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Abstract

If improvements are to be made in tuberculosis (TB) treatment, an increased understanding of disease in the lung is needed.
Studies have shown that bacteria in a less metabolically active state, associated with the presence of lipid bodies, are less susceptible
to antibiotics, and recent results have highlighted the disparity in concentration of different compounds into lesions. Treatment
success therefore depends critically on the responses of the individual bacteria that constitute the infection.

We propose a hybrid, individual-based approach that analyses spatio-temporal dynamics at the cellular level, linking the be-
haviour of individual cells with the macroscopic behaviour of the microenvironment. The individual cells (bacteria, macrophages
and T cells) are modelled using cellular automaton (CA) rules, and the evolution of oxygen, drugs and chemokine dynamics are
incorporated in order to study the effects of the microenvironment in the pathological lesion. We allow bacteria to switch states
depending on oxygen concentration, which affects how they respond to treatment. Using this multiscale model, we investigate the
role of bacterial cell state and of initial bacterial location on treatment outcome. We demonstrate that when bacteria are located
further away from blood vessels, and when the immune response is unable to contain the less metabolically active bacteria near the
start of the simulations, a less favourable outcome is likely.
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1. Introduction

Although tuberculosis (TB) has long been both preventable
and curable, a person dies from tuberculosis every twenty sec-
onds. Current treatment requires at least six months of multiple
antibiotics to ensure complete cure and more effective drugs are
urgently needed to shorten treatment. Recent clinical trials have
not resulted in a shortening of therapy and there is a need to
understand why these trials were unsuccessful and which new
regimen should be chosen for testing in the costly long-term
pivotal trial stage (Gillespie et al., 2014).

The current drug development pathway in tuberculosis is im-
perfect as standard preclinical methods may not capture the cor-
rect pharmacodynamics of the antibiotics. Using in vitro meth-
ods, it is difficult to accurately reproduce the natural physiolog-
ical environment of Mycobacterium tuberculosis (M. tuberculo-
sis) and the reliability of in vivo models may be limited in their
ability to mimic human pathophysiology.

When M. tuberculosis bacteria enter the lungs, a complex
immune response ensues and results in the formation of granu-
loma structures. When these granulomas are unable to contain
the bacteria, active disease develops. In patients with estab-
lished disease, the outcome is perhaps determined by the ability

of antibiotics to penetrate to the site of the infection: the granu-
loma. Granulomas have a central focus of debris, described as
“caseous” which is characteristic of tuberculosis. These lesions
continue to develop through a number of stages to form cavities,
which are surrounded by fibrosis. All of these developments
speak to the challenge of ensuring sufficient concentrations of
antibiotic reach the site of infection (Prideaux et al., 2015; Via
et al., 2015).

It is increasingly recognised that M. tuberculosis is able to
enter into a state in which it is metabolically less active and
consequently much less susceptible to current antibiotics. This
state, associated with the presence of lipid bodies in the my-
cobacterial cell can increase resistance by 15 fold (Hammond
et al., 2015). Hence, it is very important to study and analyse
the heterogeneity of the bacterial cell state and their spatial lo-
cation so more effective treatment protocols can be developed.

Cellular automaton modelling (and individual-based mod-
elling in general) has been used to model other diseases,
most notably tumour development and progression in can-
cer (Alarcón et al., 2003; Gerlee and Anderson, 2007; Zhang
et al., 2009; Dormann and Deutsch, 2002; Swat et al., 2012;
Powathil et al., 2012). The granuloma has been simulated
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previously through an agent-based model called ‘GranSim’
(Segovia-Juarez et al., 2004; Marino et al., 2011; Cilfone et al.,
2013; Pienaar et al., 2015), which aims to reconstruct the im-
munological processes involved in the development of a granu-
loma. (Pienaar et al., 2016) also map metabolite and gene-scale
perturbations. They find that slowly replicating phenotypes of
M. tuberculosis preserve the bacterial population in vivo by con-
tinuously adapting to dynamic granuloma microenvironments,
highlighting the importance for further study in this area. In
this paper, we report the development of a hybrid-cellular au-
tomaton model to investigate the role of bacterial cell state het-
erogeneity and bacterial position within the tuberculosis lesion
on the outcome of disease.

2. The hybrid multiscale mathematical model

The model simulates the interaction between TB bacteria, T
cells and macrophages. Immune responses to the bacterial in-
fection can led to an accumulation of dead cells, creating ca-
seum. Oxygen diffuses into the system, which allows the bacte-
ria to switch between fast- and slow-growing phenotypes, and
chemokine molecules are secreted by the macrophages, which
direct the movement of the immune cells. We then investigate
the effect that antibiotics have on the infection.

Our spatial domain is a two dimensional computational grid,
where each grid point represents either a TB bacterium, a
macrophage, a T cell, caseum, the cross-section of a blood ves-
sel or the extracellular matrix which goes to make up the lo-
cal microenvironment. The spatial size of this computational
grid has been chosen so that each automaton element is ap-
proximately the same size as the largest cell in the system: the
macrophage.

Our model is made up of five main components: (1)
cells - the grid cell is occupied either by a TB bacterium, a
macrophage, a T cell, caseum or is empty. If the grid cell is
occupied, automaton rules control the outcome; (2) the local
oxygen concentration, whose evolution is modelled by a partial
differential equation; (3) chemokine concentrations, modelled
by a partial differential equation; (4) antiobiotic concentrations,
modelled by a partial differential equation and (5) randomly dis-
tributed blood vessels from where the oxygen and antibiotics
are supplied within the domain. A schematic overview of the
model is given in Figure 1.

2.1. The blood vessel network

At the tissue scale, we consider oxygen and drug dynamics.
We introduce a network of blood vessels in the model, which
is then used as a source of oxygen and antiobiotic within the
model. Following (Powathil et al., 2012), we assume blood ves-
sel cross sections are randomly distributed throughout the two
dimensional domain, with density φd = Nv/N2, where Nv is the
number of vessel cross sections (Figure 2). This is reasonable if
we assume that the blood vessels are perpendicular to the cross
section of interest and there are no branching points through the
plane of interest (Patel et al., 2001; Daşu et al., 2003). We ig-
nore any temporal dynamics or spatial changes of these vessels.

2.2. Oxygen dynamics
The oxygen dynamics are modelled using a partial differen-

tial equation with the blood vessels as sources, forming a con-
tinuous distribution within the simulation domain. If O(x, t)
denotes the oxygen concentration at position x at time t, then
its rate of change can be expressed as

∂O(x, t)
∂t

= ∇.(DO(x)∇O(x, t)) + rOm(x) − φOO(x, t)cell(x, t),

(1)

where DO(x) is the diffusion coefficient and φO is the rate of
oxygen consumption by a cell at position x at time t, with
cell(x, t) = 1 if position x is occupied by a TB bacterium at
time t and zero otherwise. Here, m(x) denotes the vessel cross
section at position x, with m(x) = 1 for the presence of blood
vessel at position x, and zero otherwise; the term rOm(x) there-
fore describes the production of oxygen at rate rO. We assume
that the oxygen is supplied through the blood vessel network,
and then diffuses throughout the tissue within its diffusion limit.
Since it has been observed that when a vessel is surrounded by
caseous material, its perfusion and diffusion capabilities are im-
paired, we have incorporated this by considering a lower diffu-
sion and supply rate in the granuloma structure as compared to
the normal vessels (Datta et al., 2015), i.e.

DO =


DO

1.5
, inside a granuloma,

DO, elsewhere in the domain,

(2)

and

rO =


rO

1.5
, inside a granuloma,

rO, elsewhere in the domain.
(3)

The formulation of the model is then completed by prescribing
no-flux boundary conditions and an initial condition (Powathil
et al., 2012). Figure 3 shows a representative profile of the spa-
tial distribution of oxygen concentration after solving the Equa-
tion 1 with relevant parameters as discussed in Section 2.5.

2.3. Antibiotic treatments
In the present model we assume a maximum drug effect, al-

lowing us to concentrate on the focus of this paper: the compar-
ison of cell state and bacterial spatial location on treatment out-
come. In future papers, the administration of drugs will more
closely model the current treatment protocols. In this first it-
eration of the model, the distribution of antibiotic drug type i,
Drugi(x, t) is governed by a similar equation as that of oxygen
distribution (1), given by

∂Drugi(x, t)
∂t

=∇.(DDrugi(x)∇Drugi(x, t)) + rDrugim(x)

− φDrugiDrugi(x, t)cell(x, t) − ηDrugiDrugi(x, t),
(4)
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Figure 1: Schematic describing the basic processes in the model

Figure 2: Plot illustrating one outcome of a random distribution of blood vessel
cross sections throughout the spatial domain used in the cellular automaton
simulations.

where DDrugi(x) is the diffusion coefficient of the drug, φDrugi is
the rate that the drug is taken in by a cell (assumed to be zero
as it is negligible when compared to oxygen uptake), rDrugi is
the drug supply rate by the vascular network and ηDrugi is the
drug decay rate. Inside a granuloma structure, the diffusion and
supply rate are lower to account for caseum impairing blood
vessels and the fact that we know that antibiotic diffusion into
granulomata is lower than in normal lung tissue. Hence the
transport properties and delivery rate of the drug are as follows:

DDrugi =


DDrugi

1.5
, inside the granuolma,

DDrugi, elsewhere in the domain,

(5)

Figure 3: Plot showing the concentration profile of oxygen supplied from the
blood vessel network. The red coloured spheres represent the blood vessel
cross sections as shown in Figure 1 and the colour map shows the percentages
of oxygen concentration.

and

rDrugi =


rDrugi

1.5
, inside the granuloma,

rDrugi, elsewhere in the domain.

(6)

To study the efficacy of the drug, we have assumed a thresh-
old drug concentration value, below which the drug has no ef-
fect on the bacteria. If the drug reaches a cell when it’s con-
centration is above this level (which is different for fast- and
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slow-growing extracellular bacteria and for intracellular bacte-
ria), then the bacterium will be killed and an empty space will
be created (this will be described further in section 3.1).

2.4. Chemokines

Various molecules are released by macrophages and other
immune cells, these molecules act as chemoattractants, attract-
ing other cells to the site of infection. Although different
chemokines perform different roles at various times, for this
model, we can chosen to represent the multiple chemokines
involved in the immune response as an aggregate chemokine
value. Sources of chemokine are derived from infected, chroni-
cally infected and activated macrophages (Algood et al., 2003).
The distribution of the chemokine molecules, Ch(x, t) is also
governed in a similar way to the oxygen:

∂Ch(x, t)
∂t

= ∇.(DCh(x)∇Ch(x, t)) + rChcell(x, t) − ηChCh(x, t),

(7)

where DCh(x) is the diffusion coefficient of the chemokines, rCh

is the chemokine supply rate by the macrophages at position
x at time t, with cell(x, t) = 1 if position x is occupied by an
infected, chronically infected or activated macrophage at time t
and zero otherwise. ηCh is the chemokine decay rate.

2.5. Parameter estimation

In order to simulate the model with biologically relevant out-
comes, it is important to use accurate parameters values. Most
of the parameters are chosen from previous mathematical and
experimental papers (see Table 1 and Table 2 for a summary of
the parameter values).

Hours are taken as the time scale for the cellular automa-
ton model. We have assumed a grid cell length of 20 µm,
which is the approximate size of the biggest cell in our sys-
tem, the macrophage (Krombach et al., 1997). The simulations
are carried out within a two dimensional domain with a grid
size N = 100, which simulates an area of lung tissue approxi-
mately 2 mm × 2 mm. The space step in the simulation was set
to ∆x = ∆y = 0.2 and the time step was set to be ∆t = 0.001,
with one time step corresponding to 3.6 s. The time step was
calculated by considering the fastest process in our system, the
oxygen diffusion. Derivations of these step sizes are shown be-
low.

The oxygen dynamics are governed by a reaction diffusion
equation, where the parameters are chosen from previously
published work (Macklin et al., 2012). We assume that the oxy-
gen diffusion length scale, L=100 µm and the diffusion constant
is set to 2 × 10−5 cm2/s (Owen et al., 2004). Using these along
with the relation L =

√
D/φ, the mean oxygen uptake can be

approximately estimated as 0.2 s−1. The oxygen supply through
the blood vessel is approximately 8.2 × 10−3 mols s−1 (Matza-
vinos et al., 2009). Nondimensionalisation gives T=0.001 hr
and hence each time step is set to be 0.001 hr .The length scale
of 100 µm will give a square grid of length ∆x× L=20 µm, the
approximate diameter of a macrophage.

The parameters that are used in the equations governing the
dynamics of antibiotics and chemokine molecules are chosen in
a similar way.

Oxygen is lighter in comparison to the drugs, with a molec-
ular weight of 32 amu (Hlatky and Alpen, 1985), and hence
it diffuses faster than most of the drugs and the chemokine
molecules. The chemokine molecules diffuse slower than the
antibiotics, being heavier than most drugs. One of the drugs
under the current study, rifampicin has a molecular weight of
822.9 amu (PubChem Compound Database). To obtain or ap-
proximate its diffusion coefficient, its molecular mass was com-
pared against the molecular masses of known compounds and
consequently taken to be 1.7×10−6 cm2s−1. Similar analyses
are done with isoniazid, pyrazinamide and ethambutol, with
parameter values given in Table 1. The decay rate of these
drugs are calculated using the half life values of the drugs
obtained from the literature and are also outlined in Table 1.
The threshold drug concentrations, DrugKill f , DrugKills and
DrugKillMi, below which the drug has no effect on the TB bac-
teria have been chosen to be the average density of total drugs
delivered through the vessels (total drug delivered/total num-
ber of grid points) and the total drug given is kept the same for
all drugs types. A relative threshold is chosen here in order to
compare the effects of cell state and location of bacteria, rather
than studying any optimisation protocols for drug dosage. Val-
ues of 10−6 cm2s−1 to 10−7 cm2s−1 have been reported as diffu-
sion constants for chemokine molecules (Francis and Palsson,
1997). The half-life for IL-8, an important chemokine involved
in the immune response of M. tuberculoisis, has been shown to
be 2-4 hours (Walz et al., 1996). We use a diffusion rate of 10−6

cm2s−1 and a half-life of 2 hours in our simulations.

Table 1: Diffusion and decay parameters

Drug/Chemokine Diffusion rate (cm2s−1) Decay rate (hr−1)
Rifampicin 1.7×10−6 0.17
Isoniazid 1.5×10−5 0.35

Pyrazinamide 1.6×10−5 0.12
Ethambutol 1.3×10−5 0.2
Chemokine 10−6 0.347

Other model parameters will be discussed in the next section
and are summarised in Table 2.

3. Cellular automaton rules

The entire multiscale model is simulated over a prescribed
time duration, currently set to 672 hours (4 weeks), and a vector
containing all cell positions is updated at every time step. The
oxygen dynamics, chemokine dynamics and drug dynamics are
simulated using finite difference schemes.

3.1. Rules for the extracellular bacteria

The CA begins with two clusters of bacteria on the grid; one
cluster of fast-growing bacteria and one cluster of slow-growing
bacteria. These initial bacteria replicate following a set of rules
and produce a cluster of cells on a regular square lattice with
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Table 2: Parameters. When there is a range for a value, it is set randomly by the model.
Parameter Description Value Source

Rep f (hours) Replication rate of fast-growing bacteria 15-32 (Shorten et al., 2013)
Reps (hours) Replication rate of slow-growing bacteria 48-96 (Hendon-Dunn et al., 2016)

Olow O2 threshold for fast→slow-growing bacteria 6 Estimated - see Section 4.1
Ohigh O2 threshold for slow→fast-growing bacteria 65 Estimated - see Section 4.1
Mrinit Initial number of Mr in the domain 105 (Cilfone et al., 2013)

Chemra Chemokine threshold for Mr→Ma 50 Estimated
Ma f kill Probability of Ma killing fast-growing bacteria 0.8 Estimated
Maskill Probability of Ma killing slow-growing bacteria 0.7 Estimated

Nici Number of bacteria needed for Mi→Mci 10 (Cilfone et al., 2013)
Ncib Number of bacteria needed for Mci to burst 20 (Cilfone et al., 2013)

Mli f e (days) Lifespan of Mr, Mi and Mci 0-100 (Van Furth et al., 1973)
Mali f e (days) Lifespan of Ma 10 (Segovia-Juarez et al., 2004)
tmoveMr (mins) Time interval for Mr movement 20 (Segovia-Juarez et al., 2004)
tmoveMa (hours) Time interval for Ma movement 7.8 (Segovia-Juarez et al., 2004)
tmoveMi (hours) Time interval for Mi/Mci movement 24 (Segovia-Juarez et al., 2004)

Mrrecr Probability of Mr recruitment 0.07 (Cilfone et al., 2013)
Tenter Bacteria needed for T cells to enter the system 50 (Cilfone et al., 2013)
Trecr Probability of T cell recruitment 0.02 (Cilfone et al., 2013)

Tli f e (days) Lifespan of T cells 0-3 (Segovia-Juarez et al., 2004)
Tkill Probability of T cell killing Mi/Mci 0.75 (Cilfone et al., 2013)

tmoveT (mins) Time interval for T cell movement 10 (Segovia-Juarez et al., 2004)
tdrug (hours) Time at which drug is administered 168-336 Estimated
DrugKill f Drug needed to kill fast-growing bacteria 3 (Hammond et al., 2015)
DrugKills Drug needed to kill slow-growing bacteria 15 (Hammond et al., 2015)

DrugKillMi Drug needed to kill intracellular bacteria 9 Giancarlo, LSTM

no-flux boundary conditions. The fast- and slow-growing bac-
teria are assigned a replication rate; Rep f for the fast-growing
and Reps for the slow-growing. When a bacterium is marked
for replication, its neighbourhood of order 3 is checked for an
empty space. The neighbourhood type alternates between a
Moore neighbourhood and a Von Neumann neighbourhood to
avoid square/diamond shaped clusters, respectively. If a space
in the neighbourhood exists, a new bacterium is placed ran-
domly in one of the available grid cells. If there are no spaces
in the neighbourhood of order 3, the cell is marked as ‘resting’.
This process mimics quorum sensing. At each time step, the
neighbourhood of these ‘resting’ cells is re-checked so that they
can start to replicate again as soon as space becomes available.

As this multiscale model evolves over time, the cells are sim-
ulated in an orderly fashion using the CA model, and these cells
further influence the spatial distribution of oxygen since they
consume oxygen for their essential metabolic activities. As the
bacteria proliferate, the oxygen demand increases creating an
imbalance between the supply and demand which will even-
tually create a state where the cells are deprived of oxygen.
Bacteria can change between fast-growing and slow-growing
states, depending on the oxygen concentration, scaled from 0
to 100, at their location. Fast-growing bacteria where the oxy-
gen concentration is below Olow will become slow-growing, and
slow-growing bacteria can turn to fast-growing in areas where
the oxygen concentration is above Ohigh.

3.2. Rules for the macrophages

There are 4 types of macrophage in our system: resting
(Mr), active (Ma), infected (Mi) and chronically infected (Mci).
There are Mrinit resting macrophages randomly placed on the
grid at the start of the simulation. These resting macrophages

can become active when the chemokine moelcules in their
location is above Chemra, where the chemokine concentra-
tion is scaled similarly to the oxygen from 0 to 100. Active
Macrophages will kill fast-growing extracellular bacteria with a
probability Ma f kill and slow-growing extracellular bacteria with
probability Maskill. If the resting macrophages encounter bacte-
ria, they become infected and can become chronically infected
when they phagocytose more than Nici bacteria. Chronically in-
fected macrophages can only contain Ncib intracellular bacteria,
after which they burst. Bursting macrophages distribute bacte-
ria randomly into their Moore neighbourhood of order 3 and the
grid cell where the macrophage was located becomes caseum.

While the oxygen and antibiotics enter the system via
the blood vessel network, the chemokines are secreted by
the infected, chronically infected and activated macrophages.
Macrophages move in biased random walks, with probabilities
calculated as a function of the chemokine concentration of its
Moore neighbourhood. Resting, infected and chronically in-
fected macrophages are randomly assigned a lifespan, Mli f e

days, and active macrophages live for Mali f e days. Resting
macrophages move every tmoveMr minutes, active macrophages
move every tmoveMa hours and infected/chronically infected
macrophages move every tmoveMi hours. Resting macrophages
are recruited from the blood vessels with a probability of Mrrecr

in response to the chemokine level at their location.

3.3. Rules for the T cells

The T cells enter the system once the extracellular bacterial
load reaches Tenter and move in a biased random walk, simi-
lar to the macrophages. T cells are recruited from the blood
vessels with a probability Trecr, in response to the chemokine
level at those locations. They live for Tli f e, and move every
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tmoveT minutes. Activated T cells are immune effector cells that
can kill chronically infected macrophages. If a T cell encoun-
ters an infected or chronically infected macrophage, it kills the
macrophage (and all intracellular bacteria) with probability Tkill

and that grid cell becomes caseum.

3.4. Rules for the Antibiotics
Drugs are administered at tdrug hours, a randomly chosen

time between two values. This mimics the variability in time
that patients seek medical attention for their disease. The drug
can kill the bacteria when the concentration is over DrugKill f

or DrugKills, for the fast- and slow-growing bacteria respec-
tively. The antibiotics can also kill intracellular bacteria, by
killing infected/chronically infected macrophages if the con-
centration is over DrugKillMi.

4. Simulation results

In order to study the relative importance of bacterial cell state
and initial spatial location of bacteria, we study two scenarios:
one with fixed blood vessel distribution and initial bacterial lo-
cations, and another where the vessel distribution and the initial
locations of the extracellular bacteria are determined randomly
for each simulation. We run four simulations for each scenario.
Figure 4 shows the outcome of four simulations, (i)-(iv), where
the blood vessel network and the initial placement of the extra-
cellular bacteria are fixed. Figure 5 shows the outcome of four
simulations, (i)-(iv), where the blood vessels and bacteria are
randomly placed for each simulation.

For the fixed distribution scenario, the four simulations have
differences but by the end of the simulations (at 4 weeks) the
number of extracellular bacteria is either zero or very low. In
all simulations we also see the immune cells killing or con-
trolling the slow-growing bacteria and the majority of the fast-
growing bacteria are killed by the drugs. The simulations for
the randomly assigned distributions show very different out-
comes. In simulation (i), the extracellular bacteria are all killed
by 36 hours with 2 intracellular bacteria persisting at 4 weeks.
In simulation (ii), the fast-growing extracellular bacteria build
to over 80 until the drugs kill them all. At the end of this
simulation there are 3 slow-growing extracellular bacteria and
11 intracellular bacteria. Simulation (iii) sees the immune re-
sponse controlling all fast-growing cells by 82 hours, whereas
the slow-growing bacteria continue to replicate, with over 60
by the end of the simulation. Simulation (iv) ends with 26 fast-
growing extracellular bacteria and 21 intracellular, where the
slow-growing cells are controlled by the immune response by
30 hours.

4.1. Oxygen thresholds for bacterial cell states
Although the above simulations were run with fixed param-

eter estimates, outlined in Table 2, we also ran some simula-
tions with different values of Olow and Ohigh to see how this
changed the results. Figure 6 shows three plots of the fast-
and slow-growing cells (shown the the blue/cyan lines, respec-
tively), with Ohigh fixed at 65 and Olow altered. These plots sup-
port the estimates chosen in Table 2, Olow = 6 and Ohigh = 65.

In (a) we see the effect of having a lower threshold for fast-
growing cells to become slow-growing, with Olow = 3, in (b)
Olow = 6, as per previous simulations and in (c), Olow has a
higher threshold of 9. In simulation (a), the bacteria do not
change state during the entire simulation, Figure 6 (a) supports
this as we do not see an increase in the cyan line that corre-
sponds with a drop in the blue. Simulation (b) has Olow = 6,
as in previous simulations, and here we see some transfer from
fast- to slow-growing during the 120 hours. For simulation (c),
however, the fast-growing cells transfer to slow-growing almost
immediately.

Similarly, we ran three simulations where Olow is held at 6
and Ohigh is altered. Figure 7 shows plots of the fast- and slow-
growing bacteria for these three simulations. In simulation (a),
where Ohigh = 55, the slow-growing cells all change to fast-
growing very near to the beginning of the simulation. Sim-
ulation (b) shows some slow-growing bacteria becoming fast-
growing around 15 hours when Ohigh is set as in Table 2 at 65,
and simulation (c) shows no transfer from fast- to slow-growing
when Ohigh = 75.

These test simulations support us choosing Olow = 6 and
Ohigh = 65.

5. Discussion

Individual-based models have already been shown to be use-
ful in understanding tuberculosis disease progression (Segovia-
Juarez et al., 2004; Marino et al., 2011; Cilfone et al., 2013;
Pienaar et al., 2015, 2016). Here we have built a hybrid cellu-
lar automaton model that incorporates oxygen dynamics, which
allows bacteria to change cell states. In addition to focusing on
bacterial cell state, we also investigate changes in spatial loca-
tion of the bacteria.

We have shown that position of bacteria in relation to the
source of drugs alters the outcome of simulations. When bacte-
ria are located far from the blood vessels, a poor outcome at the
end of the simulation is more probable. This is in most part due
to the poor diffusion of the drugs to these remote areas but also
because the source of the immune cells is also the blood ves-
sels and so there tends to be a weaker immune response before
treatment begins.

An important feature of our model is that of caseation:
when chronically infected macrophages burst or T cells kill in-
fected macrophages, that grid cell becomes caseum. Hence,
as macrophages move chemotactically towards the clusters of
bacteria, a caseous granuloma starts to form and this caseum
inhibits drug diffusion. In simulations where bacteria are sur-
rounded by caseum, they often remain at the end of the simu-
lation. This emphasises the importance of caseous necrosis on
the outcome of therapy.

We have also shown that bacterial cell state has an impact on
simulations, which is a characteristic that is only just starting to
be understood. Outcome tends to be worse in simulations where
the immune response is unable to contain the slow-growing
bacteria, as these drugs are less susceptible to the antibiotics.
Hence the spatial location of these bacteria in relation to the
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Figure 4: Plots showing the outcome of four simulations, (i)-(iv), with fixed vessel distribution and initial bacterial location. (a)-(c) are plots of the spatial distribution
of all cells: at the start of the simulation (a), just before the drug enters the system (b) and at the end of the simulation (c). Red circles depict the blood vessels, black
circles depict the caseum, blue circles show the fast-growing extracellular bacteria, cyan circles show the slow-growing extracellular bacteria, green dots depict
macrophages (with darker green for the infected/chronically infected macrophages) and yellow dots depict the T cells. Plots of bacterial numbers are shown in (d),
depicting fast-growing extracellular bacteria (dark blue), slow-growing extracellular bacteria (cyan) and intracellular bacteria (green).
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Figure 5: Plots showing the outcome of four simulations, (i)-(iv), with a randomly placed vessel distribution and initial bacterial location. (a)-(c) are plots of the
spatial distribution of all cells: at the start of the simulation (a), just before the drug enters the system (b) and at the end of the simulation (c). Red circles depict the
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are shown in (d), depicting fast-growing extracellular bacteria (dark blue), slow-growing extracellular bacteria (cyan) and intracellular bacteria (green).
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Figure 6: Plots of the fast- (blue) and slow-growing (cyan) extracellular bacteria for the first 120 hours, with Ohigh fixed at 65 and (a) Olow = 3, (b) Olow = 6 and (c)
Olow = 9.
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Figure 7: Plots of the fast- (blue) and slow-growing (cyan) extracellular bacteria for the first 120 hours, with Olow fixed at 6 and (a) Ohigh = 55, (b) Ohigh = 65 and
(c) Ohigh = 75.

blood vessels is particularly important. There are relatively few
publications that define the susceptibility of slow-growing my-
cobacteria in relation to the standard or new anti-tuberculosis
drugs.

Sputum culture conversion during treatment for tuberculosis
has a limited role in predicting the outcome of treatment for in-
dividual patients (Phillips et al., 2016), so spatial models that
explore TB infection and treatment in the lung are needed if we
are to increase our understanding of patient outcome. In this
work we have shown, using an individual-based model, that a
spatial model allows us to explore many unanswered questions
in TB. Our spatio-temporal individual-based model depicts a
realistic scenario of TB infection development, where we are
able to accurately capture TB pathology that is already under-
stood. For example, the implications of caseum have already
been demonstrated (Grosset, 1980) and our simulations confirm
the importance of this type of necrotic breakdown. This means
that we are able to use the model to pose questions and start
to understand more about the variability in TB patients’ out-
come. Our preliminary simulations confirm the importance of
bacterial cell state and also highlight the importance of spatial
location of the bacteria. Perhaps it is thought obvious that spa-
tial location of the bacteria is a key factor in treatment outcome
but previous mathematical models to date have not identified
this fact. Studies have focused on PK based on serum and sim-
ulations of ELF BL. Our modelling has shown that anatomical
considerations are important when chronic infection creates an
anaerobic environment and fibrosis around cavities. Our sim-
ulations show that in cases when the caseum forms around the
bacteria, a worse long-term outcome is more probable. This

reflects what has long been known about the importance of ca-
seum in defining outcome in TB. Treatment is compounded fur-
ther by bacterial cell state, which increases functional MIC of
bacteria that can be more difficult to kill due to poor penetration.
Future models could address this with enhanced understanding
of the effect of dormancy or phenotypic resistance. This indi-
cates the importance of work to define lesional PK (Prideaux
et al., 2015; Via et al., 2015). In future iterations of the model
could explore the effect of fibrosis and cavity formation on out-
come, building on recent concepts on lesional drug concentra-
tions (Prideaux et al., 2015; Via et al., 2015).
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