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Abstract

Understanding plant growth and development is essential to develop the future technologies necessary
to meet the anticipated needs of a growing world population. Because plant growth is a manifestation of
cellular growth, it is of prime importance to develop a mechanistic understanding of plant cell growth.
Transport of cellular cargo, such as proteins, in growing plant cells is essential as it facilitates growth.
Developing a quantitative model of growth requires knowledge of the surrounding medium, i.e. the
cytoplasm and its inherent properties. Here, we performed Fluorescence Recovery After Photobleaching
(FRAP) in tip-growing Physcomitrella patens cells, to determine the diffusion coefficient of 3xmEGFP,
and calculate an effective cytoplasmic viscosity. In order to interpret the experimental measurements
correctly and accurately estimate the diffusion coefficient, we developed a three-dimensional comprehen-
sive computational model of the FRAP process, including particle diffusion, the cell boundary effects,
and the optical properties of the scanning confocal microscope. To the best of our knowledge, this is
the first time such an estimate of the viscosity for particles at this length scale is reported for a plant
cell. Our model allows us to determine the degree at which cell boundary and optical effects confound
the interpretation of FRAP recovery curves, the bound fraction of fluorescent proteins, and the number
of dynamic states of a given fluorescent protein. The presented FRAP model has a wide range of appli-
cability across many cell types including plant, animal, and fungal cells, particularly in the presence of
otherwise prohibitive geometries.

1. Introduction

World crop demand is expected to grow by 48% by 2050 [1], therefore, building a mechanistic understand-
ing of plant growth is crucial to provide the technology necessary to feed a growing world population.
Because plant growth is dependent on specific patterns of cell growth and division, it is essential to fully
understand these processes to be able to engineer plants with desirable morphological characteristics.
The moss Physcomitrella patens is an ideal model organism to study plant cell growth; it has unpar-
alleled genetics similar to yeast, with a well characterized genome sequence [2-5], and due to its size
provides excellent imaging capabilities. Furthermore, this model plant is particularly relevant for stud-
ies of drought tolerance [6-9], and for bio-technological applications [8, 10-12]. Nevertheless, in order to
develop a mechanistic and quantitative understanding of plant cell growth, it is important to characterize
intracellular transport processes that facilitate growth in these cells.

Many cellular processes that are critical for growth, function and survival, including active transport
of cellular cargo to the tips of growing cells, are dependent on the properties of the surrounding medium,
i.e. the cytoplasm. While the cytoplasm of cells is a complex fluid comprised of proteins, cytoskeletal
filaments, membranes, and other macromolecules, the cytoplasmic viscosity is typically defined as the
viscosity experienced by small tracer particles such as GFP or fluorescent quantum dots introduced into
cells [13, 14]. Cytoplasmic viscosity, hereafter the viscosity, is therefore a crucial parameter in modeling of
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many transport processes in cells [15, 16]. However, geometric confinement and molecular crowding [17—
21], hydrodynamic effects due to active transport [22], or cytoplasmic streaming in fast growing cells
such as pollen tubes [23] make accurate measurements of viscosity challenging. The moss, while suffering
from similar geometric and crowding effects, does not exhibit large organelle streaming [24], making it
amenable for the use of optical techniques to measure diffusion of such small molecules, which would
allow for an accurate estimate of the viscosity.

The most commonly used non-invasive, optical methods in literature for the measurement of molec-
ular diffusion are single-particle tracking, Fluorescence Correlation Microscopy (FCS), and Fluorescence
Recovery After Photobleaching (FRAP). When possible, single particle tracking gives excellent results,
but this approach requires being able to image and track single fluorescently labeled targets in three
dimensions, over the time scales relevant to the objects’ motion [25]. FCS is an attractive alterna-
tive [17, 26], which does not use information at the single-particle level, however, it does require equipment
capable of high temporal resolution.

FRAP [27, 28] provides another alternative to these approaches since it makes it possible to study
diffusive behavior at long time (seconds) and length (microns) scales, and it has been extensively used
to characterize diffusion of many different sizes of particles across different cell types, such as GFP in E.
coli [29], GR-GFP in mouse adenocarcinoma cells [30], and others [31, 32]. Determining diffusion coeffi-
cients, and with that effective viscosity, from FRAP recovery curves has a series of challenges, however.
In particular, the recoveries are affected by the presence of geometric boundaries, the shape and size
of the Region of Interest (ROI) that is used, and features of the optical setup. Despite a large number
of studies conducted with the aim of correctly interpreting FRAP recovery curves over the past three
decades [28, 33-41], the authors are not aware, of any studies that correct for the three-dimensional
nature of the FRAP ROI, imaging and bleaching effects, and the role of geometric boundaries in a sys-
tematic way, even though these have been noted as potential hazards in analysis [42]. Additionally, there
are no simple analytical approaches for calculating the expected recovery in the vicinity of a complex
boundary, such as the tip of a growing cell.

To measure diffusion of small molecules in growing moss cells, here, we conducted FRAP experiments
for 3xmEGFP molecules, in conjunction with a comprehensive computational model of the entire FRAP
process. Our coarse-grained three-dimensional approach incorporates fluctuating fluid behavior as well
as the properties of the confocal system (imaging and bleaching), cell shape and ROT related effects, and
is used to determine the diffusion coefficient, hence the viscosity, from experimental recovery data.

2. Materials and Methods
2.1 Cell Culture and Sample Preparation

In order to conduct FRAP experiments on Physcomitrella patens, microscope samples were prepared in
QR-43C chambers (Warner Instruments) as follows. First, 25 mm bottom coverslips were plasma treated
for three minutes to yield a hydrophilic surface. A solution of 0.8% type VII agarose in PpNO3 medium
(refer to Furt et al. 2013 [43] for details) was melted then added directly to the coverslips. Moss tissue
was cultured for seven days after sub-culturing and on cellophane placed directly on top of the liquid
phase agar. To obtain flat cultures, a second untreated coverslip was placed on top of the moss and
flattened using a blunted syringe. Agarose was solidified by placing the cultures onto a surface at 12°C.
Once the agarose solidified, the top coverslip was gently removed from the top of the preparation. The
remaining preparation was submerged in PpNOj and the cellophane was removed. With the moss firmly
adhered to the agarose, the entire coverslip was added to the QR chamber. The chambers were capped
with 18 mm coverslips and connected to silicone tubing with a wall thickness of 0.018 in. The tubing
was connected to a peristaltic pump and liquid PpNOg3 was perfused through the chambers over night.
Liquid PpNOj3 was made two days prior to perfusion and was filter sterilized immediately before its use.
During latrunculin B treatment, a solution of 5 uM or 10 pM latrunculin B was added in liquid PpNOg
and perfused for 20 minutes as indicated.

2.2 Confocal Imaging

FRAP experiments were conducted using the Leica TCS SP5 scanning confocal microscope and the Leica
FRAP Wizard. To conduct FRAP, a 63X objective was used with a numerical aperture (NA) of 1.4. In
the software settings, the pinhole was set to 2.00 airy disks and the camera zoom was set to 9. Images
of 256X256 pixels were acquired with a depth of 12bits. To visualize 3xmEGFP, the Argon laser was
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set to 75% power with a bidirectional scanning speed of 2800 Hz and the 488 nm laser line was set to
10% power in the FRAP wizard. The emission bandwidth for 3xmEGFP was set between 499 nm and
546 nm. During bleaching events, all laser lines were set to 100%.

2.3 Experimental Measurement of Point Spread Function

In order to experimentally measure the Point Spread Function (PSF) of the confocal microscope, beads
were used from the Ivitrogen PS-Speck Microscope Point Source Kit P7220 (Thermo Fisher Scientific,
Waltham, MA). Preparations were made by adding 5 uL of 0.01% polylysine and 5 pL of bead solution
to a dry microscope slide. A coverslip was then placed directly onto the slide and sealed with wax. Beads
were visualized and measured with the Leica TCS SP5 scanning confocal microscope, using the settings
described in Section 2.1. Green fluorescent beads were used to match the 3xmEGFP fluorophore, and
z-stacks of the 175 nm beads were taken. From these z-stacks, a three-dimensional reconstruction of the
bead’s intensity profile was created as shown for the green beads in Figure 2A. These profiles were then
used to determine the three dimensional parameters of the PSF.

To correct for the fact that the 175 nm beads were not an ideal point source, a three dimensional
fitting routine was written. During this process, z-stacks for an ideal three dimensional 175 nm bead
were generated. These bead image stacks were then convolved with the product of two three dimen-
sional Gaussians from Eq. 11 with parameters wy and zgr. Theoretically generated and experimentally
obtained PSFs are compared in Figure 2A. A sum of squared differences between the two PSFs was
calculated and minimized to determine the parameters wy and zr. A heat map showing the parameter
range scanned illustrating the goodness of fit is given in Figure S2 in the Supporting Material, and
the parameters obtained are summarized in Table SII in the Supporting Material. These parameters
were then used in the simulation of the excitation and emission schemes during confocal imaging.

2.4 Post Acquisition Processing

After capture, all FRAP images were subjected to an initial processing step to yield recovery curves.
This procedure was chosen to resolve confounding factors that can influence the interpretation of FRAP
results. Specifically, we examined confocal detector linearity (Section S6), image acquisition photo-
bleaching (Section S7), and the effects of imaging and photobleaching away from the medial cell plane
(Section S8 in the Supporting Material). With this information we then constructed the FRAP
processing scheme depicted in Figure S4 in the Supporting Material. This flowchart illustrates how
the experimental and simulated FRAP images were processed and analyzed to yield the data presented
throughout the main text.

Experimental FRAP tiff stacks I(z,y,t); were analyzed with an ImageJ macro. The subscript ¢ rep-
resents the i*? replicate tiff stack for a particular experimental condition. The macro was written to track
the photobleached ROI throughout the fluorescence recovery. The macro conducted background subtrac-
tion and divided the ROI fluorescence intensities by the ROI prebleach intensity to yield RS*P(t); [39],
namely,

(I(2,y,1)i) (@y)eror — (L(2, Y, 1)i) (x,y,t) €BackROT

RO (1), —
®) (I(2,y,t)i) (@y)eront<0 — {L(T,Y,1)i) (2,y,t)eBackROT

(1)

Here (...) denotes averaging about the corresponding subscripts inside the parenthesis, i.e.,

(o) = %Z : @)

j=1

The subscript ROI represents the photobleaching ROI and the subscript BackROI represents the back-
ground ROI. All subsequent FRAP recovery curve processing was then conducted on the time dependent
curves RSP (t);. Simulated recovery curves were subjected to the same normalization without background
subtraction to yield RS"™(t);.

2.5 FRAP Parameter Minimization

To identify the simulation parameters best fitting the recovery curves produced by experiments, a least
squares minimization routine was used. Initially, averaged experimental recovery curves R®P(t) were

3


https://doi.org/10.1101/059220

bioRxiv preprint doi: https://doi.org/10.1101/059220; this version posted June 15, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

characterized into classes R7."(t) and RSP (t), depending on if they were produced from the tip or shank
of the cell, respectively. Similarly, the averaged simulation recovery curves were characterized to produce
R () p i wy and RE™(t) p e .- Here D is the diffusion coefficient, K is the bleaching proportionality
coefficient, and wy is the bleaching probability beam waist used for the simulation. The best fit param-
eters for each experimental condition were found by minimizing the sum of squares differences between
the experiment and simulation, for both the tip and shank, i.e.,

ot B, |30 O~ B O o + (70~ R O - O
These parameters were found by allowing the tip and shank to have the same diffusion coefficient D.
The bleaching proportionality coefficient, K, was split into two independent parameters K; and K, for
the tip and shank, respectively, to improve the resultant fit. The difference between K; and K indicates
that some underlying physical process may be altering the initial bleach depths at the tip and shank
(Table SIV in the Supporting Material). Understanding the cause of this difference is beyond the
scope of this paper.

Determination of the errors associated with the parameters determined from the minimization
procedure is described in Section S10 in the Supporting Material.

2.6 Fourier Analysis of Spatial Recovery

Quantification of the directionality of fluorescence recovery was performed by subsampling the cropped
ROIs into angular sectors about their centers. To reduce the noise associated with small regions of
interest, a sliding window average was used. This sliding window was rotated 360 degrees and averaged
about the horizontal axis of the ROI, producing an intensity profile that was dependent on the angular
position of the sliding window, as shown in Figure S12 in the Supporting Material. To investigate
fundamental modes of spatial recovery, the angular intensity profiles were reconstructed using a Fourier
cosine series [29], namely,

L) =Y f(6) = % + 3" a, cos(nf) (4)
n=0 n=1

th

with a,, denoting the amplitude of the n'"* Fourier mode.

2.7 GPU Accelerated Computation

Due to the large number of potential FRAP model parameters that needed to be scanned, we parallelized
the simulation to take advantage of General Purpose Graphics Processing Unit (GPGPU) computing. We
used the Single Instruction Multiple Thread (SIMT) parallelization model of NVidia’s CUDA platform
to make an accelerated parallel version of the software described here. By simultaneously simulating
different a particle’s motion in every thread on the GPU, simulation time was reduced approximately
by a factor of 60, in addition to improvements in power and cost efficiencies by factors of two and three,
respectively (see [44] for computational details).

3. FRAP Model

FRAP was originally, though under a different name, introduced by the work of Axelrod et al. [45],
where a single Gaussian beam bleach was considered in two dimensions in an infinite domain. Without
the consideration of a Point Spread Function (PSF), the analysis consisted of finding half-recovery times,
and estimating diffusion coefficients from the size of the bleach spot. This approach was expanded on
by Soumpasis and coauthors [27] by solving the full recovery profile for a two-dimensional sharp disk.
Braga et al. [34] two decades later, provided an analytical solution, taking into account the PSF—though
assuming it has a Gaussian profile in three dimensions—of the bleach in an infinitely large system without
boundaries. Sprague and coauthors [35] present FRAP in the context of reaction-diffusion systems, and
while their analysis involved a sharp disk ROI and no PSF, they discuss how multiple phases of recovery
can be analyzed. More recently, Kang et al. in a series of papers [40, 46, 47] incorporated the finite-time
of the bleaching process, and find this effect to be very strong (especially with multiple bleaches), stating
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that it not be ignored. Nevertheless, as they worked to produce an analytical model, they had to disre-
gard the imaging PSF, imaging time, and the presence of finite boundaries. Hallen and coauthors [38]
took the reaction-diffusion model further, and produce an analytical equation for recovery given a conical
disk photobleaching region, although as with many other analytical approaches, it is placed in an infinite
domain.

The effect of boundaries during FRAP has been discussed by several groups as well. Mai et al. [33]
used a two-dimensional particle-based method to examine the effects of reaction kinetics near boundaries,
but instead of the actual PSF, they used a sharp bleach disk. Sbalzarini and coauthors [36] considered
an arbitrary three-dimensional geometry, and also used a particle-based simulation. This is a scheme in
which a single simulation is done for a set of baseline parameters, and from there, the resulting recovery
curve is rescaled to fit the experimental data, and that rescaling can be used to calculate the diffusion
coeflicient. While a powerful technique, these approaches rely on the time-scale-invariance of the process,
which is not true in the case where the bleaching and imaging times cannot be considered zero.

In their recent work, Fritzsche et al. [41] provided step-by-step instructions for producing and examin-
ing FRAP data, and suggest fitting the recovery curves to an increasing series of exponential fits—single,
double, if necessary triple, etc. This series of fits allowed them to identify how many processes are occur-
ring, and determine associated diffusion coefficients using the Axelrod method [45] of half-times. While
the associated analysis uses the half-time approximation method here, it does not claim to be excessively
accurate, and the authors additionally warned the readerr to make sure that they are performing FRAP
a sufficient distance away from any boundaries in an isotropic region. This is important, because (as we
demonstrate later), geometric effects are capable of making a double-exponential fit appropriate, despite
the presence of a single actual diffusion coefficient.

In order to address the shortcomings of the earlier models, and accurately measure the diffusive
dynamics of a given molecule in complex tip geometries, we created a rigorous, particle-based simulation
that consists of non-interacting Brownian particles, with a constant diffusion coefficient [48]. As a first
approximation, we moodeled the moss geometry as cylinder with a hemispherical cap (Figure 1A). The
simulation also incorporates properties of the optical system, i.e. imaging and bleaching, finite scan rates
of the confocal microscope, the Point Spread Function (PSF), and ROI size and shape related effects, as
described below.

3.1 Diffusion of Fluorescent Particles

We used Brownian dynamics to simulate the diffusion of fluorescent particles in the moss geome-
try [49, 50]. The particles were assumed to be in a fluid with a very low Reynolds number, in which
inertial effects are negligible, and the Stokes equation, i.e.,

—
—

dr

— = £(t 5
¢ = 5)
applies for each particle. Here &;(t) is the i*" sample of random Gaussian noise with the properties

(&) =0 (6)
(&(1)& (1) = 2kpTCoi6(t —t') . (7)

Assuming spherical particles with radius R, the friction coefficient, ¢, is given by
¢ =6mR (8)
for the dynamic viscosity n. We can relate this ¢ to the diffusion coefficient D, using the Einstein relation

p= T )
¢

The particles in the simulation were constrained to stay within the region inside a hemisphere-capped
cylinder, as shown in Figure S3A in the Supporting Material. This shape was chosen to mimic the
geometry of the tip of the moss caulonemal cell and correct for cell boundary affects during FRAP [33].
The constraint was imposed by adding an elastic collision between the particles and the boundary of the
moss geometry, displayed in Figure S3B and S3C. For each particle, where v; is the velocity before
collision, during at each time step, a line segment is drawn from the previous position along its direction
of travel. For each of the three boundary types (flat end, cylindrical sides, hemispherical tip), the next
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Figure 1. Illustration of 3D scanning confocal FRAP simulation. A) Scanning photobleach in confined
finite particle simulation. Arrows indicate the bleaching pattern of the Gaussian photobleaching laser
beam within the yellow circular region. B) Simulated particle excitation and emission. Here the green
diffraction limited laser scans across the image and locally excites fluorophores that emit red light. In
both figures A) and B) raster scanning happens at 1400H 2. Images not to scale.

point is tested to check if it is out of bounds. If it is, the intersection between the line segment and the
boundary is found. Out of these intersections, the first one reached is chosen as the collision to do. The
position of the particle is set to this intersection point, and the amount of extra distance is recorded.
The velocity vector is reflected along the surface normal 7, and the final velocity v is determined from
the initial velocity v; by

vy =v; —20(v;- ) . (10)

The particle then repeats the movement process (including additional collisions, if they happen) using
the remaining amount of distance.

3.2 Confocal Imaging and Bleaching

To determine the parameters for this model, we first measured the Point Spread Function (PSF) of the
microscope by imaging fluorescent beads [51]. For a point source located at the coordinates (x,y, z), the
PSF in a confocal imaging system can be modeled by a Gaussian beam [52]. The Gaussian beam is of
this form because it is the product of two three-dimensional excitation and emission Gaussians, as shown
in Figure S1B in the Supporting Material. Both wy and zr are experimentally determined from the
PSF of the microscope as described in Section 2.3 and Figure 2 in the Supporting Material.

As the microscope rasters across the image, it illuminates an area, causing the fluorophores in that
area to fluoresce. For the model, it is assumed that the intensity of the emission of an illuminated particle
is directly proportional to the intensity of the excitation light it experiences. With all the nearby fluo-
rophores emitting an amount of light, some of that light then travels back up the microscope objective,
where it is focused into a light detector. This means that the intensity at a point R from a particle at
point source at P; is the product of the intensity the point experiences from the excitation beam (Ioy)
and the intensity the microscope reads from the point(Iey,), i.e.

I(R) = ZIeX(Pi - R)Iem(Pi - R) ) (11)

where I, and I, represent the excitation and emission PSFs, respectively.
To analytically represent this process, we used a Gaussian approximation of the imaging system,
IPSF of the form
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IPSF _ 0 wZ(z) 12
(I,y,Z) ’LU2(Z)6 ’ ( )
where the beam waist is given by
22
w(z) =woy[1+ = . (13)
“R

Here, wg is the minimum beam waist and zg is the Rayleigh range (see Section 2.3 for details). After
exploring this two dimensional parameter space, we were able to recapitulate the experimental three-
dimensional diffraction limited laser beam with our Gaussian approximations as shown in Figure 2A
and Figure S2.
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Figure 2. Point Spread Function (PSF). A) Gaussian approximation of the PSF, I™SF(x, y, 2), for
3xmEGFP (left) compared to the experimentally measured PSF for 175 nm bead (right). B) Example
simulated rectangular photobleaching with one, two, and ten confocal laser scans using Eq. 14. Dashed
yellow rectangles indicate regions in which horizontal lines scans were measured and averaged along their
vertical axis. C) Horizontal line scans through simulated photobleaching images in (B) for one, two, six,
and ten confocal laser scans. I represents fluorescence intensity and I, represents mean simulated image
background intensity. Red solid line indicates the final bleach result. Blue dashed lines indicate the bleach
result following each successive laser scan.

With the imaging properties of the beam established, we then sought to determine its photobleaching
properties. In order to simulate photobleaching, it was necessary to determine the spatial profile of an
individual photobleaching event. This profile was characterized as a Gaussian beam, with a fluorophore-
bleach probability (Pphotobleach) Proportional to the beam intensity. As the microscope scans through a
line at a speed much greater than diffusion (Section S2 in the Supporting Material), we treated the
photobleaching effect of a single horizontal line scan as a single instantaneous event. This was done by
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convolving the Gaussian beam intensity against a boxcar function from x = —a to = = a, i.e,
a ¢ K _2e+rw?ey?)
2
Pphotobleach(xa Y, Z) =K I(ZE + u,y, Z)du = 2 € w?(2) du
a —a w(2)

_ K| e (YV2era)) L (V2Ae—a)) | ] -2
—w@)[ f( w(z) ) f( w(z) )H ] (0

using the same w(z) functional form as used for the imaging Gaussian, and using K as the bleaching

proportionality coefficient. Simulated confocal scanning events using Eq. 14 are illustrated in Figure 2B
and 2C.

prebleach bleach

Figure 3. Three- and two-dimensional rendering of simulated scanning confocal photobleaching and
recovery. Artificially fast imaging scan rates were used to illustrate three dimensional properties of the
simulation.

The theoretical FRAP function resulted in a poor fit to the experimental FRAP profile when wg
from the visualization Gaussian was used. To improve this fit, both the K and wy were used as open
parameters in the fitting routine. The resulting wg was roughly two fold larger than the value obtained
for imaging. The likely causes for this difference are light scattering at the high laser intensities used in
bleaching, changes in refractive indices throughout the cell, and reactive oxygen species [53]. The theo-
retical estimations of K and wy were used as a starting point, and a range of parameters were scanned
for both of them. The results from this minimization were used to measure diffusion, as explained in
Section 2.5. A final snapshot from the simulations is depicted in Figure 3. The entire FRAP process
is illustrated in Sup Movie 1, and Sup Movie 2.

4. Results

In order to better characterize the diffusion of proteins in plants cells, and measure the cytoplasmic vis-
cosity, we conducted FRAP experiments on a cell line expressing three copies of unconjugated mEGFP in
tandem (3xmEGFP). To improve the accuracy of our diffusion measurement we conducted photobleach-
ing at two unique spatial locations within the cell. These locations include, the cell tip and a region distal
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to the tip, referred to as the shank, as depicted in Figure 4A. We processed the curves to correct for
acquisition photobleaching, and ensured that our experiments were in the linear range of the detector
(Sections 2.4 and S6). After processing, the tip and the shank regions exhibited a fast fluorescence
recovery, on the order of a few seconds (Figure 4B). Additionally, recoveries at the cell tip exhibited
a slower rate of recovery and higher fluorescence plateau when compared to the shank. To ensure that
these recovery properties were not due to filamentous actin localization at the cell tip, we performed the
same analysis in the presence of latrunculin B (Figure 4C). Latrunculin B treatment had no influence
on the observed fluorescence recovery.

4.1 Cell Shape Influences Fluorescence Recovery

To determine that the differences observed at the tip and shank (Figure 5A) were a product of the cell
boundary, and to measure the diffusion coefficient of 3xmEGFP, we simulated FRAP recovery curves
at the tip and shank for a range of diffusion coefficients using the model described earlier. In our fit-
ting routine (Section 2.5), we used one diffusion coefficient to fit both the tip and the shank, which
yielded a diffusion coefficient of D = 7.75 £ 3.19 um?s~!. The simulations at the cell tip exhibited both
a slower rate of recovery and higher fluorescence plateau when compared to the shank, recapitulating
experimental recoveries. The slower recovery at the cell tip is due to geometrical constraints provided
by the apical plasma membrane, i.e., proteins cannot flow in or exchange in all directions as they can at
the shank of the cell. The higher plateau at the cell tip is caused by photobleaching fewer particles at
the cell tip since the three-dimensional Gaussian laser beam bleaches outside of the cell volume at the
tip, in contrast to the fully encased beam at the cell shank. Our simulation results highlight the strong
influence of boundaries on recovery, and shows that erroneous conclusions about the fraction of bound
molecules and fluorescent mobility at the tip and shank can be made if such geometric effects are not
taken into account.

A) Tip FRAP Shank FRAP

° )

C)  LatB Treated

Intensity

0 10 20 30 40 0 10 20 30 40
Time (sec) Time (sec)

0.65 ‘

‘ : 0.65 '

Figure 4. 3xmEGFP FRAP and curve fitting. A) Illustration of ROIs at the cell tip (black) and the
cell shank (green). B) Fluorescence recovery at the tip (black) and shank (green) of cells expressing
3xmEGFP. C) Fluorescence recovery at the tip (black) and shank (green) of latrunculin B treated cell
expressing 3xmEGFP. Red lines represent fits to a double exponential (Eq. 16).

4.2 Apparent Dynamic States of a Fluorophore

We found that cell shape can also influence the apparent number of dynamic states of a given flu-
orophore. By fitting our simulated recovery curves to a single and double exponential with GraphPad
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Fluorescent  Diffusion MW Viscosity

Model System and cell Type Protein Coefficient kDa Relative to
um?2s—! Water

Drosophila Embryo (FCS)[26] Bed-EGFP 74404 72 7.3-8.1

E. coli DH5 a (FRAP Fourier)!2?) GFP 77+£25 30 7.5—14.6

CHO-K1 (FRAP)P4 GFP 27 30 2.8

Mouse Adenocarcinoma (FRAP)30 GR-GFP 3.44+1.0 87 12.1 —22.2

Swiss 3T3 (FRAP)BY BSA 6.8+ 5.6 69 4.6 — 48

H1299 Cells (FRAP)[32 P53-GFP 154456 70 2.7-5.9

P. patens Caulonema (FRAP)[this study] 3y EGFP 7754319 90 4.8 —11.6

Table I. Diffusion coefficients across model systems.

Prism (GraphPad Software, La Jolla, CA), we found that, a double exponential model described our sim-
ulations better than the single exponential with a P-value less than 0.0001 (Figure S10 and Table SIII
in the Supporting Material). Without the prior knowledge that this is a result of the combination
of geometric (cell shaper, ROI) and optical (imaging, bleaching) effects, one could incorrectly conclude
that our simulation contains a fluorophore with two different diffusion coefficients. Since 3xmEGFP is
supposed to be inert, this is further evidence that double exponential fitting does not reliably predict the
number of dynamic states of a fluorophore. Our results suggest that extreme care should be exercised
while fitting recovery curves with increasing series of exponential fits [41] in systems where boundary or
optical effects can influence recovery, a point also raised by Fritzsche and co-workers [41].

4.3 Directional Recovery at the Cell Tip

To support our claim that cell shape can strongly influence the interpretation of FRAP curves and fur-
ther validate our diffusion measurement, we examined the direction of fluorescence recovery by analyzing
the spatial recoveries at the tip and shank (Section S11 in the Supporting Material) as a function of
time. To this aim, we cropped and averaged the photobleached regions (Sup Movie 3 and Figure 5B).
We could then detect intensity gradients as a function of angular position and time within the photo-
bleached region (Figures 5C and 5D). The shape of these gradients at early time points demonstrates
that the geometry at the cell tip limited the direction of fluorescence recovery. The same analysis at the
cell shank yielded no observable gradient at early times (Figure S15 in the Supporting Material).
Additionally, the uniformity of fluorescence recovery at the cell shank indicates that hydrodynamics
effects—such as those caused by cytoplasmic streaming—do not influence 3xmEGFP dynamics. This
also indicates that the FRAP recovery at the extreme apex is affected by its position next to the apical
plasma membrane, such that material can not flow in or exchange in all directions as it can with the
FRAP region in the shank.

To quantitatively express the gradient’s transition from the transient state (Aty) to the steady state
(Atq), and to test the statistical significance of the difference between the observed gradients, we used a
Fourier cosine series to express the angular intensity profile at the cell tip (Section 2.6). Over the time
course of the fluorescence recovery, the coefficients of the first fundamental mode of the Fourier series,
ay(t) decayed to zero (Figure 5E). At early times, A¢q, the gradients exhibited time averaged Fourier
coefficients significantly different than those observed during the steady state, Aty, (Figure 5F). This
significant difference between the time averaged coefficients at A¢; and Aty indicates that experimental
noise artifacts did not produce the gradient observed at At;, and is consistent with a cell boundary effect
on diffusion. The simulations at the cell tip recapitulated the angular intensity profiles observed tran-
siently (At1: 0—0.1s) and at steady state (Aty: 20—40s) (Figures 5B, 5E, 5F, S16 and Sup Movie 3).
This agreement between the simulated and experimental recovery supports the accuracy of our measure-
ment of 3xmEGFP diffusion and illustrates how cell shape can confound the interpretation of FRAP
curves.
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Figure 5. 3xmEGFP dynamics. A)Fluorescence recovery of 3xmEGFP cells at the tip (black squares)
and shank (green circles). Best fit simulation indicated in red. n = 14 and 7 for the tip and shank, respec-
tively. Error bars represent standard deviation. B) Cropped and frame averaged photobleaching ROT at
the cell tip of 3xmEGFP cell line (top) and simulation (bottom). Time intervals for frame averaging are
At; =0—0.11s and Aty = 20 — 40s. n = 14 and 50, respectively. ROI is 4 pym in diameter with angular
intensity profile window indicated. Image intensity denoted with rainbow lookup table. C-D) Angular
intensity profile of 3xmEGFP at the cell tip during the time intervals Aty and Ats. At; =0—0.11s (C)
and Aty = 20 — 40s (D). First mode of the Fourier series, fi, is indicated in blue. n = 14, error bars
indicate standard error. E) Coefficients of the first mode of Fourier series, a;, across time for 3xmEGFP
(black) and simulation (red) for angular intensity profiles at the cell tip. n = 14 and 50 respectively; error
bars indicate standard error. At; = 0.11s; Ata = 20 — 40s. F) Fourier coefficients, a, for frame averaged
angular intensity profiles. 3xmEGFP cells are indicated in black and the simulations are indicated in
red. Differences between At; and Aty for simulation and 3xmEGFP are significant with, P < 0.05 and
P < 0.001 respectively. n = 14 and 50 respectively, error bars indicate standard error. At; = 0 — 0.11s;
Atg = 20 — 40s.
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5. Discussion

In this work we have characterized diffusion of 3xmEFGP molecules within the moss cytoplasm by
conducting experimental and simulated FRAP. Our simulation incorporates the diffusing fluorescent
particles under observation, the geometry of the cell tip, their appearance due to the three dimensional
point spread function of the microscope, the experimentally measured bleaching probabilities, and the
finite scan rate of the confocal microscope. Together, our experiments and simulations showed that the cell
boundary and confocal imaging properties influenced the behavior of fluorescence recovery. Specifically,
these effects influence the residence time of diffusing particles at the cell tip and the number of bleached
fluorescent molecules, leading to erroneous measurements of diffusion coefficients, particle binding frac-
tions, and the number of dynamics states of a particle when fit to simple FRAP models [27, 41, 55]. We
also examined additional confounding factors such as detector linearity, and imaging and photobleaching
in different cell planes. Although these factors did not influence our results, it is important to note that
they could potentially confound FRAP analysis under different experimental conditions. Our simulation
can be extended to other species and microscope setups, where the characteristics of the system make
conventional analysis—such as the presence of complex boundaries—via analytical formulas impractical
or impossible. For instance, our approach can be used in animals cells with protrusions complicating
the FRAP regions, or with molecules diffusing on a nuclear membrane. This is particularly relevant as
the FRAP model presented here is applicable to systems where the combined effects of the point spread
function and scanning speed on fluoresce recovery are comparable to the diffusion rate of the fluorescent
marker.

With our validated measurement of the 3xmEGFP diffusion coefficient, we can calculate the effective
cytoplasmic viscosity of the moss cell for proteins of this size. We do this by estimating the radius, r, of
the GFP protein from its molecular weight, and then using the Stokes-Einstein relation, D = kgT/67wnr,
where kpT is Boltzmann constant times temperature, 7 is viscosity. Our calculated moss viscosity (shown
in Table I) is consistent with measurements of cytoplasmic viscosity in other species. To the best of
our knowledge, this is the first time measurement of a diffusion coefficient or cytoplasmic viscosity for
proteins of this size in plants, which is particularly relevant since previous studies of diffusion in plants
focused only on small molecules [56, 57]. Such measurements are important because they provide insight
into all facets of cellular dynamics, which influence fundamental cellular processes such as growth, divi-
sion, and cell signaling. Additionally, this viscosity measurement can be used to estimate diffusion of
other species, as well as be incorporated into other mechanistic models of cellular growth.
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