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Abstract

The mammalian genome is organized into submegabase-sized chromatin domains
(CDs) including topologically associating domains, which have been identified using
chromosome conformation capture-based methods. Single-nucleosome imaging in
living mammalian cells has revealed subdiffusively dynamic nucleosome movement. It
is unclear how single nucleosomes within CDs fluctuate and how the CD structure
reflects the nucleosome movement. Here, we present a polymer model wherein CDs are
characterized by fractal dimensions and the nucleosome fibers fluctuate in a
viscoelastic medium with memory. We analytically show that the mean-squared
displacement (MSD) of nucleosome fluctuations within CDs is subdiffusive. The
diffusion coefficient and the subdiffusive exponent depend on the structural
information of CDs. This analytical result enabled us to extract information from the
single-nucleosome imaging data for HeLa cells. Our observation that the MSD is lower
at the nuclear periphery region than the interior region indicates that CDs in the
heterochromatin-rich nuclear periphery region are more compact than those in the
euchromatin-rich interior region with respect to the fractal dimensions as well as the
size. Finally, we evaluated that the average size of CDs is in the range of 100-500 nm
and that the relaxation time of nucleosome movement within CDs is a few seconds.
Our results provide physical and dynamic insights into the genome architecture in
living cells.

Author Summary

The mammalian genome is partitioned into topological chromatin domains (CDs) in
the living cell nuclei. Gene expression is highly regulated within CDs according to
their structure, whereas chromatin itself is highly dynamic. This raises the following
question: how is the CD structure in such dynamic chromatin? We developed a
conceptual framework that unifies chromatin dynamics and structure. Using a polymer
model with a fractal domain structure in a viscoelastic medium, we analytically show
that nucleosome movement is subdiffusive and depends on CD structure. Hence,
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structural information can be extracted based on nucleosome movement in living cells
with single-particle tracking experiments. This framework provides physical insights
into the relationship between dynamic genome organization and gene expression.

Introduction

Genomic DNA is packed and folded three-dimensionally in the cell nuclei. In the
nuclei of eukaryotic cells, the nucleosome is a basic unit consisting of an approximately
147-bp DNA wrapped around core histones [1]. Recent experimental evidences suggest
that the nucleosome is irregularly folded without the 30-nm chromatin fiber [2–7]. On
the other hand, at the scale of the whole nucleus, interphase chromosomes occupy
distinct chromosome territories [8]. This highly organized chromosome structure
allows for effective regulation of various genome functions.

By virtue of recent developments of chromosome conformation capture (3C)
techniques, the genome-wide chromosome organization has been revealed by detecting
the physical contact frequencies between pairs of genomic loci [9]. More recently, 3C
derivatives, Hi-C and 5C profiles demonstrated that metazoan genomes are partitioned
into submegabase-sized chromatin domains (CDs) including topologically associating
domains (TADs) [10–12]. TADs are considered to be a regulatory and structural unit
of the genome [13]; genome loci located in the same TAD are associated with each
other, whereas genomic interactions are sharply depleted between adjacent domains.
For even single-cell Hi-C, individual chromosomes maintain domain organization [14].
Furthermore, kilobase-resolution in situ Hi-C maps identified not only small contact
domains but also CTCF-mediated loop domains [15,16].

In contrast, dynamic aspects of chromatin have been shown by live-cell imaging
experiments [17–24]. In particular, single-nucleosome imaging in living mammalian
cells has revealed local nucleosome fluctuations caused by the thermal random
force [25–27]. The mean-squared displacement (MSD) of dynamic nucleosome
movement clearly shows subdiffusive motion,

MSD(t) = Dapp · tβ (0 < β < 1), (1)

where Dapp is the apparent diffusion coefficient with dimension m2/sβ . This means
that nucleosome movement must be affected by restrictions from some factors but
thermal noise. Therefore, there must be a way that the dynamic aspect is consistent
with aspects of the genome organization. A theory is required to relate the dynamic
aspects described by Dapp and β to the structural features of CDs. To date, the
subdiffusive exponent β has been considered to depend on the folding structure of
nucleosome fibers [28] and the viscoelasticity of the thermal environment [29,30].

The fractal nature of chromatin architecture as well as nucleus environment has
been revealed recently [9,31,32]. The topological structure of CDs can be described by
use of the fractal manner. Here, we propose a polymer model for a CD, whose
conformational state is assumed to be expressed by the fractal dimension df in a
viscoelastic medium with the exponent 0 < α < 1. Although not only the strings and
binders switch model [33] but also the block copolymer model [34] can explain aspects
of chromatin folding and chromosome architecture in Hi-C experiment datasets, in our
model we abstract information on the conformational states of CDs and interpret their
dynamic features by using size scaling according to the fractal dimensions.
Accordingly, the analytical form of the MSD of nucleosomes in CDs can be derived in
terms of polymer physics. As a result, the structural information of CDs, such as the
size and conformational state expressed by the fractal dimension, can be derived from
the MSD data of dynamic nucleosomes.
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Results

Polymer model

CDs characterized by fractal dimensions

To construct a model of CDs, we assumed that a nucleosome fiber is represented as a
polymer bead chain and forms a CD with size scaling, ⟨R⟩CD ∼ N1/df (Fig 1A), where
N is the number of nucleosome beads in the CD, and ⟨·⟩CD represents the average for
all nucleosome beads within the CD at thermal equilibrium. In polymer physics, the
exponent 1/df corresponds to the size exponent ν [35, 36]. A nucleosome fiber in a CD
not only has the excluded volume as a physical polymer, but also forms chromatin
loops for transcriptional regulation [15,16,37]. Therefore, nucleosome fibers can
interact with each other within the same CD through both attractive and repulsive
interactions. Here, we assume that the effective conformational state of CDs is
phenomenologically represented by the fractal dimension. Note that the states with
df = 1, 2, and 3 correspond to a straight line, the ideal chain [35], and the fractal
globule [9, 28,38], respectively (Fig 1A).

Nucleosome fiber fluctuation in viscoelastic medium with memory

The subdiffusive motion of tracer particles in living cells, ⟨[r(t)− r(0)]2⟩ ∼ tα, has
been observed [29,39–41]. There are several physical models for generating
subdiffusion, including: (i) the generalized Langevin equation (GLE), which is
consistent with fractional Brownian motion (FBM) [42–45], and (ii) the
continuous-time random walk [46]. Since some experiments have shown that the
movement of chromosomal loci displays the FBM [23,29], here, we adopt the former
model to describe the friction effect with memory in the viscoelastic
medium [39,47,48] that satisfies the fluctuation-dissipation relation (FDR) [35,49]:

the GLE
∫ t

0
γ(t− t′)dr(t

′)
dt′ dt′ = g(t), with friction coefficient with memory of

γ(t) ∼ t−α, generates the subdiffusive FBM. The thermal random force g(t) satisfies
the FDR ⟨gκ(t)gλ(t′)⟩ = kBTγ(t− t′)δκλ, where kB is the Boltzmann constant, T is
the temperature of the environment, and the suffixes κ and λ represent x, y and z.

Here, we focus on the concrete description of our polymer model. A CD is assumed
to be formed by N +1 nucleosome beads at positions {R0,R1, · · · ,RN} (Fig 1B), and
adjacent beads are connected via a harmonic spring so that the effective bond length
is beff , and long-range interactions exist such that the phenomenological size scaling of
the CDs is proportional to N1/df . Moreover, as mentioned above, the friction effect
between each nucleosome and the viscoelastic medium is assumed to be described by
the friction coefficient with memory [30,44,45,47],

γ(t) =
γα

Γ(1− α)
t−α, (2)

where the dimension of the coefficient γα is kg/s2−α, and the Laplace transform of
γ(t) has a simple form γαs

α−1 (see Eq S19 in S1 Text). In the continuous limit [35],
the Langevin equation of nucleosomes is described as∫ t

0

γ(t− t′)
∂R(n, t′)

∂t′
dt′ =

3kBT

b2eff

∂2R(n, t)

∂n2
+ F (l)(n, t) + g(n, t), (3)

where the long-range interaction force F (l)(n, t) including attractive and repulsive
interactions results in the size scaling⟨

[R(n)−R(m)]2
⟩
CD

= b2eff |n−m|2/df , (4)
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and the thermal random force g(n, t) satisfies the FDR:
⟨gκ(n, t)gλ(m, t′)⟩ = kBTγ(t− t′)δ(n−m)δκλ. Our model for df = 2 formally
corresponds to the classical Rouse model in the viscoelastic medium [30], where the
force F (l)(n, t) apparently vanishes. Hence, the additional long-range interaction force
generating the scaling (Eq 4) has an important role in our model, and enables us to
calculate the MSD analytically. Here, we do not take into account the hydrodynamic
interactions between nucleosomes, which are discussed in Discussion and S1 Text,
Section II.

Analytical calculation shows that the MSD of nucleosomes
within fractal CDs is subdiffusive in viscoelastic medium

A standard approach for treating Eq 3 is to use the normal coordinates

Xp(t) ≡ 1
N

∫ N

0
cos

(
pπn
N

)
R(n, t) dn for p = 0, 1, 2, · · · ; however, the nonlinearity of the

long-range interaction makes it difficult to deal with the equation in this manner.
Therefore, to simplify the analysis, firstly, we assume that nucleosome fluctuations
within the CD reach thermal equilibrium after the relaxation time τdf ,α, which is
explicitly described below (Eqs 11 and 12). Second, we use an approximation to
transform the nonlinear Langevin equation (Eq 3) into a linear equation by averaging
under thermal equilibrium with respect to the normal coordinates∫ t

0

γ(t− t′)
dXp(t

′)

dt′
dt′ = −kpXp(t) + gp(t). (5)

The term in the left hand side and the second term in the right hand side (RHS) are
straightforwardly derived according to the normal coordinates, in which

gp(t) ≡ 1
N

∫ N

0
cos

(
pπn
N

)
g(n, t) dn satisfies ⟨gp(t)⟩ = 0 and the FDR

⟨gpκ(t)gqλ(t′)⟩ = kBT
N γ(t− t′)δκλδpq(1 + δp0)/2 (see S1 Text, Section IA). Instead of

the linearity of Eq 5, the parameter kp implicitly includes the nonlinear effect such as
the long-range interactions, and is determined by the variance of Xp over the thermal
relaxation time [30] (see S1 Text, Section IB):

kp =
3kBT

2N
⟨
X2

p

⟩
CD

for p ≥ 1 and k0 = 0. (6)

Finally, to calculate the thermal average
⟨
X2

p

⟩
CD

, the effective size scaling (Eq 4)
generated by the long-range interactions is used. The asymptotic form for large p is
calculated as follows (see S1 Text, Section IC):⟨

X2
p

⟩
CD

≃ ⟨R2⟩CD

2Adf

p−1−2/df . (7)

Adf
is a dimensionless constant depending on the fractal dimension:

Adf
= π1+2/df

Γ(1+2/df ) sin(π/df )
. We shall refer to the above approximation as the linearization

approximation, which is on the same level of the approximation as the preaveraging
approximation in terms of polymer physics [35,50]. From this point forward, to avoid
complicated expressions caused by this asymptotic form, we regard the asymptotic
sign ‘≃’ as equality.

Next, let us consider the MSD of nucleosomes in CDs. Since the inverse transform
of normal coordinates is R(n, t) = X0(t) + 2

∑∞
p=1 cos

(
pπn
N

)
Xp(t) and the correlation

between different modes vanishes, the MSD of the n-th nucleosome,

ϕ(n, t) ≡
⟨
[R(n, t)−R(n, 0)]

2
⟩
, is expressed as

ϕ(n, t) =
⟨
[X0(t)−X0(0)]

2
⟩
+ 8

∞∑
p=1

cos2
(pπn

N

) [⟨
X2

p

⟩
CD

− Cp(t)
]
, (8)

4/21

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 15, 2016. ; https://doi.org/10.1101/059147doi: bioRxiv preprint 

https://doi.org/10.1101/059147
http://creativecommons.org/licenses/by-nc-nd/4.0/


where the correlation function is defined as Cp(t) ≡ ⟨Xp(t) ·Xp(0)⟩. Multiplying Eq 5
by Xp(0) and averaging with ⟨gp(t) ·Xp(0)⟩ = ⟨gp(t)⟩ · ⟨Xp(0)⟩ = 0, we can derive
that the correlation function for p ≥ 1 satisfies∫ t

0

γ(t− t′)
dCp(t

′)

dt′
dt′ = −kpCp(t). (9)

The first term for p = 0 in the RHS of Eq 8 corresponds to the MSD of the center of

the CD, and the motion obeys
∫ t

0
γ(t− t′)dX0(t

′)
dt′ dt′ = g0(t) and the FDR

⟨g0κ(t)g0λ(t′)⟩ = kBT
N γ(t− t′)δκλ. According to the fluctuation-dissipation

theorem [49], the motion of the center of mass is subdiffusive with exponent α (see
S1 Text, Section IE):⟨

[X0(t)−X0(0)]
2
⟩
=

2⟨R2⟩CD

Adf
Γ(1 + α)

(
t

τdf ,α

)α

, (10)

where

τdf ,α ≡
(
Nγα⟨R2⟩CD

Adf
· 3kBT

)1/α

(11)

represents the relaxation time of nucleosome fluctuations in the CD.
On the other hand, the second term in the RHS of Eq 8 describes the fluctuations

of many modes inside the CD. Using the Laplace transformation and the thermal
equilibrium initial state, the solution of Eq 9 can be derived as follows (see S1 Text,
Section ID):

Cp(t) =
⟨
X2

p

⟩
CD

Eα

[
−p1+2/df (t/τdf ,α)

α
]
, (12)

where Eα(x) is the Mittag-Leffler function. According to the polymer physics [35] for
t ≪ τdf ,α, ϕ(n, t) is dominated by terms with large p. Moreover, since the MSD in our
experiment (Fig 2E) is calculated by averaging the nucleosome trajectories at various
positions in CDs, the term cos2

(
pπn
N

)
can be replaced by the average 1/2. Therefore,

according to the asymptotic form of the Mittag-Leffler function,
Eα(−x) ≃ exp [−x/Γ(1 + α)] for x ≪ 1, and the conversion of the sum into the
integral, we obtain for t ≪ τdf ,α

MSD(t) ≃ 2Bdf ,α⟨R2⟩CD

Adf
Γ(1 + α)

(
t

τdf ,α

)α·2/(2+df )

, (13)

where Bdf ,α = df

2 [Γ(1 + α)]
df/(2+df ) Γ [df/(2 + df)] is a dimensionless constant (see

S1 Text, Section IF). Thus, in our model, subdiffusive motion of single nucleosomes is
a typical feature, assuming both fractal CDs and viscoelastic medium.

Nucleosome movement is much greater in the nuclear interior
than at the nuclear periphery

In order to apply our model to living human cells, single-particle imaging of
nucleosomes was performed by observation of PA-mCherry labels [51] attached to
histone H2B in human HeLa cells (Fig 2A). The clear single-step photobleaching
profile of the H2B-PA-mCherry dots shows a single H2B-PA-mCherry molecule in a
single nucleosome (Fig 2B). We tracked approximately 40,000 dots representing single
nucleosomes (S1 Table). Fig 2D shows representative trajectories of the dynamic
nucleosome movement in single cells.

Here, to evaluate the state of CDs according to their position in the nucleus, we
focused on the nuclear interior and periphery (or surface) (Fig 2C and S1 Fig), and
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calculated the MSD. The nuclear periphery is a heterochromatin-rich region, which
presumably shows much less active transcription than the interior. The plots of the
MSD at each region, in time interval t up to 0.5 s, are shown in Fig 2E (normal scale)
and S2 Fig (log-log scale) (also see S1 Table). The MSD at the interior is higher than
that at the periphery. This result implies that nucleosome movement within CDs in
the euchromatin-rich interior region is higher than that in the heterochromatin-rich
periphery region.

As we analytically derived the subdiffusive MSD (Eq 13), the experimental result
clearly shows subdiffusion of single-nucleosomes: using Eq 1, the plots fit well with the
MSD curves 0.018 t0.44 µm2 and 0.013 t0.39 µm2 for the interior and the periphery,
respectively.

MSD is lower at the nuclear periphery than the interior,
indicating that heterochromatin-rich CDs are more compact

Comparing Eqs 1 and 13, β and Dapp are calculated as

β = α · 2

2 + df
, (14)

Dapp = Cdf ,α ·
(
3kBT

Nγα

)2/(2+df )

· ⟨R2⟩df/(2+df )
CD , (15)

where Cdf ,α =
2Bdf ,α

(Adf )
df/(2+df )Γ(1+α)

. It turns out that these values contain statistical

information of the CD structures, ⟨R⟩CD and df . Since β and Dapp can be determined
by the fitting in our experiments, we can therefore estimate ⟨R⟩CD and df , inversely.

The lower MSD at the periphery than at the interior, Dapp,periphery < Dapp,interior

and βperiphery < βinterior, reflects the fact that the CDs near the periphery are in a
more compact conformational state and are smaller in size than those at the interior:
df,periphery > df,interior and ⟨R⟩CD,periphery < ⟨R⟩CD,interior. This property is consistent
with the conventional distribution of heterochromatin: the CDs in the
heterochromatin-rich nuclear periphery are more compact than those in the
euchromatin-rich interior [52].

Discussion

To estimate the structural information of CDs through solving Eqs 14 and 15 inversely,
the values of N , α, and γα in mammalian living cell nuclei are required. The average
size of TADs was determined to be 880 kb from mouse embryonic stem cells (mESCs),
with a range of 100 kb to 5 Mb [10]. Here, we assume a CD size of 1 Mb, which
corresponds to ⟨N⟩CD = 5000 nucleosomes. To the best of our knowledge, few studies
have estimated the friction effect in viscoelastic cell nuclei. Therefore, we use the value
of the diffusion coefficient of enhanced green fluorescent protein (EGFP)-monomer
around interphase chromatin, DEGFP = 20.6µm2/s [25], measured by fluorescence
correlation spectroscopy, in which α is assumed to be 1. In general, as a result of the
FDR in a viscoelastic medium with α, the diffusion coefficient of a diffusive particle
for one degree of freedom is kBT/ [Γ(1 + α) · γα,particle] (see Eq. S34 in S1 Text). Since
the contribution of Γ(1 + α) is within the range 1 ≤ 1/Γ(1 + α) < 1.13 for 0 < α ≤ 1,
the friction coefficient of EGFP in the nucleus can be approximately regarded as the
diffusion coefficient as γα→1,EGFP = kBT/DEGFP. The hydrodynamic radius of a
nucleosome bead with an H2B-PA-mCherry is assumed to be approximately quadruple
for the EGFP. This means that the friction effect is also 4 times larger [48].
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Accordingly, we use γα→1 = 4kBT/DEGFP. Finally, the structural information of CDs
is estimated by calculating

df =
2α

β
− 2, (16)

⟨R⟩CD =

(
Dapp

Cdf ,α

) 2+df
2df

(
4⟨N⟩CD

3DEGFP

)1/df

. (17)

β could be measured in our experiment, although the value of α could not be
determined simultaneously. Hence, Eq 16 represents the relationship between α and
df , as shown in Fig 3A. Under this constrained condition, according to Eqs 16 and 17,
the values of the structural information within the nuclear interior and periphery
regions are calculated and mapped as a function of α (Fig 3B). Since fluorescence
correlation spectroscopy measurements of GFP have shown that the value of α is close
to 0.79 in not HeLa but NRK nuclei [31], as an example, we summarize the estimated
values for α = 0.8 and α = 0.9 in Table 1. The exponent β = 0.4 for the fractal
globule model [28] corresponds to the value for df = 3 and α = 1 in Eq 14.
Furthermore, our previous results have shown smaller exponents β = 0.37 and 0.31 for
interphase chromatin and mitotic chromosome, respectively [25]. Unless considering
the case of 0 < α < 1, this smaller exponent cannot be explained. Note that α has
only minor effects on Cdf ,α (see S3 Fig).

The relaxation time of nucleosomes in CDs is calculated as

τdf ,α =

(
4⟨N⟩CD⟨R⟩2CD

Adf
· 3DEGFP

)1/α

, (18)

and is mapped as a function of α and df (Fig. 3C). The short relaxation time (∼ s)
means that the thermal equilibrium, which is the precondition for the linearization
approximation, were fulfilled in our experiments. In measurements of long-term
single-nucleosome movements, the MSD is expected to show a transition toward
movement of the center of CDs with the exponent α (Eq 10). This would enable
estimating α, df , ⟨R⟩CD, and τdf ,α without requiring the use of the assumptive values
described above, such as ⟨N⟩CD and DEGFP. The long-term (≫ τdf ,α) imaging of
chromatin dynamics in mammalian nuclei might reveal this transition
motion [19,21,24].

As mentioned at the beginning of this section, the measured TAD size of mESCs is
in the range of 100 kb to 5 Mb. Fig 3D shows the relationship between ⟨R⟩CD and
τdf ,α for α = 0.9 as a function of ⟨N⟩CD, corresponding to the range of 200 kb to 4
Mb, according to Eqs 17 and 18. The relaxation time within several tens of seconds is
consistent with the assumption of the linearization approximation as mentioned above.
Moreover, the estimated CD size within 100-500 nm is also consistent with observed
radius for chromatin domains of as detected by super-resolution imaging [53].

Here, we considered a locally clustered polymer with effective size scaling (Eq 4) in
the absence of hydrodynamic interactions (HIs) as a model of CDs. The inverse
proportion of kp to N , except for the contribution from ⟨X2

p⟩CD, in Eq 6 reflects the
lack of HIs in our model; that is, the hydrodynamic field goes through nucleosome
beads without interactions. The hydrodynamic effect of surface monomers in a
polymer blob on the exponent β has been argued in [28]. Applying their discussion to
our results, Eq 16 changes into df = c(2α/β − 2), where the coefficient c is within the
range 1 ≤ c < 1.09. The effect is expected to be small. One can also consider a
polymer model including HIs, which would affect the mobility matrix and work
cooperatively within a polymer blob [35,50]. In such a situation, the HI cancels out
the effect of the size scaling described by the fractal dimension df : β = α · 2/3 , and β
does not depend on df (see S1 Text, Section II).
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Conclusion

Our results indicate that our proposed model serves as a strong method for extracting
the structural information of CDs from observations of dynamic nucleosome
movement. Super-resolution microscopy techniques can be used to elucidate the
spatial size of CDs according to different epigenetic states [53]. On the other hand,
development of an effective imaging technique to reveal the fractal dimensions remains
a challenge for the future. The conformational state of CDs characterized by the
fractal dimension must be associated with the accessibility of transcription factors,
depending on the physical size of those factors [54]. Beyond the pioneer computational
work of analyzing interphase chromosomes based on the chromatin fibers [55], further
development of not only a large-scale chromosome model consisting of the CD unit
based on the results of a genome-wide association study but also restraint-based
three-dimensional modeling of genomes [56] is expected to provide novel insight and
open the door toward further discovery on the relationship between dynamic genome
organization and stochastic gene expression.

Materials and Methods

Cell isolation and culture

To observe single nucleosomes and analyze their local dynamics in living human cells,
histone H2B was fused with photoactivatable (PA)-red fluorescent protein
(mCherry) [51] and expressed in HeLa cells as described previously [25]. The cell lines
expressing H2B-PA-mCherry at a very low level were isolated. The cells were cultured
in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10 % fetal bovine
serum (FBS) (vol/vol) at 37 ◦C in 5 % CO2 (vol/vol). The cells were plated 24-48 h
before the experiment onto Iwaki glass bottom dishes treated with poly-lysine. Before
the experiment, the medium was replaced by DMEM F-12 (non phenol red) with 15 %
FBS. The cells were then set on the microscope stage kept in a custom-built 37 ◦C
microscope incubator enclosure with 5 % CO2 (vol/vol) delivery throughout the
experiment.

Microscopy

For single-nucleosome imaging, an oblique illumination microscope was used to
illuminate a limited thin area within the cell (Nikon laser TIRF microscope system Ti
with sapphire 564-nm laser). In general, PA-mCherry exhibits red fluorescence only
after activation by a 405-nm laser [51]. However, we unexpectedly found that a
relatively small number (∼100/time frame/nucleus) of H2B-PA-mCherry molecules
were continuously and stochastically activated even without UV laser stimulation.
Fig 2A shows a typical single-nucleosome image of a living HeLa cell. Due to the clear
single-step photobleaching profile of the H2B-PA-mCherry dots, each dot in the
nucleus represents a single H2B-PA-mCherry in a single nucleosome (Fig 2B).
Nucleosome signals were recorded in the interphase chromatin of the nuclear interior
and periphery in living HeLa cells at a frame rate of ca. 50 ms/frame. Note that the
two different focal planes for the nuclear interior and periphery (Fig 2C) were precisely
ensured by nuclear surface labeling with Nup107 (a nuclear pore component)-Venus (a
bright yellow fluorescent protein) [57] (see S1 Fig).
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Tracking and data analysis

Local nucleosome fluctuation was observed (ca. 60 nm movement/50 ms), presumably
caused by Brownian motion. The free MATLAB software u-track [58] was used for
single-nucleosome tracking. The dots were fitted to an assumed Gaussian point spread
function to determine the precise center of the signals with higher resolution. Finally,
we obtained data set of two-dimensional Mi trajectories
{(xj

0, y
j
0), (x

j
1, y

j
1), · · · , (x

j
i , y

j
i )}, where the suffix j ∈ {1, · · · ,Mi} represents the sample

number for the tracked time-interval [0, ti]; ti ≡ i× 50 ms. Several representative
trajectories of fluorescently tagged single nucleosomes are shown in Fig 2D (bar = 100
nm).

According to observed regions, we calculated the ensemble-averaged MSD of single
nucleosomes: MSD(ti) =

3
2

1
Mi

∑Mi

j=1[(x
j
i − xj

0)
2 + (yji − yj0)

2]. Here, in order to obtain
the three-dimensional value, we multiplied the two-dimensional value by 3/2 on the
assumption of isotropy. Plots of the MSDs of single nucleosomes in interphase
chromatin at the nuclear interior (10 cells) and the nuclear periphery (10 cells) from 0
to 0.5 s are shown in Fig 2E. The plots for single nucleosomes were fitted with the
subdiffusion model (Eq 1) using R-software. The standard error of the mean (SEM),
which is the standard deviation of the sampling distribution of the mean, for MSD(ti)
was sufficiently small. The number of trajectories Mi and the SEM of MSD(ti) are
summarized in S1 Table.
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Fig 1. Schematic illustration of our polymer model for CDs. (A) A
nucleosome fiber is represented as a polymer bead chain and forms a CD. The size
scaling of CDs is expressed as ⟨R⟩CD ∼ N1/df , where the fractal dimension represents
the effective conformational state of CDs: df = 1, 2, and 3 correspond to a straight
line, the ideal chain, and the fractal globule, respectively. (B) The viscoelasticity of
the medium, where the movement of particles shows the subdiffusive FBM
⟨∆r(t)2⟩ ∼ tα, is described using the friction coefficient with memory, γ(t) ∼ t−α.
When a nucleosome with coordinates Rn(t) dynamically fluctuates in the viscoelastic
medium, the movement of nucleosomes in CDs shows subdiffusion: ⟨∆Rn(t)

2⟩ ∼ tβ .
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Fig 2. Single-nucleosome imaging and analysis. (A) Single-nucleosome image of
a human HeLa cell nucleus expressing H2B-PA-mCherry. Each dot represents single
nucleosome. (B) Evidence that each dot represents single-nucleosome molecule. Each
H2B-PA-mCherry dot shows single-step photobleaching. The vertical axis represents
the fluorescence intensity of each H2B-PA-mCherry dot. The horizontal axis is the
tracking time series (each photobleaching point is set as time 0; the average and the
standard deviation at each time point were calculated for 50 dots.). Due to the clear
single-step photobleaching profile of the H2B-PA-mCherry dots, each dot shows a
single H2B-PA-mCherry molecule in a single nucleosome. (C) A scheme for nuclear
interior (Top) and periphery (Bottom) imaging. Focal plane (red) in the living cells is
shown. See also S1 Fig. (D) Representative trajectories of fluorescently labeled single
nucleosome (50 ms per frame). (E) Plots of the MSD at the interior and periphery
regions. These fit well with the MSD curves using Eq 1.
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Fig 3. Structural information of CDs provided by single-nucleosome
dynamics. (A) The fractal dimension df within the nuclear interior region (β = 0.44)
and the periphery region (β = 0.39) for α, according to Eq 16. (B) df and the size
⟨R⟩CD of CDs, and (C) df and the relaxation time τdf ,α of nucleosomes in CDs within
the nuclear interior region (colored circle) and the periphery region (colored square)
calculated for various α values, according to Eqs 16, 17 and 18. (D) ⟨R⟩CD and the
τdf ,α within the nuclear interior region (colored circle) and the periphery region
(colored square) calculated for α = 0.9 and various ⟨N⟩CD values, corresponding to the
range of 200 kb to 4 Mb, according to Eqs 17 and 18.
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Table 1. Estimated values of the fractal dimension df , the size ⟨R⟩CD, and the relaxation time τdf ,α for
α = 0.8 and α = 0.9.

Region β Dapp α = 0.8 α = 0.9
(µm2/sβ) df ⟨R⟩CD (nm) τdf ,α (s) df ⟨R⟩CD (nm) τdf ,α (s)

Interior 0.44 0.018 1.64 358 4.65 2.09 268 2.69
Periphery 0.39 0.013 2.10 191 1.31 2.62 166 1.01

The exponent β and the apparent diffusion coefficient Dapp are obtained by fitting of the MSD results at the interior and
periphery regions (Fig 2C). In the calculation, we used the following values: ⟨N⟩CD = 5000 nucleosomes,
γα→1 = 4kBT/DEGFP and DEGFP = 20.6µm2/s.
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Supporting Information

S1 Text. Further details on derivations of the theoretical results and
remarks on the hydrodynamic effect for the model.

S1 Fig. A schematic representation for nuclear interior (Top left) and
periphery (Top right) imaging. Illumination laser (green) and focal plane (red) in
the living cells are shown. Note that the two different focal planes were precisely
verified by nuclear surface labeling with Nup107 (a nuclear pore component)-Venus (a
bright yellow fluorescent protein) [57]. The nuclear rim signals (Bottom left) and dot
signals in ellipse shape (Bottom right) show the middle layer of nucleoplasm and the
nuclear surface, respectively. Bar shows 5 µm.
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S2 Fig. Plots of the MSD (Fig 1E) on log-log scale.
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S3 Fig. The function Cdf ,α of the fractal dimension df for α = 0.6, 0.7,
0.8, 0.9, and 1.0. α has only a slight effect on Cdf ,α.
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S1 Table. The number of tracked trajectories Mi and the standard error
of the mean (SEM) of the MSD at the nuclear interior region and the
periphery region. The measurements at each region were performed using 10 cells.

Interior Periphery
ti (ms) Mi SEM of MSD(ti) Mi SEM of MSD(ti)

50 47797 0.0000246 35289 0.0000264
100 47732 0.0000361 35267 0.0000367
150 47498 0.0000424 35176 0.0000418
200 36291 0.0000550 26072 0.0000556
250 27876 0.0000683 19614 0.0000686
300 21625 0.0000817 14572 0.0000839
350 17074 0.0000957 11008 0.0001017
400 13650 0.0001093 8533 0.0001190
450 11047 0.0001240 6825 0.0001331
500 9047 0.0001371 5491 0.0001510
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I. DERIVATIONS OF THE THEORETICAL RESULTS

Here we give the complete derivations of the theoretical results. The following calculations are based on standard
textbooks related to polymer dynamics [S1] and statistical physics [S2]. The mean-squared displacement (MSD) of
the Rouse polymer in the viscoelastic environment was first analyzed by Weber et al. [S3], whose work is a useful
reference for the flow in the following calculations.

A. The fluctuation-dissipation relation between gp(t) and γ(t)

According to the fluctuation-dissipation relation (FDR) for g(n, t),

⟨gκ(n, t)gλ(m, t′)⟩ = kBTγ(t− t′)δ(n−m)δκλ, (S1)

the following calculations can be made:

⟨gpκ(t)gqλ(t′)⟩ =
1

N2

∫ N

0

dn

∫ N

0

dm cos
(pπn

N

)
cos

(qπm
N

)
⟨gκ(n, t)gλ(m, t′)⟩,

=
1

N2

∫ N

0

dn

∫ N

0

dm cos
(pπn

N

)
cos

(qπm
N

)
kBTγ(t− t′)δ(n−m)δκλ,

=
kBT

N
γ(t− t′)δκλ

1

N

∫ N

0

dn cos
(pπn

N

)
cos

(qπn
N

)
,

=
kBT

N
γ(t− t′)δκλ

1

2N

∫ N

0

dn

[
cos

(
(p− q)πn

N

)
+ cos

(
(p+ q)πn

N

)]
,

=
kBT

N
γ(t− t′)δκλ

δpq(1 + δp0)

2
. (S2)

B. The parameter kp relates to the variance of Xp

At thermal equilibrium via the preaveraging approximation, the memory effect of the friction coefficient vanishes,
i.e., γ(t− t′) → 2γ̄ · δ(t− t′). Then, Eq. 5 for p ≥ 1 can be written as

γ̄Ẋp(t) = −kpXp(t) + ḡp(t), (S3)

where

⟨ḡpκ(t)ḡqλ(t′)⟩ =
γ̄kBT

N
δ(t− t′)δκλδpq. (S4)
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Since this Langevin equation for one degree of freedom corresponds to the Ornstein-Uhlenbeck process described by
the stochastic differential equation [S4],

dXpκ(t) = −kp
γ̄
Xpκ(t)dt+

√
kBT

Nγ̄
dBt, (S5)

the variance of Xp becomes

⟨
X2

pκ

⟩
CD

=
kBT/(Nγ̄)

2kp/γ̄
=

kBT

2Nkp
, (S6)

where ⟨·⟩CD represents the average for all nucleosome beads within the chromatin domain (CD) at thermal equilib-
rium. Thus, this relation implies that the normal-coordinate amplitude satisfies the equipartition theorem at thermal
equilibrium.

C. Asymptotic form of ⟨X2
p⟩CD

Here, we omit the argument t to calculate the thermal average. Using integration by parts, the normal coordinates

Xp ≡ 1
N

∫ N

0
cos

(
pπn
N

)
R(n) dn are rewritten as

Xp = − 1

pπ

∫ N

0

dn sin
(pπn

N

) ∂R(n)

∂n
. (S7)

Thus, ⟨X2
p⟩CD is written as

⟨
X2

p

⟩
CD

=
1

p2π2

∫ N

0

dn

∫ N

0

dm sin
(pπn

N

)
sin

(pπm
N

)⟨
∂R(n)

∂n
· ∂R(m)

∂m

⟩
CD

. (S8)

Using

∂R(n)

∂n
· ∂R(m)

∂m
= −1

2

∂2

∂n ∂m
[R(n)−R(m)]2, (S9)

we can rewrite ⟨X2
p⟩CD as

⟨
X2

p

⟩
CD

= − 1

2p2π2

∫ N

0

dn

∫ N

0

dm sin
(pπn

N

)
sin

(pπm
N

) ∂2

∂n ∂m

⟨
[R(n)−R(m)]2

⟩
CD

. (S10)

Introducing a new variable l = m−n and substituting the size scaling (Eq. 4), we can make the following calculation:

⟨
X2

p

⟩
CD

=
1

2p2π2

∫ N

0

dn

∫ N−n

−n

dl sin
(pπn

N

)
sin

(
pπ(l + n)

N

)
∂2

∂l2

(
b2eff |n−m|2/df

)
,

=
b2eff

2p2π2

2

df

(
2

df
− 1

)∫ N

0

dn

[
sin

(pπn
N

)
cos

(pπn
N

)∫ N−n

−n

dl sin

(
pπl

N

)
|l|2/df−2

+sin
(pπn

N

)
sin

(pπn
N

)∫ N−n

−n

dl cos

(
pπl

N

)
|l|2/df−2

]
. (S11)

The underlined integrals converge quickly to the following values if p is large:∫ N−n

−n

dl sin

(
pπl

N

)
|l|2/df−2 ≃

∫ ∞

−∞
dl sin

(
pπl

N

)
|l|2/df−2 = 0 (S12)

and ∫ N−n

−n

dl cos

(
pπl

N

)
|l|2/df−2 ≃

∫ ∞

−∞
dl cos

(
pπl

N

)
|l|2/df−2. (S13)
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Therefore, we can obtain

⟨
X2

p

⟩
CD

≃ b2eff
2p2π2

2

df

(
2

df
− 1

)
N

2
2

∫ ∞

0

dl cos

(
pπl

N

)
l2/df−2. (S14)

Using the formulas ∫ ∞

0

cos(ax)xb−1 dx = Γ(b) cos

(
πb

2

)
a−b and z Γ(z) = Γ(z + 1), (S15)

we can make the following formal calculations:

⟨
X2

p

⟩
CD

≃ b2effN

2p2π2

2

df

(
2

df
− 1

)
Γ(2/df − 1) cos

[π
2
(2/df − 1)

] (pπ
N

)1−2/df

,

=
b2effN

2/df

2

2

df
Γ(2/df) cos

(
π

df
− π

2

)
(pπ)−1−2/df ,

=
⟨R2⟩CD

2

Γ(1 + 2/df) sin(π/df)

π1+2/df
p−1−2/df ,

=
⟨R2⟩CD

2Adf

p−1−2/df , (S16)

where

Adf
=

π1+2/df

Γ(1 + 2/df) sin(π/df)
(S17)

is a dimensionless constant depending on the fractal dimension df .

D. The solution of Eq. 9

Performing the Laplace transform to Eq. 9, we obtain

γ̃(s)
[
s C̃p(s)− Cp(0)

]
= −kpC̃p(s), (S18)

where γ̃(s) and C̃p(s) are the Laplace transforms of the functions γ(t) and Cp(t), respectively. Since γ(t) is defined
by Eq. 2, γ̃(s) is derived as follows:

γ̃(s) =
γα

Γ(1− α)

∫ ∞

0

e−stt−α dt,

=
γα

Γ(1− α)
sα−1

∫ ∞

0

e−yy(1−α)−1 dy,

= γαs
α−1. (S19)

Therefore, C̃p(s) is written as

C̃p(s) = Cp(0)
γαs

α−1

γαsα + kp
= Cp(0)

sα−1

sα + kp/γα
. (S20)

In addition, using the formula of the Laplace transform for the Mittag-Leffler function

L
[
Eα (−atα)

]
(s) =

sα−1

sα + a
, (S21)

we can inversely find the solution

Cp(t) = Cp(0)Eα (−kp/γα · tα) . (S22)
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By use of Eqs. 6 and 7,

kp
γα

=
Adf

· 3kBT
Nγα⟨R2⟩CD

p1+2/df . (S23)

Then, we can define the relaxation time

τdf ,α ≡
(
Nγα⟨R2⟩CD

Adf
· 3kBT

)1/α

, (S24)

which has the physical dimension s. If the initial condition reaches thermal equilibrium, Cp(0) becomes ⟨X2
p⟩CD.

Thus, finally, we can derive the solution

Cp(t) =
⟨
X2

p

⟩
CD

Eα

[
−p1+2/df (t/τdf ,α)

α
]
. (S25)

E. The MSD of the center of the CD

For p = 0, the normal coordinate X0(t) corresponds to the center of the CD,

RG(t) =
1

N

∫ N

0

R(n, t) dn. (S26)

According to the Langevin equation (Eq. 5) and the FDR (Eq. S2) for p = 0, the motion obeys∫ t

0

γ(t− t′)
dX0(t

′)

dt′
dt′ = g0(t), where ⟨g0κ(t)g0λ(t′)⟩ =

kBT

N
γ(t− t′)δκλ. (S27)

In general, for degree of freedom x and velocity v, the MSD is associated with the velocity correlation as follows:

⟨
[x(t)− x(0)]

2
⟩

=

⟨(∫ t

0

v(t1) dt1

)2
⟩
,

=

∫ t

0

dt1

∫ t

0

dt2 ⟨v(t1)v(t2)⟩,

= 2

∫ t

0

dt1

∫ t

t1

dt2 ⟨v(t1)v(t2)⟩,

= 2

∫ t

0

dt1

∫ t−t1

0

dt′ ⟨v(t1)v(t1 + t′)⟩. (S28)

Using the Laplace transform and the stationarity of the velocity correlation Cv(t), this relation becomes more clear:

L
[⟨

[x(t)− x(0)]
2
⟩]

(s) = 2
1

s2
L [⟨v(0)v(t)⟩] (s)

=
2

s2
C̃v(s). (S29)

In terms of the fluctuation-dissipation theorem (FDT) [S2], we can derive the Laplace transform of the velocity
correlation from the relationship between the average response and the FDR. The force balance between the average
response of the system described by Eq. S27 and the external force f(t) is written as∫ t

0

γ(t− t′)⟨v(t′)⟩ dt′ = f(t), (S30)

for one degree of freedom. The Laplace transform of this force balance equation becomes

γ̃(s) ⟨ṽ(s)⟩ = f̃(s). (S31)
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Then, the ratio of the average velocity to the force, ⟨ṽ(s)⟩ /f̃(s) = 1/γ̃(s), is called the complex admittance, and the
FDT of the first kind represents the relationship between the complex admittance and the velocity correlation,

kBT

N

1

γ̃(s)
= C̃v(s), (S32)

where the coefficient kBT/N is caused by the FDT of the second kind for the system in Eq. S27.
Therefore, the Laplace transform of the MSD is written as

L
[⟨

[x(t)− x(0)]
2
⟩]

(s) =
2

s2
kBT

N

1

γ̃(s)
,

=
2kBT

Nγα

1

sα+1
. (S33)

By use of the formula of the inverse Laplace transform, L−1[1/sα+1](t) = tα/Γ(1 + α), the MSD can be obtained as⟨
[x(t)− x(0)]

2
⟩
=

2kBT

Γ(1 + α)Nγα
tα. (S34)

Thus, the MSD of the center of the CD is derived as⟨
[X0(t)−X0(0)]

2
⟩

= 3
2kBT

Γ(1 + α)Nγα
tα,

=
2⟨R2⟩CD

Adf
Γ(1 + α)

(
t

τdf ,α

)α

. (S35)

F. The MSD for t ≪ tdf ,α

The MSD obtained in our experiment is calculated by averaging nucleosome movements at various positions in
CDs. Then, we can replace the term cos2

(
pπn
N

)
in Eq. 8 by the average 1/2. Therefore, for t ≪ τdf ,α, according to

Eqs. 7 and 12, and the asymptotic form of the Mittag-Leffler function, Eα(−x) ≃ exp [−x/Γ(1 + α)] for x ≪ 1, the
second term in the right hand side (RHS) of Eq. 8 can be expressed as

MSD(t) ≃ 8
∞∑
p=1

1

2

⟨R2⟩CD

2Adf

1

p1+2/df

{
1− exp

[
− p1+2/df

Γ(1 + α)

(
t

τdf ,α

)α]}
. (S36)

Converting the sum into the integral, the RHS becomes

2⟨R2⟩CD

Adf

∫ ∞

0

dp
1

p1+2/df

[
1− e−(t/τdf ,α)α/Γ(1+α)·p1+2/df

]
. (S37)

Here, let us consider the integral formula calculated as follows:∫ ∞

0

dxx−(1+a)
(
1− e−bxc

)
=

[(
x−a

a

)(
e−bxc

− 1
)]∞

0

+
bc

a

∫ ∞

0

dxx−a+c−1e−bxc

,

=
bc

a

∫ ∞

0

1

bc

(y
b

)1/c−1

dy
(y
b

)(−a+c−1)/c

e−y,

=
ba/c

a

∫ ∞

0

dy e−yy(1−a/c)−1,

=
ba/c

a
Γ(1− a/c). (S38)

Therefore, the MSD for t ≪ τdf ,α can be written as

MSD(t) ≃ 2⟨R2⟩CD

Adf

df
2

[
(t/τdf ,α)

α

Γ(1 + α)

]2/(2+df )

Γ [df/(2 + df)] ,

=
2⟨R2⟩CD

Adf
Γ(1 + α)

Γ(1 + α)
df
2
[Γ(1 + α)]

−2/(2+df ) Γ [df/(2 + df)]

(
t

τdf ,α

)α·2/(2+df)

,

=
2Bdf ,α⟨R2⟩CD

Adf
Γ(1 + α)

(
t

τdf ,α

)α·2/(2+df)

, (S39)
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where

Bdf ,α =
df
2
[Γ(1 + α)]

df/(2+df ) Γ [df/(2 + df)] (S40)

is a dimensionless constant depending on df and α.

II. REMARKS ON THE HYDRODYNAMIC EFFECT FOR OUR POLYMER MODEL

In describing the Langevin equation of polymers with the hydrodynamic interaction, the interaction affects the
mobility matrix [S1, S5]. This situation corresponds to an ideal case where hydrodynamic interactions are not
screened. Calculating the effect of the mobility matrix for the normal coordinates Xp(t) under the preaveraging
approximation, kp in Eq. 5 is changed into k̄p with the following p-dependence:

k̄p ∼ kp · p1/d−1 ∼ p3/d. (S41)

Therefore, when we calculate the MSD as above, we need to calculate the integral∫ ∞

0

dp
1

p1+2/d

[
1− e−(t/τ)α/Γ(1+α)·p3/d

]
. (S42)

By use of the integral formula (Eq. S38), the scaling of the MSD for t ≪ τ can be written as

MSD(t) ∼ tα·2/3. (S43)

This means that the hydrodynamic interaction cancels out the effect of the size scaling described by the fractal
dimension df , and that the exponent of the MSD depends on only the exponent α, which relates to the memory effect
of the viscoelastic medium.
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