

network, the full AN-CN-IC-A1 model included two intermediate stages between the 615

input AN and output A1 stages to remove time and space jitter present in the AN. 616

These intermediate stages were the CN with CH, ON and PL subpopulations, and the 617

convergent IC stage. The architecture of the three subpopulations of the CN and their 618

corresponding connectivity from the AN is discussed in the Results section. The 619

CN→IC connectivity was the following: CH had Gaussian topological connectivity, 620

whereby each cell in the IC received afferents from a small tonotopic region of the CH 621
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subpopulation (σ = 2 cells); PL→IC connections were set as one-to-one; ON→IC 622

connections were set up using full connectivity. The AN and A1 stages of the full 623

AN-CN-IC-A1 model were equivalent to those in the AN-A1 model. The IC→A1 624

connections in the full AN-CN-IC-A1 model were set up equivalently to the AN→A1 625

connections of the reduced AN-A1 model. Full model parameters can be found in 626

Tbl. S2 (Supplemental Materials). 627

Simple Four-Stage Model Architecture 628

The simple fully-connected feedforward four-stage model was initialised with randomly 629

distributed synaptic weights (wBL
ij ) and axonal delays (∆ij) between each of the stages, 630

and with STDP learning for the Stage 3→A1 connections (see Fig. 1C). The 631

magnitudes of the feedforward connections (wBL
ij ) were chosen to ensure that the rate of 632

firing in Stage 3 was similar to that of the equivalent IC stage of the AN-CN-IC-A1 633

model (approximately 9 Hz). The STDP parameters of the Stage 3→A1 connections 634

were set to the mean of the corresponding optimal values found through the respective 635

parameter searches for models AN-A1 and AN-CN-IC-A1. Full model parameters can 636

be found in Tbl. S3 (Supplemental Materials). 637
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