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ABSTRACT Homologous recombination is a central feature of bacterial evolution, yet confounds traditional phylogenetic

methods. While a number of methods specific to bacterial evolution have been developed, none of these permit joint

inference of a bacterial recombination graph and associated parameters. In this paper, we present a new method which

addresses this shortcoming. Our method uses a novel Markov chain Monte Carlo algorithm to perform phylogenetic

inference under the ClonalOrigin model of Didelot et al. (Genetics, 2010). We demonstrate the utility of our method

by applying it to rMLST data sequenced from pathogenic and non-pathogenic Escherichia coli serotype O157 and O26

isolates collected in rural New Zealand. The method is implemented as an open source BEAST 2 package, Bacter, which
is available via the project web page at http://tgvaughan.github.io/bacter.
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ECOMBINATION plays a crucial role in the molecular evo-
lution of many bacteria, in spite of the clonal nature of
bacterial reproduction. Indeed, for a large number of species
surveyed in recent studies (Vos and Didelot 2009; Fearnhead
et al. 2015), homologous recombination was found to account
for a similar or greater number of nucleotide changes than point
mutation.

Yet many traditional phylogenetic methods (Huelsenbeck
and Ronquist 2001; Drummond et al. 2002; Guindon and Gas-
cuel 2003) do not account for recombination. This is regrettable
for several reasons. First, ignoring recombination is known to
bias phylogenetic analyses in various ways such as by overes-
timating the number of mutations along branches, artificially
degrading the molecular clock hypothesis, and introducing ap-
parent exponential population growth (Schierup and Hein 2000).
Second, much of modern computational phylogenetics extends
beyond the inference of phylogenetic relationships and instead
focuses on the parametric and non-parametric inference of the
dynamics governing the population from which the genetic
data is sampled. In this context, the phylogeny is merely the
glue that ties the data to the underlying population dynamics.
Recombination events contain a strong phylogenetic signal so
incorporating recombination into the phylogenetic model can
significantly improve analyses. For instance, Li and Durbin
(2011) used a recombination-aware model to recover detailed
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ancestral population dynamics from pairs of human autosomes,
a feat which would have been impossible without the additional
signal provided by the recombination process.

The standard representation of the phylogenetic relationship
between ancestral lineages when recombination is present is the
Ancestral Recombination Graph (ARG Giriffiths 1981; Hudson
1983), a timed phylogenetic network describing the reticulated
ancestry of a set of sampled taxa. Several inference methods
based on the ARG concept have been developed, many of which
(Wang and Rannala 2008; Bloomquist and Suchard 2010; Li and
Durbin 2011) assume a symmetry between the contributions of
genetic material from the parent individuals contributing to each
recombination event, as is the expected result of the crossover
resolution of the Holliday junction in eukaryotic recombination.
This assumption, which is often anchored in the choice to base
the inference on the coalescent with recombination (Wiuf and
Hein 1999), is not generally appropriate for bacterial recombi-
nation, where there is usually a strong asymmetry between the
quantity of genetic material contributed from each “parent’.

Alternatively, a series of methods introduced by Didelot and
coauthors (Didelot and Falush 2007; Didelot et al. 2010; Didelot
and Wilson 2015) directly target bacterial recombination by em-
ploying models based on the coalescent with gene conversion
(Hudson 1983; Wiuf 2000; Wiuf and Hein 2000). These mod-
els acknowledge that the asymmetry present in the bacterial
context allows for the definition of a precisely defined clonal
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genealogy—the clonal frame—which represents not only the true
reproductive genealogy of a given set of bacterial samples, but
also the ancestry of the majority of their genetic material.

In the first paper, Didelot and Falush (2007) presented a
method for performing inference under a model of molecular
evolution which, in combination with a standard substitution
model, includes effects similar to those resulting from gene con-
version; instantaneous events which simultaneously produce
character state changes at multiple sites within a randomly posi-
tioned conversion tract. This model does not consider the origin
of these changes: it dispenses entirely with the ARG and can be
considered a rather peculiar substitution model applied to evo-
lution of sequences down the clonal frame. Despite this, it does
allow the MCMC algorithm implemented in the associated Clon-
alFrame software package to jointly infer the bacterial clonal
frame, conversion rate and tract length parameters, neatly avoid-
ing the branch length bias described by Schierup and Hein (2000).
Didelot and Wilson (2015) introduced a maximum likelihood
method for performing inference under the same model, making
it possible to infer clonal frames from whole bacterial genomes as
opposed to the short seqeunces that the earlier Bayesian method
could handle.

In a second paper, Didelot et al. (2010) present a different
approximation to the coalescent with gene conversion which
retains the ARG but assumes that the ARG has the form of a
tree-based network (Zhang 2015) with the clonal frame taking
on the role of the base tree. While acknowledging that their
model could be applied to jointly infer the clonal frame and the
conversions, the algorithm they present is limited to perform-
ing inference of the gene conversion ARG given a separately-
inferred clonal frame. This choice permitted the application of
their model to relatively large genomic data sets.

This model was also used recently by Ansari and Didelot
(2014), who exploit the Markov property of the model with re-
gard to the active conversions at each site along an aligned set
of sequences to enable rapid simulation under the model. These
simulations were used in an approximate Bayesian computation
scheme (Beaumont et al. 2002) to infer the homologous recom-
bination rate, tract lengths and scaled mutation rate from full
genome data, as well as to assess the degree to which the recom-
bination process favours DNA from donors closely related to the
recipient. As with the earlier study, this method requires that
the clonal frame be separately inferred.

In this paper we present a Bayesian method for jointly re-
constructing the ARG, the homologous conversion events, the
expected conversion rate and tract lengths and the population
history from genetic sequence data. Our approach assumes the
ClonalOrigin model of Didelot et al. (2010), extended to allow
for the piecewise constant or piecewise linear variations in pop-
ulation size. It relies upon a novel Markov Chain Monte Carlo
(MCMC) algorithm which uses a carefully designed set of pro-
posal distributions in order to make traversing the vast state
space of the model tractable for practical applications. Unlike
earlier methods, our algorithm jointly infers the clonal frame,
meaning that the inference is a single-step process.

In addition to the inference method itself, we present a basic
technique for summarising the sampled ARG posterior. Our
approach is an extension of the Maximum Clade Credibility
tree approach (as described by Heled and Bouckaert 2013) to
summarising phylogenetic tree posteriors in which a summary
of the clonal frame is annotated with well-supported conversion
events.
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We demonstrate that our method can accurately infer known
parameters from simulated data and apply it to a set of Es-
cherichia coli rMLST (ribosomal multi-locus sequence typing, Jol-
ley et al. 2012) sequences derived from isolates collected from in
and around the Manawatu region in New Zealand. The method
reveals details of previously unobserved gene flow between
pathogenic and non-pathogenic populations belonging to the
serotype O157.

A software implementation of our method is distributed as a
publicly-available BEAST 2 (Bouckaert et al. 2014) package. This
gives the sampler a substantial amount of flexibility, allowing
it to be used in combination with complex substitution models
and a wide variety of prior distributions. Details on how to
obtain and use this package are given on the project website at
http://tgvaughan.github.io/bacter.

The ClonalOrigin genealogical model

In contrast to eukaryotes where recombination primarily occurs
during meiosis, bacteria generally undergo recombination due
to mechanisms that are not directly related to the process of
genome replication. These mechanisms generally only result in
the transfer of small fragments of genetic material. A result of
this is that every homologous recombination event in bacteria
is comparable to a gene conversion event, regardless of the un-
derlying molecular biology. A good model for the genealogy of
bacterial genomes is therefore the coalescent with gene conver-
sion: a straight-forward extension to the Kingman n-coalescent
(Kingman 1982a,b) in which (a) lineages may bifurcate as well
as coalesce and (b) lineages are associated with a subset of sites
on each of the sampled genetic sequences to which they are an-
cestral. At each bifurcation event, a contiguous range of sites is
chosen for “conversion” by selecting a starting site uniformly at
random and a tract length from a geometric distribution. The an-
cestry of the converted sites follows one parental lineage, while
that of the unconverted sites follows the other.

The ClonalOrigin model is a simplification of the coalescent
with gene conversion in which lineages are labeled as either
clonal or non-clonal, with non-clonal lineages assumed to be
free from conversion events (i.e. they may not bifurcate) and
pairs of these lineages forbidden from coalescing. As Didelot
et al. (2010) argue, this simplified process is a good approxima-
tion to the full model in the limit of small expected tract length
(relative to genome length) and low recombination rate. It also
possesses features that make it an attractive basis for practical
inference methods. First among these is that, conditional on the
clonal frame (CF), the conversion events are completely inde-
pendent. In our context, this simplifies the process of computing
the probability of a given ARG and proposing the modifications
necessary when exploring ARG-space using MCMC.

We briefly reiterate the mathematical details of the model de-
scribed in Didelot ef al. (2010) using terminology more appropri-
ate for our purposes. We define the ClonalOrigin recombination
graph G = (C, R) where C represents the clonal frame and R is
a set of recombinant edges connecting pairs of points on C. The
CF is assumed to be generated by an unstructured coalescent
process governed by a time-dependent effective population size
N(t), where t measures time before the present. That is, the
probability density of C can be written

e[ [ ()8 ]1(sl) o

i€y



http://tgvaughan.github.io/bacter
https://doi.org/10.1101/059105
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/059105; this version posted June 15, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

N

e}

o1

T k(t)

0123

Figure 1 Schematic representation of a recombination graph

G for a single locus b, with clonal frame C and |R| = 1 con-
version r. The conversion attaches to C at points / and u and
affects sites x through y of the L, sites belonging to locus b.
The horizontal bars represent ancestral sequences belonging to
each lineage and colors are used to denote which samples each
site is ancestral to, with white indicating sites ancestral to no
samples. The graph on the right displays the associated clonal
frame lineages-through-time function k(t), together with the
times used in computing f(G|N, d, p, B). These include the
conversion attachment times f; and ¢,, together with ages of
coalescent nodes i and i’. (Here i’ = 0.)

Here Y is the set of internal (coalescent) nodes between edges
of C, including the root node o, and {¢;|i € Y} are the ages of
these nodes. The term k() represents the number of CF lineages
extant at time £.

Conversion events 7 € R appear at a constant rate on each
lineage of C and thus their number |R| is Poisson-distributed
with mean TY pcp(pLy + 6 — 1), with T being the sum of all
branch lengths in C. Here p is the per site per unit time rate
of homologous gene conversion, J is the expected conversion
tract length and b € B are the loci for which length L; sequence
alignments are available. Each conversion is defined by r =
(I, u,b,x,y) where I and u identify points on C at which the
recombinant lineage attaches, with the age of / less than that of
u. The element b indicates the locus to which the conversion
applies, and x and y identify the start and end respectively of the
range of sites affected by the conversion. The point I ~ f(I|C) is
chosen uniformly over C, while u is drawn from the conditional
coalescent distribution

b k(t) ] 1
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where f; and t, are the ages of points | and u respectively.
The locus b is chosen with probability P(b|B,8) = (L, + 6 —
1)/ Ypep(Ly + 6 — 1), the site x is drawn from the distribution
P(x|b,6) = (I(x =1)6+1)/(I + 6 — 1), and the site y is drawn
from P(y|x,b,6) = 6 1 (1 =0~ 1)/ * +I(y = L) (1 — 6~ )b,
(In these equations I(-) is the indicator function.)

The full probability density for a ClonalOrigin ARG is then

simply the product:

fco(GIN,6,p,B) = f(CIN)P(|R[|C, p)|R]! ®)
[T £IC)£(ull, C, N)P(bB, 6)P(xb, 6)P(y]x, b, )
reR

where the |R|! accounts for independence with respect to label
permutations of the recombination set R. Figure 1 illustrates
the various elements of the ClonalOrigin model and associated
notation.

Bayesian inference

Performing Bayesian inference under the ClonalOrigin model
shares many similarities with the process of performing infer-
ence under the standard coalescent. The goal is to characterise
the joint posterior density:

f(G,N,é,p,4D) « P (D|G, 1) fco(G|N, 5,p,B)fprior(N,5,p(,4z;)
where D represents multiple sequence alignments for each locus
in B and u represents one or more parameters of the chosen
substitution model. The distributions on the right-hand side
include Py, the likelihood of the recombination graph, fco, the
probability density of the graph under the ClonalOrigin model
discussed above, and fprior, the joint prior density of the model
parameters.

To define the ARG likelihood, first consider that every ARG
may be mapped onto a set 7 of “local” trees describing the
ancestry of contiguous ranges of completely linked sites in the
alignment. The likelihood of G is expressed in terms of local
trees as the following product

P (D|G, ) = HPF(Dz'm/#) )

where D; is the portion of the alignment whose ancestry is de-
scribed by local tree 7; € T and Pr(D;|T;, i) is the standard
phylogenetic tree likelihood (Felsenstein 2003).

Since it is possible for conversions to have no effect on
T, there is no one-to-one correspondence between G and 7.
This suggests that certain features of G may be strictly non-
identifiable in terms of the likelihood function. As Bayesian
inference deals directly with the posterior distribution, this non-
identifiability will not invalidate any analysis provided that
fprior is proper. However, the existence of non-identifiability has
practical implications for the design of sampling algorithms, as
we discuss in the following section.

Markov chain Monte Carlo (MCMC)

We use MCMC to sample from the joint posterior given in eq. (4).
This algorithm explores the state space of x = (G, N, §,p, u) (or
some subspace thereof) using a random walk in which steps
from x to x’ are drawn from some proposal distribution g(x’|x)
and accepted with a probability that depends on the relative
posterior densities at x” and x.

In practice, g(x'|x) is often expressed as a weighted sum of
proposal densities g;(x'|x) (also known as proposals or moves)
which individually propose alterations to some small part of x.
While there is considerable freedom in choosing a set of moves,
their precise form can dramatically influence the convergence
and efficiency of the sampling algorithm. Proposals should not
generate new states that are too bold (accepted with very low
frequency) nor too timid (accepted with very high frequency):
both extremes tend to lead to chains with long autocorrelation
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periods. In this section we present an informal outline of the
moves used in our algorithm. (Refer to the Appendix for a
detailed description.)

For the sub-space made up of the continuous model parame-
ters 4, p, u and N, choosing appropriate proposals is relatively
trivial as standard proposals for sampling from R" are suffi-
cient. In our algorithm we use the univariate scaling operator
described by Drummond et al. (2002), which can be made more
or less bold simply by altering the size of the scaling operation.

For the ARG itself, assembling an appropriate set of moves
is more difficult. Even determining exactly what constitutes a
timid or bold move in G space is hard to determine without
detailed knowledge of the target density. Our general approach
here is to design proposals that (a) only minimally affect the
likelihood of G where possible and (b) draw any significant
changes from the prior that the ClonalOrigin model places on G.
The design of these proposals is assisted by our knowledge of
the identifiability issue considered in the previous section: there
is a many-to-one mapping from G to the local tree set 7, and the
ARG likelihood depends only on 7. Thus, ARG proposals that
minimally effect the likelihood are those that propose a G’ that
maps to the same or similar 7.

The proposals for G fall into two groups, the first of which
deals exclusively with the set of conversions R. These include
all three moves described by Didelot et al. (2010) (we consider
the conversion add/remove pair to be two halves of a single pro-
posal), along with six additional simple moves aimed at quickly
exploring the ARG state space conditional on C. Examples in-
clude a conversion merge/split proposal that merges pairs of
conversions between the same pair of edges on the CF that af-
fect nearby ranges of sites or splits single conversions into such
pairs, a proposal which reversibly replaces a single conversion
between two edges with a pair involving a third intermediate
edge, and a proposal which adds or removes conversions that
do not alter the topology of the CF.

Proposals in the second group propose joint updates to both
the clonal frame C and the conversions R. Some of these moves
are quite bold (and thus tend to be accepted rarely), but are
very important for dealing with topological uncertainty in the
clonal frame. The general strategy for each move is to apply one
of the tree proposals from Drummond et al. (2002) to C and to
simultaneously modify the conversions in R to ensure both com-
patibility with the C’ and to minimise the effect of the proposal
on both the likelihood and the ARG prior. The changes to C
can for the most part be decomposed into primitive operations
that involve selecting a subtree, deleting the edge e attaching
that subtree to the rest of the CF at time ¢;, then reconnecting the
subtree via a new edge ¢’ to a new point on C at time #}. Modifica-
tion of R is done using an approach (depicted in figure 2) which
consists of two distinct forms. The first form, the “collapse”, is
applied whenever t; < t; and involves finding conversions for
which u or v are on the edge above the subtree and attach at
times t; or t, greater than t;. These attachment points are moved
from their original position to contemporaneous points on the
C lineage ancestral to ¢’. The second form, the “expansion”, is
applied when t! > t; and is the inverse of the first: conversion
attachments u or v at times £; < (), < t! are moved with some

probability to contemporaneous positions on e'.

In concert, these proposals allow us to effectively explore the
entire state space of x.
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(a) Collapse

(b) Expand

———

PN

Figure 2 Schematic representation of the collapse/expand
strategy used by the MCMC algorithm to update conversions
following the movement of a clonal frame edge. Sub-figure (a)
illustrates a proposal to replace the thick black edge portion
of the clonal frame edge joined to p with the thick grey edge
portion joint to g. Since t; < t, the “collapse” procedure is
applied by moving affected conversion attachment points,
highlighted with solid circles, to contemporaneous points on
the lineage ancestral to q. Any conversion with a new arrival
point above the root is deleted from the new ARG. Sub-figure
(b) illustrates the reverse situation, where a CF edge attached
at q is reattached at p. Since ¢, > t; the “expand” procedure is
applied by moving any attachment points contemporaneous
with a point on the newly extended portion of the CF edge to
that point with some probability. Since p becomes the new CF
root, new conversions with arrival points on the new CF edge
at times older than the previous CF root are drawn from the
ClonalOrigin prior.

A. Summarizing the ARG posterior

Bayesian MCMC algorithms produce samples from posterior
distributions rather than point estimates of inferred quantities.
These approaches are superior because they give us the means
to directly quantify the uncertainty inherent in the inference.
For the very high dimensional state space that ARGs (even the
ClonalOrigin model’s tree-based networks) occupy, actually vi-
sualising this uncertainty and extracting an overall picture of
the likely ancestral history of the sequence data is non-trivial.

A similar problem exists for Bayesian phylogenetic tree infer-
ence. Given the maturity of that field, it should not be surprising
that a large number of solutions exist. The majority of these
solutions involve the assembly of some kind of summary or con-
sensus tree (see chapter 30 of Felsenstein (2003) for an overview
or Heled and Bouckaert (2013) for a recent discussion). While
conceptually appealing, the replacement of a posterior distribu-
tion with a single tree can very easily lead to the appearance of
signal where there is none, so care must be taken. At least one
method exists that avoids this problem: the DensiTree software
(Bouckaert 2010) simply draws all of the trees in a given set
with some degree of transparency, making it possible to actually
visualize the distribution directly.

Unfortunately, the approach taken by DensiTree cannot be
easily applied to ARGs, since the recombinant edges introduce
significant visual noise making patterns difficult to discern. Nor
can any of the standard summary methods be applied directly.

Instead, we use a summary of the CF posterior as a starting
point to produce summary ARGs, as described in algorithm 1.
In the algorithm, MCC refers to the Maximal Clade Credibility
tree (see, for instance, Heled and Bouckaert 2013), and the value
of & in step 3(c) imposes a threshold on the posterior support
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necessary for a conversion to appear in the summary. The re-
lationship between the sampled conversions and the summary
conversions is illustrated in figure 3.

Algorithm 1 Method used to summarize samples G(®) for s €
[1, M] from the marginal posterior for G.

1. Produce an MCC summary of f(C|N) and denote this C.

2. Label internal nodes in € and every G(®) with their descen-
dent leaf sets.

3. For each ordered triple (7,7,b) where i, j are nodes in C and
bisalocusin B:

(a) For each G'5) assemble the set Ql(sj)b of all conversions

r € R affecting locus b with [ on the edge above i and
u on the edge above j.

(b) Merge any r in each Q](j)b with overlapping site ranges,

averaging the attachment times, and collect all result-
ing merged conversions into the set Q; ; ;.

(c

~

Identify disjoint site ranges affected by at least aM
conversions in Q; jb- and replace all contributing con-
versions with a single summary conversion with val-
ues for x, y, t; and ¢, averaged from the contributing
conversions.

(d) Use the number of contributing conversions divided
by M as a proxy for the posterior support for the sum-
mary conversion.

Testing with simulated data demonstrates that the method
is capable of recovering useful summaries. However, one sig-
nificant drawback is that the algorithm only groups together
sampled conversions that appear between identical (in the sense
described in the algorithm) pairs of CF edges. This means that
a single conversion with significant uncertainty in either of its
attachment points 1 or | may appear as multiple conversions in
the summary. As a result, we still consider the problem of how
best to summarize the posterior distribution over ARGs a target
for future research.

Implementation and validation

The methods described here are implemented as a BEAST 2
package. This allows the large number of substitution models,
priors and other phylogenetic inference methods already present
in BEAST 2 to be used with the ClonalOrigin model.

Despite the reuse of an existing phylogenetic toolkit, the
implementation is still complex. As such, the importance of vali-
dating the implementation cannot be overstated. Our validation
procedure involved two distinct phases: sampling from the ARG
prior and performing inference of known parameter values from
simulated data.

Sampling from the ARG prior

This first phase of the validation involves using the MCMC al-
gorithm to generate samples from fco(G|N, p, d), i.e. the prior
distribution over ARG-space implied by the ClonalOrigin model.
Unlike the full posterior density, we can also sample from this
distribution via direct simulation of ARGs. Statistical compar-
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Figure 3 This diagram illustrates the way that conversions are
summarized by algorithm 1. The solid tree on the left depicts
the MCC summary of the clonal frame, C, with each node la-
beled by its set of descendent leaves. The dashed edges repre-
sent distinct conversions Q; ; , that exist between a given pair
of edges i and j in ARGs sampled from the posterior (with
overlapping pairs of conversions persent on single ARGs
merged). The horizontal boxes on the right indicate the site
regions affected by each conversion, with the graph above
showing the fraction of sampled ARGs posessing conversions
at each site. A summary conversion is recorded only when this
fraction exceeds the threshold «.

isons between these two distributions should yield perfect agree-
ment. Assuming that errors in both the MCMC algorithm im-
plementation or the ARG simulation algorithm are unlikely to
produce identically erroneous results, this is a stringent test of
all aspects of our implementation besides calculation of the ARG
likelihood.

Figure 4 displays a comparison between the histograms for
a number of summary statistics computed from ARGs with 5
(non-contemporaneous) leaves sampled using our implemen-
tation of each method. The MCMC chain was allowed to run
for 10% iterations with ARGs sampled every 10* steps, while the
simulation method was used to generate 10° independent ARGs.
The close agreement between the two sets of histograms is very
strong evidence that our implementation of both algorithms is
correct.

Inference from simulated data

A common way to determine the validity and usefulness of an in-
ference algorithm is to assess its ability to recover known truths
from simulated data. In contrast with sampling from the prior,
inference from simulated data is sensitive to the implementation
of the ARG likelihood. We use here a well calibrated (Dawid
1982) form of the test, which requires that known true values
fall within the estimated 95% highest posterior density (HPD)
interval 95% of the time.

The details of the validation procedure are as follows. Firstly,
100 distinct 10-leaf ARGs of were simulated under the ClonalO-
rigin model with parameters p = 0.01, 6 = 500 and N = 0.05.
These ARGs were then used to produce an equivalent number of
two-locus alignments, with each locus containing 5 x 103 sites.
Finally, each simulated alignment was used as the basis for in-
ference of the ARG using the MCMC algorithm described above,
conditional on the known true parameters.

The circles in the graphs shown as Figure 5 display the frac-
tion of the sampled marginal MCMC posteriors for the CF tM-
RCA (time to most recent common ancestor) and recombination
event count which included the known true values as a function
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Figure 4 Comparison between distributions of summary statis-
tics computed from ARGs simulated directly under the model
(gray lines) and ARGs sampled using the MCMC algorithm
(black lines). These include (a) the age of the CF root node, (b)
the number of recombinations, and the average length of the
recombinant (c) edges and (d) tracts on each sampled ARG. Ex-
act agreement for each summary suggests that both algorithms
are correct.
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(a) Clonal frame tMRCA

(b) Recombination count
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Figure 5 Coverage fraction versus HPD interval width for

(a) the clonal frame tMRCA and (b) the recombination event
count posteriors inferred from simulated sequence data. The
circles represent the observed coverage fraction, while the
dashed lines indicate the coverage fraction to be expected from
a well-calibrated analysis.

of the relative HPD interval width. The dashed lines indicate
the fractions expected of a well-calibrated analysis. This close
agreement therefore suggests that our analysis method is inter-
nally consistent in this regard, a result which strongly implies
that our implementation is correct.

Example: Escherichia coli

We applied our new method to the analysis of sequence data
collected from a set of 23 E. coli isolates. The isolates were de-
rived from from both humans and cattle and include both STEC
(Shiga toxin-producing E. coli) and non-STEC representatives
of the O26 and O157 serotypes. The analysis focused on the 53
loci targeted by ribosomal multi-locus sequence typing (rMLST,
Jolley et al. 2012).

The analysis was performed under the assumption of a con-
stant population, the size of which was given a log normal prior
In N (0,2). The HKY substitution model (Hasegawa et al. 1985)
was used, with uniform priors placed on the relative site fre-
quencies and a log normal prior In A (1,1.25) placed on the
transition/transversion relative rate parameter x. For the rela-
tive recombination rate p/y we use an informative log normal
prior of In N'(—2.3,1.5) which includes a previously published
95% credibility interval of 0.03-2.0 (Vos and Didelot 2009). The
expected tract length parameter was fixed at & = 10° sites.

Six unique instances of the MCMC algorithm were run in
parallel. Five of these were run for 2.5 x 10 iterations while
the sixth was run for 5 x 107 iterations. Comparison of the
posteriors sampled by each of these chains demonstrated that
convergence had been achieved. Final results were obtained by
removing the first 10% of samples from each chain to account for
burn-in and then concatenating the results. Once complete, the
effective sample size for every model parameter and summary
ARG statistic recorded surpassed 200.

The final results of this analysis are presented as figure 6.
Firstly, figure 6a displays a summary ARG produced from the
sampled ARG posterior using a conversion posterior cutoff
threshold of 0.4. This summary shows that four conversion
events have posterior support exceeding this threshold. Three
of these depict gene conversion events that transfer nucleotides
between lineages ancestral to samples with O157 serotype. More
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Figure 6 (a) Summary ARG produced by applying our method
to sequences obtained from 23 E. coli isolates. Dashed edges
represent summary conversions, with the numbers giving

the estimated posterior support values. Conversions originat-
ing from the root edge of the clonal frame have been omitted.
(b) Posterior distributions over nucleotides transferred be-
tween lineages ancestral to +STEC and -STEC O157 samples.
(c) Posterior and prior distributions for the relative recombina-
tion rate, p/ .

specifically, the conversions result in gene flow from lineages
ancestral to pathogenic (+STEC) samples to lineages ancestral
to non-pathogenic (-STEC) samples. The remaining conver-
sion event is indicative of a recent introgression from the 026
serotype into -STEC O157.

This overall pattern is also reflected in figure 6b which dis-
plays the posterior distributions for the total number of nu-
cleotides transferred by conversion events between +/-STEC
0157 ancestral lineages: the gene flow from +STEC to -STEC
0157 is on average greater than that in the reverse direction.
This asymmetry is, however, very slight—a fact which may be
attributed to the presence of a large number of “background”
conversions which individually lack the posterior support to be
included in the summary but which nevertheless contribute to
the particular gene flow metric we have chosen.

Finally, figure 6¢ displays the posterior distribution for the rel-
ative recombination rate parameter, giving a 95% HPD interval
of [0.21,1.44]. The log-normal prior density for the recombina-
tion rate is also shown and indicates that the data are informative
for this parameter.

The data and BEAST 2 XML files needed to replicate both
this analysis and the validation studies are provided as part of
the online supplementary material.

Discussion

Dealing appropriately with recombination in a phylogenetic set-
ting is a difficult task for a number of reasons. Firstly, the progres-
sive bifurcation of lineages with increasing age steadily decrease
the signal for these features in a given dataset. Furthermore,
the possibility of these bifurcations drastically increases the size
of the state space occupied by the genealogy. Indeed, even for
a small number of aligned sequences, the upper bound of the
number of coalescent events influencing the evolution of those
sequences is potentially huge: the total number of nucleotide
sites in the alignment. Considering that the super-exponential
rate at which the number of binary trees grows as a function of
sample size already presents complexity problems for computa-
tional phylogenetics, it is no surprise that models that explicitly
consider recombination are not as widely used in genealogical
inference.

Despite these challenges, Didelot and coauthors have shown
repeatedly that traditional coalescent-based phylogenetic infer-
ence methods can be applied to such models, by applying care-
fully chosen simplifications to the coalescent with gene conver-
sion which reduce the state space while maintaining sufficient
realism in the important context of bacterial evolution. In our
paper we have sought to continue in this tradition, and have
demonstrated that one can indeed perform full joint inference
of tree-based ARGs using a carefully constructed MCMC algo-
rithm. In contrast with previous methods (as implemented in
ClonalOrigin), this approach more accurately characterizes the
posterior for the ARG and should yield more accurate estimates
of statistical uncertainty.

Also, in our effort to narrow the technological gap between
inference using the ClonalOrigin model and Bayesian inference
performed using common non-recombination-aware models, we
have introduced a means of summarizing sampled tree-based
ARG posteriors that is reminiscent of the methods often em-
ployed to summarize sampled tree posteriors.

We must emphasize, however, that despite making significant
headway we do not consider either the ClonalOrigin inference
problem nor the problem of summarizing posterior distribu-
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tions over tree-based networks to be in any way “solved”. In the
case of the inference problem, computational challenges relating
to the way the algorithm scales with increasing frequency of
recombination remain. These relate most directly to the large
computational complexity of the ARG likelihood (eq. (5)). (This
is often the most computationally expensive calculation even in
standard phylogenetic analyses, and recombination only multi-
plies this burden.) It may be the case that improving this situa-
tion will require replacing the mathematically exact likelihood
evaluation under a given substitution model with a carefully
chosen approximation, but the feasibility and usefulness of this
approach has yet to be fully investigated.

The problem of summarizing posterior distributions over
tree-based networks would seem to be a fruitful line of future
research. The algorithm presented here does seem to perform
relatively well from an empirical standpoint, and to our knowl-
edge is the first of its kind. However, it does have drawbacks
relating to its propensity to misclassify conversions for which
topological uncertainty exists (i.e. uncertainty in the CF edge to
which one or both of its end-points attach) as multiple distinct
conversions with a proportionally smaller posterior support.
Solving this problem would seem to be non-trivial, as it requires
the algorithm to identify a conversion in one sampled ARG with
a conversion in a second ARG even when those conversions join
distinct pairs of edges on the clonal frame. However, we feel
that tackling these and other related problems is a worthwhile
endeavor and one which should encourage mainstream adop-
tion of recombination-aware Bayesian phylogenetic inference
methods.
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Appendix: MCMC state proposal distributions

In this appendix we lay out the details of the proposal operators
used by the MCMC algorithm implemented described in the
paper. To do this, we require some additional nomenclature. We
decompose the CF using the tuple C = (V,E,t). Here V = IUY
with I being the set of leaf nodes and Y being the set of internal
nodes, which contains the root node 0. The set E contains the
directed edges between nodes i, j € V, where an edge from i to
j is written (i, j). We use t = {t;|i € V} to denote a set of node
ages. The direction of an edge (i, j) is such that t; < t;.

As noted in the manuscript, MCMC is an iterative algorithm
for sampling from some target probability density 7z(x) by it-
eratively modifying the state x. At each step in the iteration, a
specific proposal kernel g, (x'|x) is chosen from a fixed weighted
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distribution of such kernels, and a new value for the state x’ is
drawn using that proposal. This new value is accepted with
probability

mt(x’)
(%)
If the value is accepted it is assigned to x, otherwise x remains
unchanged. The process then repeats. The term hy(x'|x) is a
function which we refer to as the Hastings-Green factor or HGF
for the proposal distribution, and ensures that the Markov chain
defined by the MCMC algorithm is reversible. The HGF is
uniquely defined by the proposal, but is often non-trivial to
derive. Thus, each operator is presented below alongside its
corresponding HGFE.

ay (X |x) =1A T (X x). (6)

A. ARG scale proposal

This operator selects a scaling factor f uniformly at random from
[, ofl] where « € (0,1) is a tuning parameter for which smaller
values yield bolder proposals. The age of every entity in the
ARG, excluding leaf ages, is scaled by this one factor. The HGF
for this proposal is

hscale(G/‘G) = fn72 (7)

where 1 is the number of entities scaled by the move.

B. Conversion add/remove

With probability % this operator either deletes a randomly se-
lected conversion, or creates a new conversion v = (I,u, b, x,y)
drawn directly from the prior

f(r|C,B,N,6) =f(I|C)f(ull,C,N) ®)
x P(b|B,8)P(x|b, 6)P(y|x, b,9),

where the terms on the right-hand side are those described in
the manuscript. The HGF for the deletion form of the proposal
is

hedel(G'1G) = |R'|f(r|C, N, B, ), ©)

where r is the conversion selected for deletion. The HGF for the
addition form is simply hicaqq(G'|G) = 1/hegel (G|G').

C. Detour add/remove

This operator improves mixing by allowing the sampler to transi-
tion directly between ARGs that have very similar local tree sets.
It does this by proposing the addition or deletion of “detours”:
pairs of conversions (rq, rp) for which 1y and I, lie on the same
edge of C and for which the attachment times satisfy t,, < t;,.

With probability 1 either the deletion or the addition form of
the operator is selected. For addition, a conversion r is selected
uniformly at random from R. Two times t;; and t;, are drawn
from Unif(t;, t,) and labeled so that t4; < tz. A non-root node i
is then chosen uniformly at random from V. Let i, be the parent
of i. If u or I lie on (i, ip) or it is not the case that both t4, t4, €
[t;, t,-p] then the proposal is immediately rejected. Otherwise,
r is replaced with a pair of conversions r; = (I,u/,b,x,y) and
rhy = (I',u,b,x',y") where I" and u’ are the points on (i, i,) with
times t;; and t4, respectively, and x’ and 'y and b’ are drawn
from the affected site region boundary priors P(b|B, d), P(x|b,6)
and P(y|x,b,9).

For deletion, a non-root node i is chosen uniformly at random
from V, and iy, is defined as its parent. A pair of conversions r{

and r; are chosen uniformly at random satisfying the require-

ments 1y 7# Iy, up # Ip, uy lies on (i, ip) and I, lies on (i, i,). This

pair is replaced by a single conversion ¥’ = (I1,up, by, x1,y1).
The HGF for the addition form is

(tu —1)?[R| 1

hdadd (G'|G) = ’
2Q[},(©10f (@) P IB)

(10)

where Qg}? >( G’) is the number of conversions " in R’ where
Ap
u" and 1" lie on distinct CF edges and where u" lies on (i, ip).
Similarly QE?Z > (G’) is the number of conversions with u” and
Ap

1" on distinct edges and where I” lies on (i, i,). For the deletion
form the HGF is

e - (@96,
hddel(G |G) = (tlz —t )2 R/‘
g 1

: P(x2/y2/ b2|B/§) (11)

D. Redundant conversion add/remove

This operator adds or removes a conversion that mirrors an ex-
isting edge in C, meaning that the conversion doesn’t introduce
a change in the local tree topology. The boldness of the move is
adjustable via the tuning parameter A.

With probability % the addition or removal form of the op-
erator is selected. For addition, a non-root node i is drawn
uniformly at random from V, and i, is defined as its parent.
A new conversion r = (I,u,b,x,y) is created with x, y and b
drawn from the prior P(x,y,b|B,d). The departure point ! is
drawn uniformly from the portions of edges around i with an
age difference of at most A from t;. Similarly, u is drawn from
the portions of edges around i, that differ in age by at most A
from ti,-

For removal, a non-root node i is also drawn uniformly from
V, with i, again defined as its parent. The sub-set S?@l’y) of R
consisting of those conversions which could have been gener-
ated by the addition form of the move applied to the same CF
edge (i,ip)with a given A is constructed. A member r of this set
is selected uniformly at random and is deleted.

The HGF for the addition form is
L} 1
|S¥. | P(x,y,b|B,9)

(iip)

hradd(G/‘G) = (12)

where Lf‘ is the sum of the lengths of the CF edge portions
around i from which / is drawn. Similarly, Lf; is the sum of the
lengths of the CF edge portions around i, from which u is drawn.
The primed Sz\i,/ip> is the subset of R’ of conversions, including 7,

which could have been produced by this proposal.
For deletion, the HGF is

A

15,
ATA

Li Li,,

Iget (G'|G) = - P(x,y,b[B, 9). (13)

E. Merge/Split conversion
This operator reversibly merges two conversions whose arrival
and departure points share the same pair of CF edges.

Alocus b is drawn from the prior P(b|B, §). With probability
% the merge or split form of the operator is selected. For merg-
ing, two conversions r; and r; are sampled without replacement
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from the subset R, C R containing only those conversions af-
fecting locus b. This pair of conversions is replaced by a new
conversion ' = (I3, u1,b,x1 V x2,y1 A y2).

For splitting, conversion r is drawn from Ry,. Let i be the CF
node below the edge containing I and j be the CF node below
the edge containing u, and define i, and j, to be the parents of
these nodes (in the instance that j is the root CF node, j, is not
defined). Two sites m; and m; are drawn uniformly from the
site range [x, y]. With probability 5 we either define x] = x and
xly = my or x; = my and x} = x. Similarly, with probability }
we either define yj = y and y) = mp or y; = mp and y = y.
Additionally, I} is a uniformly sampled point on the edge (i, ip).
In the case that j is not the root, u’2 is sampled uniformly from
{J, ]p> Otherwise, the difference between the age of v/, t,/, and
the age of the root, t, is drawn from the exponential distribution
Exp(1/(ty — t;)). Conversion r is then replaced by a pair of
conversions r; = (I,u,b,x},y}) and vy = (I3, ub, b, x5, ).

The HGF for the merge form is

IRp|q(tu, — tj, tuy — tj)

hmerge (G'|G) = 14
erge(G1C) Liiiy4((11 Ay2) — (21 V x) +1)2 (14
and for the split form is
LiiyvAy —x+1)2
i (GG) = ) (15)

(IRp| +1)q(ty, —tj tur — ;)"
where

2(At, BT) — L<_j,1jp> if j is not root 16)
% exp[—(At/At) if j is root

F. Converted edge hop

This operator simply repositions the arrival or departure point
of a randomly chosen conversion to be a new point on the tree.
It proceeds by choosing a conversion r uniformly at random
from R. Then, if u is above the root of C or with probability
%, I" is drawn from a uniform density over C and u' is set to u.
Otherwise, I” is set to I and %’ is drawn from a uniform density
over C. In either case, if t,; > t; then r is replaced by a new
conversion v’ = (I',u’,b,x,y). If this condition is not met, the
proposal is rejected.
The HGF for this move is unity.

G. Converted edge flip

This is a simple proposal which reverses the direction of gene
flow resulting from a given conversion. It is especially useful
when this direction is not informed strongly (or at all) by the
data. It involves firstly selecting a conversion r uniformly from
R and defining e; as the CF edge containing the departure point
I 'and e, as the CF edge containing the arrival point u. If ¢, falls
outside of the time interval spanned by ¢; or ¢; falls outside of the
time interval spanned by e, the proposal is immediately rejected.
Otherwise, we then define new departure and arrival points I’
and u’ such that ty = t; and t,; = t,, but with ey = ¢, and e,y =
e;. Finally, we replace the conversion r with v’ = (I',u/, b, x, ).
The HGF for this move is unity.

H. Converted edge slide

This proposal ‘slides” a randomly selected arrival or departure
point up or down the CF, with maximum size of the slide relative
to the height of C, t,, is fixed by a tuning parameter p € (0, 1).
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Firstly, the conversion is selected uniformly from R and a
CF attachment point p is chosen uniformly from {I,u}. An age
increment At is then drawn uniformly from [—ftg, Bto]. In the
instance that At > 1, the new attachment point p’ (i.e. I’ or v’
depending on the choice of [ or u for p) is chosen to be that point
on the lineage ancestral to p with t,; = t, + At. (If p = [ and
tp > tu Nto the move is immediately rejected.)

On the other hand, if At < 0 the new attachment point p’ is
chosen to be a point on a descendant lineage with ¢, = t, + At.
(If p = wand t, < t; the move is immediately rejected.) In the
instance that f, is smaller than the age of the node below the CF
edge containing p, there are multiple points on descendant lin-
eages that satisfy this requirement. A particular point is chosen
by tracing the CF lineage down from p and uniformly selecting
the left or right child lineage of any CF node that is passed along
the way to the final point p’. (If a leaf CF node is passed during
this procedure the move is rejected immediately.)

In either case, the original conversion r is replaced by a new
conversion 7' defined as either (I',u,b,x,y) or (I,u',b,x,y) de-
pending on whether p represents an arrival or departure point,
respectively.

The HGF for the move is

hees(G'|G) = 2771 (pP")sgn(AD) an

where sgn(At) is the sign of At and where n(p, p’) is the number
of nodes on the CF on the lineage between points p and p'.

I. Converted region swap

This proposal simply involves drawing two conversions r; and
1o uniformly without replacement from R and swapping the loci
and site ranges they affect. That is, the pair is replaced by a new
pair 1’/1 = (llr uq, bz, X2, yz) and 7‘/2 = (lz, Uup, bl/ xl,yl).

The HGF for this move is unity.

J. Converted region (boundary) shift

The converted region shift and converted region boundary shift
propose adjustments to the region affected by a given conversion.
Both use a tuning parameter < that defines maximum size of
the adjustment that can be made. The proposals begin by a
conversion r is selected uniformly at random from R. A shift
amount A is then drawn uniformly from [—1,7v/2,1,7/2]. In the
case of the region shift proposal, ' = x+Aandy’ =y + A. In
the case of the region boundary shift proposal, either x’ = x + A
andy’ = yor ¥ = xand y = y + A with probability 1. The
proposal is immediately rejected if either x’ or i/’ lie outside of
the allowed site range [1,1;] for locus b. The conversion r is then
replaced by a new conversion’ = (I,u,b,x’,y’).
The HGF for this move is unity.

K. Clonal frame operators

With the exception of the topology-preserving temporal scaling
operator, every move described thus far has proposed changes
only to the set of conversions R applied to C, not C itself. Oper-
ators which propose changes to C are clearly of central impor-
tance to an algorithm designed to explore the joint (R, C) state
space. As explained in the main text, our strategy for exploring
this space is to employ each of the tree operators described in
Drummond et al. (2002) to propose changes to C, updating R
concurrently in order to maintain compatibility between the con-
versions and the CF. This is managed by expressing each of these
operators primarily in terms of two primitive operations: expand
and collapse. Understanding each operation requires considering
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a non-root node i, its parent i, grandparent i, (if it exists) and
sibling is in C, as well as a distinct node j and its parent j, (if
it exists) in C chosen so that j ¢ {i,i,} and j is not included in
the subtree below i. Each operation involves “disconnecting”
the subtree rooted by i from the rest of the clonal frame and
“reconnecting” it to the edge above j. That is,

E" =E/{{is,ip), (ip,ig), (. jp) } (18)
U {(is, ig), (. ip)s (ipsjp) }

(Edges involving j, and iy are only included if these nodes exist.)
This rearrangement is of course only valid if t is also updated
so that t;p € [tj,t;,] if jp exists or tgp € [tj, 0) if it j is root in C.
If such a modification is impossible, the proposal invoking the
expansion or collapse is rejected immediately.

In terms of their effect on the CF, the only difference between
the two operations is the sign of the difference t;p — t;,: expan-
sions increase the age of i, while collapses decrease this age. The
effects on the set R of conversions are quite different, however.

For expansion, the set of conversion connections Xti,,,t,‘p con-
taining only those connections with t;,, € [t;,, t;p] is con-
structed. Each of these attachment points are, with probabil-
ity %, moved in R’ to the contemporaneous point on the newly
lengthened edge (i,ip). Additionally, in the case that j is the
root of C (making iy, the root of C"), a set Z' of new conversions
are initiated along edges (j,ip) and (i, i,) with arrival points
uniformly distributed amongst the portion of these edges at
ages greater than t; V t; . The expansion operation makes the
following contribution to the HGF:

7‘Xv r | ’ /
hg(i,j,t;p)(G/|G) _ |:2 fip iy €7AQ(AQ)‘Z ‘Af‘Z | (19)

-1
H P(u,x,y,b|C',N,B, 5)}
reZ’
where A = 2(t;p —tjVit;,)and Q = Yep(pLy +0 — _1)
For collapse, the set of conversion connections Xtip/t( con-
ip

taining only those connections which lie on (i, i,) which have
tauy € [t;p, tj,] is constructed. Note that in the case that iy is the
root of C, this set omits any attachment points belonging to con-
versions with arrival points t; € [t;, V t;n, tip]. Such conversions

are assigned to the set Z, along with conversions with arrival

times in the same interval which lie on (is, ip>. Each attachment

in thn,t{ is moved to the lineage ancestral to j. Every conversion
ip

in Z is removed. The collapse operation makes the following
contribution to the HGF:

—Xv !
hegj ) (G'1G) =2 St aQ) A (a0)
p

H P(u,x,y,b|C,N,B,d)
rez

where A =2(t; —t; V tgp) and () is as defined above.

We now describe each of the individual CF proposals. Note
that with the exception of the CF/conversion swap operator
(which is unique to our algorithm) we do not quantitatively
describe how each move affects the CF, but instead explain how
their operation is implemented in terms of expansions and con-
tractions. Interested readers should refer to Drummond et al.
(2002) to complete the descriptions.

Uniform operator: This operator proposes a new age t;p for

randomly-selected non-root internal node i, within the interval

imposed by the maximum age t; A t;_ of its children, i and is, and
the age tig of its parent, i¢. This move is implemented as either
a single expansion & (i, is,tlfp) if t;p > tj, or a single collapse
C(i, zs,tgp) if tgp <t

Subtree exchange operator: This operator exchanges two
distinct subtrees rooted by non-root nodes i(!) and i and their
respective parents, 1';1) and i;,z), and siblings igl) and i£2>. The
operator is implemented via serial application of two primitive
expand/collapse operations, with the type of operation deter-

mined by the relative ages of the parent nodes. If ti“) > ti(z)
4 4

the operations are C (i<1),i£,2),ti(z>) followed by followed by
P

S(i(2>,i§1), ta ). Otherwise, the operations are E(i(l),iéz), ti(z))
4

4
followed by C (i), it t.0)).
r

Wilson-Balding operator: This operator takes a subtree
rooted by the non-root node i, detaches it from the rest of the
CF, then reattaches it to some other point at time ¢/ on the edge

above a randomly chosen node j. (This is essentiaﬁy the rooted
time-tree equivalent of the Nearest Neighbour Interchange or
NNI move used in walking the space of unrooted trees.) Besides
selecting the nodes involved and the new time, this move in-
volves just a single expand/collapse operation. If t;p >t the
operation is £(i, j, t;p), otherwise itis C(i, j, t;p).

CF/conversion swap operator: This final operator aims to
in some sense swap the role of a conversion and a CF edge
in describing a particular portion of the ARG topology. To do
this, a conversion r is selected at random from the subset of
D C R including only those conversions for which the arrival
and departure points lie on distinct edges of C. The node below
the edge containing [ is labeled i, its sister is, and the node
below the edge containing u is labeled j. For the purpose of the
expand/collapse operation, t;p = t,. The conversion r is then
replaced by v = (I,u',V',x,y’), where 1’ is the point on the
edge above is with time t; and where I/, x" and y’ define a new
affected site range drawn from the prior P(¥’, x’,y’|B, 6). Finally,
if t;p > t;, the expansion & i,], t;p) is performed, otherwise the

collapse C(i, , t;p) is performed. The HGF for this proposal is

DI|P(x,y,b|B,é
hcfswap(G/|G)_ IDIP(x,y.b )

!/
= Dpee,y B ey P 1) @D

where fop (G'|G) represents the HGF contribution of the partic-
ular expand/collapse operation performed.
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