
Reduced order modeling and analysis of the human com-
plement system

Adithya Sagar, Wei Dai#, Mason Minot#, and Jeffrey D. Varner∗

School of Chemical and Biomolecular Engineering

Cornell University, Ithaca NY 14853

Running Title: A reduced order model of complement

To be submitted: Scientific Reports

# Denotes equal contribution

∗Corresponding author:

Jeffrey D. Varner,

Professor, School of Chemical and Biomolecular Engineering,

244 Olin Hall, Cornell University, Ithaca NY, 14853

Email: jdv27@cornell.edu

Phone: (607) 255 - 4258

Fax: (607) 255 - 9166

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2016. ; https://doi.org/10.1101/059386doi: bioRxiv preprint 

https://doi.org/10.1101/059386
http://creativecommons.org/licenses/by/4.0/


Abstract

Complement is an important pathway in innate immunity, inflammation, and many disease

processes. However, despite its importance, there have been few validated mathematical

models of complement activation. In this study, we developed an ensemble of experi-

mentally validated reduced order complement models. We combined ordinary differential

equations with logical rules to produce a compact yet predictive complement model. The

model, which described the lectin and alternative pathways, was an order of magnitude

smaller than comparable models in the literature. We estimated an ensemble of model

parameters from in vitro dynamic measurements of the C3a and C5a complement pro-

teins. Subsequently, we validated the model on unseen C3a and C5a measurements

not used for model training. Despite its small size, the model was surprisingly predictive.

Global sensitivity and robustness analysis suggested complement was robust to any sin-

gle therapeutic intervention. Only the knockdown of both C3 and C5 consistently reduced

C3a and C5a formation from all pathways. Taken together, we developed a reduced order

complement model that was computationally inexpensive, and could easily be incorpo-

rated into pre-existing or new pharmacokinetic models of immune system function. The

model described experimental data, and predicted the need for multiple points of thera-

peutic intervention to fully disrupt complement activation.

Keywords: Complement, systems biology, reduced order modeling, biochemical engi-

neering
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Introduction1

Complement is an important pathway in innate immunity. It plays a significant role in2

inflammation, host defense as well as many disease processes. Complement was dis-3

covered in the late 1880s where it was found to ’complement’ the bactericidal activity of4

natural antibodies (1). However, research over the past decade has shown the impor-5

tance of complement extends beyond innate immunity. For example, complement con-6

tributes to tissue homeostasis (2), and has been linked with several diseases including7

Alzheimers, Parkinson’s, multiple sclerosis, schizophrenia, rheumatoid arthritis and sep-8

sis (3, 4). Complement also plays positive and negative roles in cancer; attacking tumor9

cells with altered surface proteins in some cases, while potentially contributing to tumor10

growth in others (5, 6). Lastly, several other important biochemical systems are integrated11

with complement including the coagulation cascade, the autonomous nervous system and12

inflammation (6). Thus, complement is important in a variety of beneficial and potentially13

harmful functions in the body. However, despite its importance, there have been relatively14

few approved complement specific therapeutics, largely because of safety concerns and15

challenging pharmacokinetic constraints.16

The complement cascade involves many soluble and cell surface proteins, receptors17

and regulators (7, 8). The outputs of complement are the Membrane Attack Complex18

(MAC), and the inflammatory mediator proteins C3a and C5a. The membrane attack19

complex, generated during the terminal phase of the response, forms transmembrane20

channels which disrupt the membrane integrity of targeted cells, leading to cell lysis and21

death. On the other hand, the C3a and C5a proteins act as a bridge between innate and22

adaptive immunity, and play an important role in regulating inflammation (5). Complement23

activation takes places through three pathways: the classical, the lectin and the alternate24

pathways. The classical pathway is triggered by antibody recognition of foreign antigens25

or other pathogens. A multimeric protein complex C1 binds antibody-antigen complexes26
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and undergoes a conformational change, leading to an activated form with proteolytic ac-27

tivity. The activated complex cleaves soluble complement proteins C4 and C2 into C4a,28

C4b, C2a and C2b, respectively. The C4a and C2b fragments bind to form the C4bC2a29

protease, also known as the classical pathway C3 convertase (CP C3 convertase). The30

lectin pathway is initiated through the binding of L-ficolin or Mannose Binding Lectin (MBL)31

to carbohydrates on the surfaces of bacterial pathogens. These complexes, in combina-32

tion mannose-associated serine proteases 1 and 2 (MASP-1/2), also cleave C4 and C2,33

leading to additional CP C3 convertase. Thus, the classical and lectin pathways, initiated34

by different cues on foreign surfaces, converge at the CP C3 convertase. However, the35

alternate pathway works differently. It is activated by a ’tickover’ mechanism in which com-36

plement protein C3 is spontaneously hydrolyzed to form an activated intermediate C3w;37

C3w recruits factor B and factor D, leading to the formation of C3wBb. C3wBb cleaves C338

into C3a and C3b, where the C3b fragment further recruits additional factor B and factor D39

to form C3bBb, the alternate C3 convertase (AP C3 convertase) (9). The role of classical40

and alternate C3 convertases is varied. First, AP C3 convertases mediate signal amplifi-41

cation. AP C3 convertases cleave C3 into C3a and C3b; the C3b fragment is then free to42

form additional alternate C3 convertases, thereby forming a positive feedback loop. Next,43

AP/CP C3 convertases link complement initiation with the terminal phase of the cascade44

through the formation of C5 convertases. Both classical and alternate C3 convertases45

can recruit C3b subunits to form the classical pathway C5 convertase (C4bC2aC3b, CP46

C5 convertase), and the alternate pathway C5 convertase (C3bBbC3b, AP C5 conver-47

tase), respectively. Both C5 convertases cleave C5 into the C5a and C5b fragments. The48

C5b fragment, along with the complement proteins C6, C7, C8 and multiple C9s, form49

the membrane attack complex. On the other hand, both C3a and C5a are important in-50

flammatory signals involved in several responses (7, 8). Thus, the complement cascade51

attacks invading pathogens, while acting as a beacon for adaptive immunity.52
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The complement cascade is regulated by plasma and host cell proteins which balance53

host safety with effectiveness. The initiation of the classical pathway via complement54

protein C1 is controlled by the C1 Inhibitor (C1-Inh); C1-Inh irreversibly binds to and de-55

activates the active subunits of C1, preventing chronic complement activation (10). Regu-56

lation of upstream processes in the lectin and alternate pathways also occurs through the57

interaction of the C4 binding protein (C4BP) with C4b, and factor H with C3b (11). Interest-58

ingly, both factor H and C4BP are capable of binding their respective targets while in con-59

vertase complexes as well. At the host cell surface, membrane cofactor protein (MCP or60

CD46) can interact with C4b and C3b, which protects the host cell from complement self-61

activation (12). Delay accelerating factor (DAF or CD55) also recognizes and dissociates62

both C3 and C5 convertases on host cell surfaces (13). More generally the well known63

inflammation regulator Carboxypeptidase-N has broad activity against the complement64

proteins C3a, C4a, and C5a, rendering them inactive by cleavage of carboxyl-terminal65

arginine and lysine residues (14). Although Carboxypeptidase-N does not directly influ-66

ence complement activation, it silences the important inflammatory signals produced by67

complement. Lastly, assembly of the MAC complex itself can be inhibited by vitronectin68

and clusterin in the plasma, and CD59 at the host surface (15, 16). Thus, there are many69

points of control which influence complement across the three activation pathways.70

Developing quantitative mathematical models of complement will be crucial to fully un-71

derstanding its role in the body. Traditionally, complement models have been formulated72

as systems of linear or non-linear ordinary differential equations (ODEs). For example,73

Hirayama et al., modeled the classical complement pathway as a system of linear ODEs74

(17), while Korotaevskiy and co-workers modeled the classical, lectin and alternate path-75

ways as a system of non-linear ODEs (18). More recently, large mechanistic models of76

sections of complement have also been proposed. For example, Liu et al., analyzed the77

formation of the classical and lectin C3 convertases, and the regulatory role of C4BP78
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using a system of 45 non-linear ODEs with 85 parameters (19). Zewde and co-workers79

constructed a detailed mechanistic model of the alternative pathway which consisted of80

107 ODEs and 74 kinetic parameters and delineated between the fluid, host and pathogen81

surfaces (16). However, these previous modeling studies involved large models with little82

experimental validation. Thus, while these models are undoubtably important theoretical83

tools, it is unclear if they can describe or quantitatively predict complement measure-84

ments. The central challenge of complement model identification is the estimation of85

model parameters from experimental measurements. Unlike other important cascades,86

such as coagulation where there are well developed experimental tools and publicly avail-87

able data sets, the data for complement is relatively sparse. Data sets with missing or88

incomplete data, and limited dynamic data also make the identification of large mecha-89

nistic complement models difficult. Thus, reduced order approaches which describe the90

biology of complement using a limited number of species and parameters could be impor-91

tant for pharmacokinetic model development, and for our understanding of the varied role92

of complement in the body.93
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Results94

In this study, we developed an ensemble of experimentally validated reduced order com-95

plement models using multiobjective optimization. The modeling approach combined or-96

dinary differential equations with logical rules to produce a complement model with a lim-97

ited number of equations and parameters. The reduced order model, which described the98

lectin and alternative pathways, consisted of 18 differential equations with 28 parameters.99

Thus, the model was an order of magnitude smaller and included more pathways than100

comparable models in the literature. We estimated an ensemble of model parameters101

from in vitro time series measurements of the C3a and C5a complement proteins. Sub-102

sequently, we validated the model on unseen C3a and C5a measurements that were not103

used for model training. Despite its small size, the model was surprisingly predictive. Af-104

ter validation, we performed global sensitivity and robustness analysis to estimate which105

parameters and species controlled model performance. Sensitivity analysis suggested106

CP C3 and C5 convertase parameters were critical, while robustness analyses suggested107

complement was robust to any single therapeutic intervention; only the knockdown of both108

C3 and C5 consistently reduced C3a and C5a formation for all cases. Taken together, we109

developed a reduced order complement model that was computationally inexpensive, and110

could easily be incorporated into pre-existing or new pharmacokinetic models of immune111

system function. The model described experimental data, and predicted the need for112

multiple points of intervention to disrupt complement activation.113

Reduced order complement network. The complement model described the alternate114

and lectin pathways (Fig. 1). A trigger event initiated the lectin pathway (encoded as a115

logical rule), which activated the cleavage of C2 and C4 into C2a, C2b, C4a and C4b re-116

spectively. Classical Pathway (CP) C3 convertase (C4aC2b) then catalyzed the cleavage117

of C3 into C3a and C3b. The alternate pathway was initiated through the spontaneous118

hydrolysis of C3 into C3a and C3b (not C3w). The C3b fragment generated by hydroly-119
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sis (or by CP C3 convertase) could then form the alternate pathway (AP) C3 convertase120

(C3bBb). We did not consider C3w, nor the formation of the initial alternate C3 conver-121

tase (C3wBb). Rather, we assumed C3w was equivalent to C3b and only modeled the122

formation of the main AP C3 convertase. Both the CP and AP C3 convertases catalyzed123

the cleavage of C3 into C3a and C3b. A second C3b fragment could then bind with ei-124

ther the CP or AP C3 convertase to form the CP or AP C5 convertase (C4bC2aC3b or125

C3bBbC3b). Both C5 convertases catalyzed the cleavage of C5 into the C5a and C5b126

fragments. In this initial study, we simplified the model by assuming both factor B and127

factor D were in excess. However, we did explicitly account for two control proteins, fac-128

tor H and C4BP. Lastly, we did not consider MAC formation, instead we stopped at C5a129

and C5b. Lectin pathway activation, and C3/C5 convertase activity was modeled using130

a combination of saturation kinetics and non-linear transfer functions, which facilitated a131

significant reduction in the size of the model while maintaining performance. Binding in-132

teractions were modeled using mass-action kinetics, where we assumed all binding was133

irreversible. Thus, while the reduced order complement model encoded significant bi-134

ology, it was highly compact consisting of only 18 differential equations and 28 model135

parameters. Next, we estimated an ensemble of model parameters from time series mea-136

surements of the C3a and C5a complement proteins.137

Estimating an ensemble of reduced order complement models. A critical challenge138

for the development of any dynamic model is the estimation of model parameters. We139

estimated an ensemble of complement model parameters using in vitro time-series data140

sets generated with and without zymosan, a lectin pathway activator (20). The residual141

between model simulations and experimental measurements was minimized using the142

dynamic optimization with particle swarms (DOPS) routine, starting from a random pa-143

rameter guess. The best fit parameter set estimated by DOPS was then used to generate144

a parameter ensemble using multiobjective optimization. Unless otherwise specified, all145
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initial conditions were assumed to be their mean physiological values. While we had sig-146

nificant training data, the parameter estimation problem was underdetermined (we were147

not able to uniquely determine model parameters). Thus, instead of using the best-fit148

yet uncertain parameter set generated by DOPS, we estimated an ensemble of probable149

parameter sets to quantify model uncertainty (N = 2100, see materials and methods).150

The complement model ensemble captured the behavior of both the alternate and lectin151

pathways (Fig. 2). For the alternate pathway, we used C3a and C5a measurements in the152

absence of zymosan (Fig. 2A and B). On the other hand, lectin pathway parameters were153

estimated from C3a and C5a measurements in the presence of 1mg/ml zymosan (Fig.154

2C and D). The reduced order model reproduced a panel of alternate and lectin pathway155

data sets in the neighborhood of physiological factor and inhibitor concentrations. How-156

ever, it was unclear whether the reduced order model could predict new data, without157

updating the model parameters. To address this question, we fixed the model parameters158

and simulated data sets not used for model training.159

We tested the predictive power of the reduced order complement model with data not160

used during model training (Fig. 3). Six validation cases were considered, three for C3a161

and C5a, respectively. All model parameters and initial conditions were fixed for the val-162

idation simulations (with the exception of zymosan, and other experimentally mandated163

changes). The ensemble of reduced order models predicted the qualitative dynamics of164

C3a formation (Fig. 3, top), and C5a formation (Fig. 3, bottom) at three inducer concentra-165

tions. The rate of C3a formation and C3a peak time were directly proportional to initiator166

dose. Similarly, the C5a plateau and rate of formation were also directly proportional to167

initiator dose, with the lag time being indirectly proportional to initiator exposure for both168

C3a and C5a. However, there were shortcomings with model performance. First, while169

the overall C3a trend was captured (within the 99% confidence interval), the C3a dynam-170

ics were too fast with the exception of the low dose case. We believe the C3a time scale171
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was related to our choice of training data, how we modeled the tickover mechanism, and172

factor B and D limitation. We trained the model using either no or 1 mg/ml zymosan, but173

predicted cases in a different initiator range; comparing training to prediction, the model174

performance e.g., the shape of the C3a trajectory was biased towards either high or very175

low initiator doses. Next, tickover was modeled as a first-order generation processes176

where C3wBb formation and activity was lumped into the AP C3 convertase. Thus, we177

skipped an important upstream step which could strongly influence AP C3 convertase178

formation by slowing down the rate C3 cleavage into C3a and C3b. We also assumed179

both factor B and factor D were not limiting, thereby artificially accelerating the rate of180

AP C3 convertase formation. The C5a predictions followed a similar trend as C3a; we181

captured the long-time C5a behavior but over predicted the time scale of C5 cleavage.182

However, because the C5a time scale depends strongly upon C3 convertase formation,183

we can likely correct the C5 issues by fixing the rate of C3 cleavage. Despite these short-184

comings, we qualitatively predicted unseen experimental measurements typically within185

the 99% confidence of the ensemble, for three inducer levels. Next, we used global sensi-186

tivity and robustness analysis to determine which parameters and species controlled the187

performance of the complement model.188

Global analysis of the reduced order complement model. We conducted sensitivity189

analysis to estimate which parameters controlled the performance of the reduced order190

complement model. We calculated the total sensitivity of the C3a and C5a residual to191

changes in model parameters with and without zymosan (Fig. 4). In the absence of zy-192

mosan (where only the alternative pathway is active), the most sensitive parameter was193

the rate constant governing the assembly of the AP C3 convertase, as well as the rate194

constant controlling basal C3b formation. The C5a trajectory was sensitive to the AP195

C5 convertase kinetic parameters (Fig. 4A). Interestingly, neither the rate nor the sat-196

uration constant governing AP C3 convertase activity were sensitive in the absence of197
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zymosan. Thus, C3a formation in the alternative pathway was more heavily influenced by198

the spontaneous hydrolysis of C3, rather than AP C3 convertase activity, in the absence199

of zymosan. In the presence of zymosan, the C3a residual was controlled by the forma-200

tion and activity of the CP C3 convertase, as well as tickover and degradation parameters.201

On the other hand, the C5a residual was controlled by the formation and activity of CP202

C5 convertase, and tickover C3b formation in the presence of zymosan (Fig. 4B). The203

lectin initiation parameters were sensitive, but to a lesser extent than CP convertase ki-204

netic parameters and tickover C3b formation. Thus, sensitivity analysis suggested that205

CP C3/C5 convertase formation and activity dominated in the presence of zymosan, but206

tickover parameters and AP C5 convertase were more important without initiator. AP C3207

convertase assembly was important, but its activity was not. Next, we compared the sen-208

sitivity results to current therapeutic approaches; pathways involving sensitive parameters209

have been targeted for clinical intervention (Fig. 4C). In particular, the sensitivity analysis210

suggested AP/CP C5 convertase inhibitors, or interventions aimed at attenuating C3 or211

C5 would most strongly influence complement performance. Thus, there was at least a212

qualitative overlap between sensitivity and the potential of biochemical efficacy. However,213

sensitivity coefficients are only a local measure of how small changes in parameters affect214

model performance. To more closely simulate a clinical intervention e.g., administration215

of an anti-complement inhibitor, we performed robustness analysis.216

Robustness analysis suggested there was no single intervention that inhibited com-217

plement activation in the presence of both initiation pathways (Fig. 5). Robustness co-218

efficients quantify the response of a protein to a macroscopic structural or operational219

perturbation to a biochemical network. Here, we computed how the C3a and C5a trajec-220

tories responded to a decrease in the initial abundance of C3 and/or C5 with and without221

lectin initiator. We simulated the addition of different doses of anti-complement inhibitor222

cocktails by decreasing the initial concentration of C3, C5 or the combination of C3 and223
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C5 by 50%, 90% and 99%. This would be conceptually analogous to the administration224

of a C3 inhibitor e.g., Compstatin alone or combination with Eculizumab (Fig. 4C). The225

response of the complement model to different knock-down magnitudes was non-linear; a226

90% knock-down had an order of magnitude more impact than a 50% knock-down. As ex-227

pected, a C5 knockdown had no effect on C3a formation for either the alternate (Fig. 5A)228

or lectin pathways (Fig. 5B). However, C3a and to a greater extent C5a abundance de-229

creased with decreasing C3 concentration in the alternate pathway (Fig. 5A). This agreed230

with the sensitivity results; changes in AP C3-convertase formation affected the down-231

stream dynamics of C5a formation. Thus, if we only considered the alternate pathway, C3232

alone could be a reasonable target, especially given that C5a formation was surprisingly233

robust to C5 levels in the alternate pathway. Yet, when both pathways were activated,234

C5a levels were robust to the initial C3 concentration (Fig. 5B); even 1% of the nominal235

C3 was able to generate enough AP/CP C5 convertase to maintain C5a formation. Thus,236

the only reliable intervention that consistently reduced both C3a and C5a formation for all237

cases was a knockdown of both C3 and C5. For example, a 90% decrease of both C3238

and C5 reduced the formation of C5a by an order of magnitude, while C3a was reduced239

to a lesser extent (Fig. 5B).240
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Discussion241

In this study, we developed an ensemble of experimentally validated reduced order com-242

plement models using multiobjective optimization. The modeling approach combined or-243

dinary differential equations with logical rules to produce a complement model with a lim-244

ited number of equations and parameters. The reduced order model, which described the245

lectin and alternative pathways, consisted of 18 differential equations with 28 parameters.246

Thus, the model was an order of magnitude smaller and included more pathways than247

comparable mathematical models in the literature. We estimated an ensemble of model248

parameters from in vitro time series measurements of the C3a and C5a complement pro-249

teins. Subsequently, we validated the model on unseen C3a and C5a measurements that250

were not used for model training. Despite its small size, the model was surprisingly predic-251

tive. After validation, we performed global sensitivity and robustness analysis to estimate252

which parameters and species controlled model performance. These analyses suggested253

complement was robust to any single therapeutic intervention. The only intervention that254

consistently reduced C3a and C5a formation for all cases was a knockdown of both C3255

and C5. Taken together, we developed a reduced order complement model that was256

computationally inexpensive, and could easily be incorporated into pre-existing or new257

pharmacokinetic models of immune system function. The model described experimen-258

tal data, and predicted the need for multiple points of intervention to disrupt complement259

activation.260

Despite its importance, there has been a paucity of validated mathematical models261

of complement pathway activation. To our knowledge, this study is one of the first com-262

plement models that combined multiple initiation pathways with experimental validation263

of important complement products like C5a. However, there have been several theoreti-264

cal models of components of the cascade in the literature. Liu and co-workers modeled265

the formation of C3a through the classical pathway using 45 non-linear ODEs (19). In266
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contrast, in this study we modeled lectin mediated C3a formation using only five ODEs.267

Though we did not model all the initiation interactions in detail, especially the cross-talk268

between the lectin and classical pathways, we successfully captured C3a dynamics with269

respect to different concentrations of lectin initiators. The model also captured the dy-270

namics of C3a and C5a formed from the alternate pathway using only seven ODEs. The271

reduced order model predictions of C5a were qualitatively similar to the theoretical com-272

plement model of Zewde et al., which involved over 100 ODEs (16). However, we found273

that the C3a produced in the alternate pathway was nearly three orders of magnitude274

greater than the C5a generated. While this was in agreement with the experimental data275

(20), it differed from the theoretical predictions made by Zewde et al., who showed C3a276

was eight orders of magnitude greater than the C5a concentration (16). In our model,277

the time profile of both C3a and C5a generated changed with respect to the quantity278

of zymosan (the lectin pathway initiator). In particular, the C3a peak time was directly279

proportional to initiator, while the lag phase for generation was inversely proportional to280

the initiator concentration. Korotaevskiy et al. showed a similar trend using a theoretical281

model of complement, albeit for much shorter time scales (18). Thus, the reduced or-282

der complement model performed at least as well as existing larger mechanistic models,283

despite being significantly smaller.284

Global analysis of the complement model suggested potentially important therapeutic285

targets. Complement malfunctions are implicated in a spectrum of diseases, however the286

development of complement specific therapeutics has been challenging (3, 21). Previ-287

ously, we have shown that mathematical modeling and analysis can be useful tools to288

estimate therapeutically important mechanisms (22–25). In this study, we analyzed a val-289

idated ensemble of reduced order complement models to better understand the strengths290

and weaknesses of the cascade. In the presence of an initiator, C3a and C5a forma-291

tion was sensitive to CP C3/C5 convertase assembly and activity, and to a lesser extent292
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lectin initiation parameters. Formation of the CP convertases can be inhibited by targeting293

upstream protease complexes like MASP-1,2 from the lectin pathway (or C1r, C1s from294

classical pathway). For example, Omeros, a protease inhibitor that targets the MASP-2295

complex, has been shown to inhibit the formation of downstream convertases (26). Lam-296

palizumab and Bikaciomab, which target factor B and factor D respectively, or naturally297

occurring proteins such as Cobra Venom Factor (CVF), an analogue of C3b, could also298

attenuate AP convertase formation (27–29). Removing supporting molecules could also299

destabilize the convertases. For example, Novelmed Therapeutics developed the anti-300

body, NM9401 against propedin, a small protein that stabilizes alternate C3 convertase301

(30). Lastly, convertase catalytic activity could be attenuated using small molecule pro-302

tease inhibitors. All of these approaches are consistent with the results of the sensitivity303

analysis. On the other hand, robustness analysis suggested C3a and C5a generation304

could only be significantly attenuated by modulating the free levels of C3 and C5. The305

most commonly used anti-complement drug Eculizumab, targets the C5 protein (21). Sev-306

eral other antibodies targeting C5 are also being developed; for example, LFG316 targets307

C5 in Age-Related Macular Degeneration (31), while Mubodina is used to treat Atypical308

Hemolytic-Uremic Syndrome (aHUS) (32). Other agents such as Coversin (33) or the309

aptamer Zimura (34) could also be used to knockdown C5. The peptide inhibitor Comp-310

statin and its derivatives are promising approaches for the inhibition of C3 (35). However,311

while the knockdown of C3 and C5 affect C3a and C5a levels downstream, the abun-312

dance, turnover rate and population variation of these proteins make them difficult targets313

(36, 37). For example, the eculizumab dosage must be significantly adjusted during the314

course of treatment for aHUS (38). A validated complement model, in combination with315

personalized pharmacokinetic models of immune system function, could be an important316

development for the field.317

The performance of the complement model was impressive given its limited size. How-318
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ever, there are several questions that should be explored further. A logical progression319

for this work would be to expand the network to include the classical pathway and the320

formation of the membrane attack complex (MAC). However, time course measurements321

of MAC abundance (and MAC formation dynamics) are scarce, making the inclusion of322

MAC challenging. On the other hand, inclusion of classical pathway activation is straight-323

forward. Liu et al., have shown cross-talk between the activation of the classical and lectin324

pathways through C reactive proteins (CRP) and L-ficolin (LF) under inflammation condi-325

tions (19). Thus, inclusion of these species, in addition to a lumped activation term for the326

classical pathway should allow us to capture classical activation. Next, we should address327

the C3a time scale issue. We believe the C3a time scale was related to our choice of train-328

ing data, how we modeled the tickover mechanism, and factor B and D limitation. Tickover329

was modeled as a first-order generation processes where C3wBb formation and activity330

was lumped into the AP C3 convertase. Thus, we skipped an important step which could331

strongly influence AP C3 convertase formation by slowing down the rate C3 cleavage332

into C3a and C3b. The model should be expanded to include the C3wBb intermediate,333

where C3wBb catalyzes C3 cleavage at a slow rate compared to normal AP or CP C3334

convertases. We also assumed both factor B and factor D were not limiting, thereby ar-335

tificially accelerating the rate of AP C3 convertase formation. This shortcoming could be336

addressed by including balances around factor B and D, and including these species in337

the appropriate kinetic rates. The C5a predictions also had an accelerated time scale.338

However, because the C5a time scale depended strongly upon C3 convertase formation,339

we can likely correct the C5 issues by fixing the rate of C3 cleavage. Lastly, we should340

also consider including the C2-bypass pathway, which was not included in the model.341

The C2-bypass mediates lectin pathway activation, without the involvement of MASP-1/2.342

Thus, this pathway could be important for understanding the role of MASP-1/2 inhibitors343

on complement activation.344
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Materials and Methods345

Formulation and solution of the complement model equations. We used ordinary346

differential equations (ODEs) to model the time evolution of complement proteins (xi) in347

the reduced order model:348

1

τi

dxi
dt

=
R∑
j=1

σijrj (x, ε,k) i = 1, 2, . . . ,M (1)

where R denotes the number of reactions and M denotes the number of proteins in349

the model. The quantity τi denotes a time scale parameter for species i which captures350

unmodeled effects. For the current study, τ scaled with the level of initiator (z) for C5a351

and C5b; τi = z/z∗ for i = C5a, C5b where z∗ was 1mg/ml, τi = 1 for all other species.352

The quantity rj (x, ε,k) denotes the rate of reaction j. Typically, reaction j is a non-linear353

function of biochemical and enzyme species abundance, as well as unknown model pa-354

rameters k (K× 1). The quantity σij denotes the stoichiometric coefficient for species i in355

reaction j. If σij > 0, species i is produced by reaction j. Conversely, if σij < 0, species i356

is consumed by reaction j, while σij = 0 indicates species i is not connected with reaction357

j. Species balances were subject to the initial conditions x (to) = xo.358

Rate processes were written as the product of a kinetic term (r̄j) and a control term359

(vj) in the complement model. The kinetic term for the formation of C4a, C4b, C2a and360

C2b, lectin pathway activation, and C3 and C5 convertase activity was given by:361

r̄j = kmaxj εi

(
xηs

Kη
js + xηs

)
(2)

where kmaxj denotes the maximum rate for reaction j, εi denotes the abundance of the362

enzyme catalyzing reaction j, η denotes a cooperativity parameter, and Kjs denotes the363

saturation constant for species s in reaction j. We used mass action kinetics to model364
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protein-protein binding interactions within the network:365

r̄j = kmaxj

∏
s∈m−

j

x−σsjs (3)

where kmaxj denotes the maximum rate for reaction j, σsj denotes the stoichiometric coef-366

ficient for species s in reaction j, and s ∈ mj denotes the set of reactants for reaction j.367

We assumed all binding interactions were irreversible.368

The control terms 0 ≤ vj ≤ 1 depended upon the combination of factors which in-369

fluenced rate process j. For each rate, we used a rule-based approach to select from370

competing control factors. If rate j was influenced by 1, . . . ,m factors, we modeled this re-371

lationship as vj = Ij (f1j (·) , . . . , fmj (·)) where 0 ≤ fij (·) ≤ 1 denotes a regulatory transfer372

function quantifying the influence of factor i on rate j. The function Ij (·) is an integration373

rule which maps the output of regulatory transfer functions into a control variable. Each374

regulatory transfer function took the form:375

fij (Zi, kij, ηij) = k
ηij
ij Z

ηij
i /

(
1 + k

ηij
ij Z

ηij
i

)
(4)

where Zi denotes the abundance of factor i, kij denotes a gain parameter, and ηij denotes376

a cooperativity parameter. In this study, we used Ij ∈ {min,max} (39). If a process has377

no modifying factors, vj = 1. The model equations were implemented in Julia and solved378

using the CVODE routine of the Sundials package (40, 41). The model code and parameter379

ensemble is freely available under an MIT software license and can be downloaded from380

http://www.varnerlab.org.381

Estimating an ensemble of complement model parameters. We estimated a single382

initial parameter set using the Dynamic Optimization with Particle Swarms (DOPS) tech-383

nique (42). DOPS is a novel hybrid meta-heuristic which combines a multi-swarm particle384
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swarm method with the dynamically dimensioned search approach of Shoemaker and385

colleagues (43). DOPS minimized the squared residual between simulated and C3a and386

C5a measurements with and without zymosan as a single objective. The best fit set esti-387

mated by DOPS served as the starting point for multiobjective ensemble generation using388

Pareto Optimal Ensemble Technique in the Julia programming language (JuPOETs) (44).389

JuPOETs is a multiobjective approach which integrates simulated annealing with Pareto390

optimality to estimate model ensembles on or near the optimal tradeoff surface between391

competing training objectives. JuPOETs minimized training objectives of the form:392

Oj(k) =

Tj∑
i=1

(
M̂ij − ŷij(k)

)2

+

(M′
ij −max yij

M′
ij

)2

(5)

subject to the model equations, initial conditions and parameter bounds L ≤ k ≤ U . The393

first term in the objective function measured the shape difference between the simulations394

and measurements. The symbol M̂ij denotes a scaled experimental observation (from395

training set j) while the symbol ŷij denotes the scaled simulation output (from training set396

j). The quantity i denotes the sampled time-index and Tj denotes the number of time397

points for experiment j. The scaled measurement is given by:398

M̂ij =
Mij −miniMij

maxiMij −miniMij

(6)

Under this scaling, the lowest measured concentration become zero while the highest399

equaled one, where a similar scaling was defined for the simulation output. The second-400

term in the objective function quantified the absolute error in the estimated concentration401

scale, where the absolute measured concentration (denoted byM′
ij) was compared with402

the largest simulated value. In this study, we minimized two training objectives, the total403

C3a and C5a residual w/o zymosan (O1) and the total C3a and C5a residual for 1 mg/ml404
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zymosan (O2). JuPOETs identified an ensemble of N ' 2100 parameter sets which were405

used for model simulations and uncertainty quantification subsequently. JuPOETs is open406

source, available under an MIT software license. The JuPOETs source code is freely407

available from the JuPOETs GitHub repository at https://github.com/varnerlab/POETs.jl.408

The objective functions used in this study are available in the GitHub model repository409

available from http://varnerlab.org.410

Sensitivity and robustness analysis of complement model performance. We con-411

ducted global sensitivity and robustness analysis to estimate which parameters and species412

controlled the performance of the reduced order model. We computed the total variance-413

based sensitivity index of each parameter relative to the training residual for the C3a/C5a414

alternate and C3a/C5a lectin objectives using the Sobol method (45). sThe sampling415

bounds for each parameter were established from the minimum and maximum value for416

that parameter in the parameter ensemble. We used the sampling method of Saltelli et417

al. to compute a family of N (2d+ 2) parameter sets which obeyed our parameter ranges,418

where N was the number of trials per parameters, and d was the number of parameters419

in the model (46). In our case, N = 400 and d = 28, so the total sensitivity indices were420

computed using 23,200 model evaluations. The variance-based sensitivity analysis was421

conducted using the SALib module encoded in the Python programming language (47).422

Robustness coefficients quantify the response of a marker to a structural or operational423

perturbation to the network architecture. Robustness coefficients were calculated as424

shown previously (48). Log-transformed robustness coefficients denoted by α̂ (i, j, to, tf )425

are defined as:426

α̂ (i, j, to, tf ) = log10

[(∫ tf

to

xi (t) dt

)−1(∫ tf

to

x
(j)
i (t) dt

)]
(7)

Here to and tf denote the initial and final simulation time, while i and j denote the indices427
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for the marker and the perturbation, respectively. A value of α̂ (i, j, to, tf ) > 0, indicates428

increased marker abundance, while α̂ (i, j, to, tf ) < 0 indicates decreased marker abun-429

dance following perturbation j. If α̂ (i, j, to, tf ) ∼ 0, perturbation j did not influence the430

abundance of marker i. In this study, we perturbed the initial condition of C3 or C5 or431

a combination of C3 and C5 by 50%, 90% and 99% and measured the area under the432

curve (AUC) of C3a or C5a with and without lectin initiator. We computed the robustness433

coefficients for a subset of the parameter ensemble.434
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Fig. 1: Simplified schematic of the human complement system. The complement cascade is activated
through three pathways: the classical, the lectin, and the alternate pathways. Complement initiation results
in the formation of classical or alternative C3 convertases, which amplify the initial complement response
and signal to the adaptive immune system by cleaving C3 into C3a and C3b. C3 convertases further react
to form C5 convertases which catalyze the cleavage of the C5 complement protein to C5a and C5b. C5b
is critical to the formation of the membrane attack complex (MAC), while C5a recruits an adaptive immune
response.
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Fig. 2: Reduced order complement model training. An ensemble of model parameters were estimated using
multiobjective optimization from C3a and C5a measurements with and without zymosan (20). The model
was trained using C3a and C5a data generated from the alternative pathway (A–B) and lectin pathway
initiated with 1 mg/ml zymosan (C–D). The solid black lines show the simulated mean value of C3a or C5a
for the ensemble, while the dark shaded region denotes the 99% confidence interval of mean. The light
shaded region denotes the 99% confidence interval of the simulated C3a and C5a concentration. All initial
conditions were assumed to be at their physiological serum levels unless otherwise noted.
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Fig. 3: Reduced order complement model predictions. Simulations of C3a and C5a generated in the lectin
pathway using 0.1 mg/ml, 0.01 mg/ml, and 0.001 mg/ml zymosan were compared with the corresponding
experimental measurements. The solid black lines show the simulated mean value of C3a or C5a for the
ensemble, while the dark shaded region denotes the 99% confidence interval of mean. The light shaded re-
gion denotes the 99% confidence interval of the simulated C3a and C5a concentration. All initial conditions
were assumed to be at their physiological serum levels unless otherwise noted.
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Fig. 4: Global sensitivity analysis of the reduced order complement model. Sensitivity analysis was con-
ducted on the two objectives used for model training. A: Sensitivity of the C3a and C5a residual w/o zy-
mosan. B: Sensitivity of the C3a and C5a residual with 1 mg/ml zymosan. The bars denote the mean total
sensitivity index for each parameter, while the error bars denote the 95% confidence interval. C: Pathways
controlled by the sensitivity parameters. Bold black lines indicate the pathway involves one or more sen-
sitive parameters, while the red lines show current therapeutics targets. Current complement therapeutics
were taken from the review of Morgan and Harris (21).
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Fig. 5: Robustness analysis of the complement model. Robustness coefficients were calculated for a 50%,
90% and 99% reduction in C3, C5, or C3 and C5 initial conditions. A: Mean robustness index for C3a and
C5a generated from the alternate pathway (w/o zymosan). B: Mean robustness index for C3a and C5a
generated from the lectin and alternate pathway (1 mg/ml zymosan). The color describes the degree of
reduction of C3a or C5a following the network perturbation. Robustness coefficients were calculated using
all parameter sets with Pareto rank less than five (N = 65).
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