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ABSTRACT

Eukaryotes carry numerous asexual cytoplasmic genomes (mitochondria and chloroplasts). Lacking
recombination, asexual genomes suffer from impaired adaptive evolution. Yet, empirical evidence
suggests that cytoplasmic genomes do not suffer this limitation of asexual reproduction. Here we use
computational models to show that the unique biology of cytoplasmic genomes–specifically their orga-
nization into host cells and their uniparental inheritance–enable them to undergo adaptive evolution
more effectively than comparable free-living asexual genomes. Uniparental inheritance decreases com-
petition between different beneficial substitutions (clonal interference), reduces genetic hitchhiking of
deleterious substitutions during selective sweeps, and promotes adaptive evolution by increasing the
level of beneficial substitutions relative to deleterious substitutions. When cytoplasmic genome inher-
itance is biparental, a tight transmission bottleneck aids adaptive evolution. Nevertheless, adaptive
evolution is always more efficient when inheritance is uniparental. Our findings help explain empir-
ical observations that cytoplasmic genomes–despite their asexual mode of reproduction–can readily
undergo adaptive evolution.

1. INTRODUCTION

About 1.5–2 billion years ago, an α-proteobacterium
was engulfed by a proto-eukaryote, an event that led
to modern mitochondria [1]. Likewise, chloroplasts in
plants and algae are derived from a cyanobacterium [2].
These cytoplasmic genomes are essential to extant eu-
karyotic life, producing much of the energy required
by their eukaryotic hosts. Like their ancient ancestors,
cytoplasmic genomes reproduce asexually and appear
to undergo little recombination with other cytoplasmic
genomes [3, 4].

Since they lack recombination, asexual genomes have
lower rates of adaptive evolution than sexual genomes
unless the size of the population is extremely large [5, 6].
While the theoretical costs of asexual reproduction have
long been known [5–9], conclusive empirical evidence is
more recent [10–13]. Three factors largely explain why
asexual genomes have low rates of adaptive evolution:
(1) beneficial substitutions accumulate slowly; (2) dele-
terious substitutions are poorly selected against; and (3)
when beneficial substitutions do spread, any linked dele-
terious substitutions also increase in frequency through
genetic hitchhiking [5, 7, 8, 10, 11].

The lack of recombination in asexual genomes slows
the accumulation of beneficial substitutions. Recombi-
nation can aid the spread of beneficial substitutions by
separating out rare beneficial mutations from deleteri-
ous genetic backgrounds (“ruby in the rubbish”) [14].
Furthermore, recombination can reduce competition be-
tween different beneficial substitutions (“clonal interfer-
ence”) [5, 7, 8, 10, 11, 15–17]. Under realistic popula-
tion sizes and mutation rates, an asexual population will
contain multiple genomes—each with different beneficial
substitutions—competing with one another for fixation
[11, 16]. Ultimately, clonal interference leads to the loss
of some beneficial substitutions, reducing the efficiency
of adaptive evolution [5, 7, 8, 10, 11, 15–17].

The lack of recombination also makes it more difficult
for asexual genomes to purge deleterious substitutions.
An asexual genome can only restore a loss of function
from a deleterious substitution through a back muta-
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tion or a compensatory mutation, both of which are rare
[5, 18]. Unless the size of the population is very large,
the number of slightly deleterious substitutions should
increase over time as the least-mutated class of genome
is lost through genetic drift (“Muller’s ratchet”) [5, 18].

If that were not enough, asexual genomes are also es-
pecially susceptible to genetic hitchhiking [10, 11], a pro-
cess by which deleterious substitutions spread through
their association with beneficial substitutions [19, 20].
As all loci on an asexual genome are linked, deleteri-
ous and beneficial substitutions on the same genome will
segregate together. When the positive effect of a benefi-
cial substitution outweighs the negative effect of a dele-
terious substitution, the genome that carries both can
spread through positive selection [19, 20]. Even when the
additive effect is zero or negative, a beneficial substitu-
tion can still aid the spread of a deleterious substitution
via genetic drift by reducing the efficiency of selection
against the deleterious substitution. Genetic hitchhiking
can thus offset the benefits of accumulating beneficial
substitutions by interfering with the genome’s ability to
purge deleterious substitutions [19, 20].

Free-living asexual organisms (e.g. bacteria) generally
have very large population sizes [21], allowing these or-
ganisms to alleviate some of the costs of asexual repro-
duction [5, 6]. Asexual cytoplasmic genomes, however,
have an effective population size much smaller than that
of free-living asexual organisms [21, 22]. As a smaller
population size increases the effect of genetic drift, cyto-
plasmic genomes should have less efficient selection than
asexual organisms [23, 24] and should struggle to accu-
mulate beneficial substitutions and to purge deleterious
substitutions [25–27].

But despite theoretical predictions, cytoplasmic
genomes readily undergo adaptive evolution. Mitochon-
drial protein-coding genes show signatures that are con-
sistent with both low levels of deleterious substitutions
[21, 28, 29] and frequent selective sweeps of beneficial
substitutions [30, 31]. Indeed, it is estimated that 26%
of mitochondrial substitutions that alter proteins in ani-
mals have become fixed through adaptive evolution [32].
Beneficial substitutions in the mitochondrial genome
have helped animals adapt to specialized metabolic re-
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quirements [33–36] and have enabled humans to adapt
to cold northern climates [37]. Likewise, it is clear that
adaptive evolution has played a role in the evolution of
chloroplast genomes [38, 39].

How then do we reconcile empirical evidence for adap-
tive evolution in cytoplasmic genomes with theoretical
predictions that such adaptation should be impaired?
Unlike free-living asexual organisms, which are directly
exposed to selection, cytoplasmic genomes exist within
host cells. The fitness of cytoplasmic genomes is there-
fore closely aligned with the fitness of their host. Each
of these hosts carries multiple cytoplasmic genomes that
are generally inherited from a single parent (uniparental
inheritance) [40]. During gametogenesis, cytoplasmic
genomes can undergo tight population bottlenecks, af-
fecting the transmission of genomes from parent to off-
spring [41, 42]. Cytoplasmic genomes are thus subject
to very different evolutionary pressures than free-living
asexual organisms.

Some of the effects of uniparental inheritance and a
transmission bottleneck on the evolution of cytoplas-
mic genomes have already been identified. Both uni-
parental inheritance and a transmission bottleneck de-
crease within-cell variance in cytoplasmic genomes and
increase between-cell variance. [40, 43–45]. Uniparental
inheritance is known to select against deleterious mu-
tations [44–47] and select for mito-nuclear coadaptation
[48]. Similarly, a transmission bottleneck and other forms
of within-generation drift are known to slow the ac-
cumulation of deleterious substitutions in cytoplasmic
genomes [26, 43, 49].

Although the effect of uniparental inheritance and a
bottleneck on the accumulation of deleterious substitu-
tions is reasonably well-studied, much less attention has
been paid to the other limitations of asexual reproduc-
tion: slow accumulation of beneficial substitutions and
high levels of genetic hitchhiking. The two studies that
have addressed the spread of beneficial substitutions have
come to contradictory conclusions. Takahata and Slatkin
[49] showed that within-generation drift promoted the ac-
cumulation of beneficial substitutions. In contrast, Roze
and colleagues [44] found that within-generation drift
due to a bottleneck reduced the fixation probability of a
beneficial mutation. Takahata and Slatkin found no dif-
ference between uniparental and biparental inheritance
of cytoplasmic genomes [49] while Roze and colleagues
found that uniparental inheritance increased the fixation
probability of a beneficial mutation and its frequency at
mutation-selection equilibrium [44]. Of the two previ-
ous studies, only the model of Takahata and Slatkin was
able to examine the accumulation of substitutions [49]
(the model of Roze and colleagues only considered a sin-
gle locus [44]). To our knowledge, no study has looked
at how inheritance mode affects genetic hitchhiking in
cytoplasmic genomes.

Here we develop theory that explains how cytoplasmic
genomes are capable of adaptive evolution despite their
lack of recombination. We will show how the biology
of cytoplasmic genomes—specifically their organization
into host cells and their uniparental inheritance—allows
them to accumulate beneficial substitutions and to purge
deleterious substitutions more efficiently than compara-
ble free-living asexual genomes.

2. MODEL

For simplicity, we base our model on a population of
diploid single-celled eukaryotes. We examine the accu-
mulation of beneficial and deleterious substitutions in
an individual-based computational model that compares
uniparental inheritance of cytoplasmic genomes with bi-
parental inheritance (the presumed ancestral state [40]).
Since genetic drift plays an important role in the spread
of substitutions, we take stochastic effects into account.
We vary the size of the transmission bottleneck during
meiosis (i.e. the number of cytoplasmic genomes passed
from parent to gamete) to alter the level of genetic drift.
To examine how the organization of cytoplasmic genomes
into host cells affects their evolution, we also include a
model of comparable free-living asexual genomes.

We have four specific aims. We will determine how
inheritance mode and the size of the transmission bot-
tleneck affect (Aim 1) clonal interference and the accu-
mulation of beneficial substitutions; (Aim 2) the accu-
mulation of deleterious substitutions; (Aim 3) the level
of genetic hitchhiking; and (Aim 4) the level of adap-
tive evolution, which we define as the ratio of benefi-
cial to deleterious substitutions. Although uniparental
inheritance and a transmission bottleneck are known to
select against deleterious mutations on their own [26, 43–
47, 49], the interaction between inheritance mode, trans-
mission bottleneck, and the accumulation of deleterious
substitutions has not to our knowledge been examined.
Thus we include Aim 2 to specifically examine interac-
tions between inheritance mode and size of the transmis-
sion bottleneck. To address our aims, we built four varia-
tions of our model. First, we examine clonal interference
and the accumulation of beneficial substitutions using a
model that considers beneficial but not deleterious mu-
tations (Aim 1). Second, we consider deleterious but not
beneficial mutations to determine how inheritance mode
and a transmission bottleneck affect the accumulation of
deleterious substitutions in cytoplasmic genomes (Aim
2). Third, we combine both beneficial and deleterious
substitutions. This allows us to examine the accumula-
tion of deleterious substitutions in the presence of benefi-
cial mutations (genetic hitchhiking; Aim 3) and the ratio
of beneficial to deleterious substitutions (Aim 4). For all
aims, we compare our models of cytoplasmic genomes to
a comparable population of free-living asexual genomes.
This serves as a null model, allowing us to examine the
strength of selection when asexual genomes are directly
exposed to selection.

The population contains N individuals, each carry-
ing the nuclear genotype Aa, where A and a are self-
incompatible mating type alleles. Diploid cells contain
n cytoplasmic genomes, and each genome has l linked
base pairs. A cytoplasmic genome is identified by the
number of beneficial and deleterious substitutions it car-
ries (α and κ respectively; note, we do not track where
on the genome the mutations occur). Cells are identi-
fied by the number of each type of cytoplasmic genome
they carry. The life cycle has four stages, and a complete
passage through the four stages comprises a generation.
The first stage is mutation. Initially, all cells carry cy-
toplasmic genomes with zero substitutions. Mutations
can occur at any of the l base pairs. The probability
that one of these l sites will mutate to a beneficial or
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Figure 1. Fitness functions. Additional parameters: n = 50, sb = sd = 0.1, γ = 5. A. The three fitness functions used in this study in
the case of beneficial mutations only. The selection coefficient is defined such that 1− sb represents the fitness of a cell with zero beneficial
substitutions (a cell with nγ beneficial substitutions has a fitness of 1, where n is the number of cytoplasmic genomes and γ is the number
of substitutions each cytoplasmic genome must accumulate before the simulation is terminated). In this case, where n = 50 and γ = 5, a
cells fitness is 1 when each cytoplasmic genome in the cell carries an average of 5 substitutions (50 × 5 = 250 beneficial substitutions in
total). B. The deleterious fitness function. Here, a cell with no deleterious substitutions has a fitness of 1, while a cell with nγ substitutions
has a fitness of 1 − sd. We only examine a concave down decreasing function for the accumulation of deleterious substitutions (unless we
are comparing cytoplasmic genomes to free-living genomes, in which case we use a linear fitness function). C. One of the fitness functions
used in the model with both beneficial and deleterious mutations. The beneficial substitution portion of the function can take any of the
forms in panel A while the deleterious substitution portion takes the form in panel B. In this example the fitness surface combines a linear
function for beneficial substitutions with a concave down fitness function for deleterious substitutions. The color represents the fitness of a
cell carrying a given number of deleterious substitutions (x-axis) and beneficial substitutions (y-axis). Equations for the fitness functions
can be found in SI Text 1.2 (A), SI Text 2 (B), and SI Text 3.2 (C)

deleterious site is given by µb and µd per site per gen-
eration respectively (determined via generation of ran-
dom numbers within each simulation). As the mutation
rate in mitochondrial DNA is between 7.8 × 10−8 and
1.7 × 10−7 per nucleotide per generation [50–52], we let
µd = 1×10−7 per nucleotide per generation. We assume
the beneficial mutation rate is lower than the deleterious
mutation rate, and as such, examine both µb = 1× 10−8

and µb = 1 × 10−9 per nucleotide per generation [53].
After mutation, cells are subject to selection, assumed

for simplicity to act only on diploid cells. We assume that
each substitution has the same effect, which is given by
the selection coefficient (sb for beneficial and sd for dele-
terious) and that fitness is additive. We assume that a
cell’s fitness depends on the total number of substitu-
tions carried by its cytoplasmic genomes. As there are
few data on the distribution of fitness effects of beneficial
substitutions in cytoplasmic genomes, we examine three
fitness functions: concave up, linear, and concave down
(Fig. 1A). For deleterious substitutions in cytoplasmic
genomes, there is strong evidence that fitness is only
strongly affected when the cell carries a high proportion
of deleterious genomes [54], and so we use a decreasing
concave down function to model deleterious substitutions
(Fig. 1B). When we combine beneficial and deleterious
mutations in a single model, we examine all three fitness
functions for the accumulation of beneficial substitutions
but only a concave down decreasing fitness function for
the accumulation of deleterious substitutions (Fig. 1B).

We focus on selection coefficients that represent muta-
tions with small effects on fitness: sb = 0.01−0.1 (see the
legend of Fig. 1 for a description of how the selection co-
efficient relates to fitness). Cells are assigned a relative
fitness based on the number of beneficial and deleteri-
ous substitutions carried by their cytoplasmic genomes.
These fitness values are used to sample N new individu-
als for the next generation.

Each of the post-selection diploid cells then undergoes
meiosis to produce two gametes, one with nuclear allele

A and the other with nuclear allele a. Each gamete also
carries b cytoplasmic genomes sampled with replacement
from the n cytoplasmic genomes carried by the parent
cell (with b ≤ n/2) [41]. We examine both a tight trans-
mission bottleneck (b = n/10) and a relaxed transmission
bottleneck (b = n/2). To maintain population size at N ,
each diploid cell produces two gametes.

During mating, each gamete produced during meio-
sis is randomly paired with another gamete of a com-
patible mating type. These paired cells fuse to produce
diploid cells. Under biparental inheritance, both the ga-
metes with the A and a alleles pass on their b cytoplasmic
genomes, while under uniparental inheritance, only the b
genomes from the gamete with the A allele are transmit-
ted. Finally, n genomes are restored to each new diploid
cell by sampling n genomes with replacement from the
genomes carried by the diploid cell after mating (2b un-
der biparental inheritance and b under uniparental in-
heritance). The model then repeats, following the cy-
cle of mutation, selection, meiosis, and mating described
above.

To ensure that our model of free-living asexual
genomes can be directly compared to our model of cyto-
plasmic genomes, we assume a population size of N × n
free-living genomes. Each free-living genome carries one
haploid asexual nuclear genome with l base pairs. Now
there are only two stages to the life cycle: mutation and
selection. Mutation proceeds as in the model of cyto-
plasmic genomes. Selection, however, now depends only
on the number of substitutions carried by a genome. We
assume that a mutation has the same effect on the fit-
ness of a free-living cell as a mutation on a cytoplasmic
genome has on the fitness of its host cell. (When compar-
ing free-living and cytoplasmic genomes, we always use a
linear fitness function for both beneficial and deleterious
substitutions because for this function the strength of se-
lection on a new substitution is independent of existing
substitution load.) Our intention is not to accurately
model extant populations of free-living asexual organ-
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Figure 2. Dynamics in the accumulation of beneficial substitutions. Parameters: N = 1000, n = 50, µb = 10−8, linear fitness
function, and b = 25 (relaxed transmission bottleneck) or b = 5 (tight transmission bottleneck). As neither fitness function nor selection
coefficient qualitatively affect the results, we show a single representative set of parameter values. Error bars represent standard error of
the mean. A. Variance in the number of different cytoplasmic genomes carried by cells (averaged over all cells in the population each
generation). As free-living cells carry a single genome, they have no within-cell variance. B. Variance of all cells’ fitness values (averaged
over each generation). C. The number of generations separating the genome carrying α substitutions from the genome carrying α + 1
(averaged over all observed substitutions, but excluding α = 1, as the dynamics of α = 1 are largely driven by the starting conditions). The
establishment phase begins when the genome carrying α substitutions first appears and ends when that genome becomes established in the
population (depicted in dark blue). The sweep phase begins with the establishment of the genome with α substitutions and ends upon the
first appearance of the genome with α + 1 substitutions (depicted in yellow). D. During the establishment period of the genome with α
substitutions, D shows the probability of losing all genomes with α substitutions (P (lose α)) and the probability of regenerating at least one
genome with α substitutions once all genomes with α substitutions have been lost (P (regain α )) (averaged over all observed establishment
periods, but excluding α = 1). E. During the establishment period of the genome with α substitutions, E shows the trajectory of the
genome with α− 1 substitutions. To calculate the curves, we divided each of the 500 Monte Carlo simulations into 20 equidistant pieces.
We rounded to the nearest generation and obtained the frequency of the genome with α − 1 substitutions at each of those 20 generation
markers. Each curve shows the average of those 20 generation markers (over all establishment periods, excluding α = 1, and over all
simulations) and is plotted so that the end of the curve aligns with the mean length of the establishment period (shown in panel C). F.
The mean number of generations to accumulate a single beneficial substitution. We divide the number of generations to accumulate γ
substitutions by the mean number of beneficial substitutions accumulated in that time period (averaged over all simulations).

isms, as these differ in a number of ways from cytoplas-
mic genomes (e.g. population size, mutation rate, and
genome size [21]), but rather to examine how the orga-
nization of multiple cytoplasmic genomes within a host
affects their evolution.

When we consider beneficial mutations only (Aim 1),
the simulation stops once every cytoplasmic genome in
the population has accumulated at least γ beneficial sub-
stitutions. For the remaining models, we run each sim-
ulation for 10,000 generations. For all the models, we
average the results of 500 Monte Carlo simulations for
each combination of parameter values (we vary N , n, b,
sb, sd, and the fitness functions associated with bene-
ficial substitutions). We wrote our model in R version
3.1.2 [55]. For a detailed description of the model, see SI
Text.

3. RESULTS

3.1. Cytoplasmic genomes accumulate beneficial
mutations faster than free-living genomes

The units of selection differ between cytoplasmic
genomes (eukaryotic host cell) and free-living genomes
(free-living asexual cell). Cytoplasmic genomes have two
levels at which variance in fitness can be generated: vari-
ation in the number of substitutions per genome and
variation in the relative number of each genome type
in a host cell (Fig. 2A). In contrast, free-living genomes

can differ only in the number of substitutions carried
per genome. Consequently, cytoplasmic genomes have a
greater potential for creating variance between the units
of selection than free-living genomes (Fig. 2B).

For conceptual purposes, we break down the accumu-
lation of beneficial substitutions into two phases. In the
first phase (establishment), we determine the time for
a genome that carries α substitutions to become estab-
lished in a population that contains genomes with α− 1
or fewer beneficial substitutions. Since we examine small
selection coefficients, drift dominates the fate of genomes
when they are rare, and the genome with α substitutions
is frequently lost to drift when it first arises. The estab-
lishment phase starts when we first observe a genome
with α substitutions and ends when that genome per-
sists in the population (i.e. it is no longer lost to drift).
The second phase (sweep) starts at this point and ends
when a genome carrying α+1 substitutions first appears
in the population. Once a genome with α + 1 substi-
tutions appears, the establishment phase of this genome
begins and the cycle continues.

In cytoplasmic genomes, fewer generations separate the
appearance of the genome with α and the genome with
α+1 substitutions than in free-living genomes (Fig. 2C).
Cytoplasmic genomes more easily become established in
the population not because they are less likely to be
lost by drift—in fact cytoplasmic genomes are more fre-
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Figure 3. Uniparental inheritance reduces clonal interference. Parameters: N = 1000, n = 50, sb = 0.1, and a linear fitness
function. The figure depicts a time-series of a single simulation, showing the proportions of genomes carrying different numbers of
substitutions (we chose the first completed simulation for each comparison). To quantify the slope of declines in proportion of a genome
type (equivalently, the speed at which a genome type is replaced), we report the generations (± se) for the wild type genome to drop from
100% to below 0.5% (averaged over all simulations), which we call g0.005. We also report the mean number of genomes (± se) co-existing
in the population (averaged over each generation and over all simulations), which we call cg . A. In a free-living population, genomes with
beneficial substitutions spread slowly through the population (g0.005 = 5708 ± 31 generations). As a result, multiple genomes co-exist at
any one time (cg = 7.0±0.02 genomes), increasing the scope for clonal interference. B–C. Biparental inheritance with a relaxed bottleneck
(B; b = 25) and tight bottleneck (C; b = 5). Genomes with beneficial substitutions spread more quickly compared to free-living genomes
(B: g0.005 = 2584 ± 21 generations; C: g0.005 = 1377 ± 14 generations), reducing the number of co-existing genomes (B: cg = 4.8 ± 0.02
genomes; C: cg = 3.8 ± 0.01 genomes). D–E. Uniparental inheritance with a relaxed bottleneck (D; b = 25) and tight bottleneck (E;
b = 5). Under uniparental inheritance, genomes with beneficial substitutions spread much more quickly than free-living and biparentally
inherited cytoplasmic genomes (D: g0.005 = 463 ± 6 generations; E: g0.005 = 453 ± 6 generations). This leads to fewer genomes co-existing
in the population (D: cg = 3.1 ± 0.01 genomes; E: cg = 2.8 ± 0.01 genomes) and low levels of clonal interference.

quently lost to drift than free-living genomes—but be-
cause once a genome with α substitutions has been lost,
it is more quickly regenerated (Fig. 2D). The regenera-
tion of the genome with α substitutions is proportional
to the rate at which mutations occur on the genome with
α−1 substitutions. In cytoplasmic genomes, the genome
with α−1 substitutions increases in frequency much more
quickly than in free-living genomes (Fig. 2E). Thus, in
cytoplasmic genomes, the genome with α − 1 substitu-
tions presents a larger target for de novo mutations, driv-
ing regeneration of the genome with α substitutions (Fig.
2D). As a result, cytoplasmic genomes suffer less from
clonal interference (Fig. 3) and take less time to accu-
mulate beneficial substitutions than free-living genomes
(Fig. 2F)

3.2. Uniparental inheritance of cytoplasmic genomes
promotes the accumulation of beneficial

substitutions

Meiosis introduces variation in the cytoplasmic
genomes that are passed to gametes. Gametes can thus
carry a higher or lower proportion of beneficial substitu-
tions than their parent. Uniparental inheritance main-
tains this variation in offspring, reducing within-cell vari-
ation (Fig. 2A) while increasing between-cell variation
(Fig. 2B). Biparental inheritance, however, combines
the cytoplasmic genomes of different gametes, destroy-
ing much of the variation produced during meiosis and
reducing between-cell variation (Fig. 2B). Thus, selec-
tion is more efficient when inheritance is uniparental be-

cause there is more between-cell variation in fitness on
which selection can act (Fig. 2B). Uniparental inheri-
tance eases the establishment of the genome with α sub-
stitutions (Fig. 2C) by increasing the rate at which the
genome with α substitutions is regenerated once lost to
genetic drift (Fig. 2D). Under uniparental inheritance,
the genome with α− 1 substitutions quickly increases in
frequency (Fig. 2E), driving the formation of the genome
with α substitutions. Uniparental inheritance decreases
clonal interference (Fig. 3), reducing the time to accu-
mulate beneficial substitutions compared to biparental
inheritance (Fig. 2F; see Fig. S1 for a range of different
parameter values).

3.3. Inheritance mode is more important than the size
of the bottleneck

Under biparental inheritance, a tight bottleneck de-
creases the variation in cytoplasmic genomes within ga-
metes (Fig. 2A) and increases the variation between ga-
metes (Fig. 2B). Consequently, under biparental inher-
itance beneficial substitutions accumulate more quickly
than when the transmission bottleneck is relaxed (Fig.
2F and Fig. S1). Bottleneck size has less of an effect on
uniparental inheritance because uniparental inheritance
efficiently maintains the variation generated during meio-
sis even when the bottleneck is relaxed (Fig. 2B). When
n is larger (n = 200), a tight bottleneck reduces the time
for beneficial substitutions to accumulate, but even here
the effect is minor (Fig. S1C).

Importantly, the accumulation of beneficial substitu-
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tions under biparental inheritance and a tight bottle-
neck is always less effective than under uniparental in-
heritance, irrespective of the size of the bottleneck dur-
ing uniparental inheritance (Fig. 2 and Fig. S1).
While a tight transmission bottleneck reduces within-
gamete variation, the subsequent mixing of cytoplasmic
genomes due to biparental inheritance means that cells
have higher levels of within-cell variation and lower lev-
els of between-cell variation than uniparental inheritance
(Fig. 2A–B).

3.4. Varying parameter values does not alter patterns

The choice of fitness function has little effect on our
findings (Fig. S1). Likewise, varying the selection coeffi-
cient does not affect the patterns, although the relative
advantage of uniparental inheritance over biparental in-
heritance is larger for higher selection coefficients (Fig.
S1). Increasing the number of cytoplasmic genomes (n)
increases the relative advantage of uniparental inheri-
tance over biparental inheritance, whereas increasing the
population size (N) has little effect (compare Fig. S1C
with Fig. S1A).

U
PI

U
PI (bot)

B
PI

B
PI (bot)

0

1

2

3

B

U
PI

U
PI (bot)

B
PI

B
PI (bot)

0

5

10

D
el
et
er
io
u
s
su
b
st
it
u
ti
o
n
s
p
er

g
en
o
m
e

C

U
PI

U
PI (bot)

B
PI

B
PI (bot)

free-living

0

5

A

Figure 4. Accumulation of deleterious substitutions in the
absence of beneficial mutations. Parameters (unless otherwise
stated): N = 1000, n = 50, µ = 10−7, a concave down fitness
function, and b = 25 (relaxed transmission bottleneck) or b = 5
(tight transmission bottleneck). A. Comparison with free-living
genomes (linear fitness function for both free-living and cytoplas-
mic genomes and sd = 0.1). B. Mean deleterious substitutions
per cytoplasmic genome for sd = 0.1. C. Mean deleterious substi-
tutions per cytoplasmic genome for sd = 0.01. Error bars are ±
standard error of the mean.

3.5. Uniparental inheritance helps cytoplasmic genomes
purge deleterious substitutions

Free-living asexual genomes accumulate deleterious
substitutions more quickly than cytoplasmic genomes
(Fig. 4A). Biparental inheritance of cytoplasmic
genomes causes deleterious substitutions to accumulate
more quickly than when inheritance is uniparental (Fig.
4). A tight transmission bottleneck slows the accumu-
lation of deleterious substitutions under biparental in-
heritance, but biparental inheritance always remains less
efficient than uniparental inheritance at purging delete-
rious substitutions (Fig. 4).
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Figure 5. Genetic hitchhiking. φ < 1 indicates the presence
of genetic hitchhiking (the lower the value of φ, the greater the
level of hitchhiking). Parameters: N = 1000, n = 50, µb = 10−8,
µd = 10−7, and b = 25 (relaxed transmission bottleneck) or b = 5
(tight transmission bottleneck). The overall level of genetic hitch-
hiking in each population, measured by our genetic hitchhiking in-
dex (see Fig. S2 for details). Error bars are ± standard error of the
mean. A. Free-living comparison (linear fitness function for both
beneficial and deleterious substitutions with sb = sd = 0.1). For
cytoplasmic genomes, B shows sb = 0.1 while C shows sb = 0.01.
For B–C, the fitness function for beneficial substitutions is shown
on the x-axis while the fitness function for deleterious substitutions
is concave down.

3.6. Uniparental inheritance reduces hitchhiking of
deleterious substitutions during selective sweeps

To detect levels of genetic hitchhiking in cytoplas-
mic genomes, we identified the location of all “beneficial
sweeps”, defined as the generation at which the genome
that carries the fewest beneficial substitutions is lost from
the population. Likewise, we identified the location of all
“deleterious sweeps”, which is the generation in which
the genome carrying the fewest deleterious substitutions
is lost (note that a deleterious sweep is the same as a
“click” of Muller’s ratchet [18]) (Fig. S2).

Cycling through each beneficial sweep, we identified
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Figure 6. Inheritance mode and the distribution of ge-
netic hitchhiking. Parameters: N = 1000, n = 50, µb = 10−8,
µd = 10−7, b = 25, a concave down fitness function for the accu-
mulation of beneficial substitutions, and sb = 0.1 (A) or sb = 0.01
(B). A histogram that shows the distribution of hitchhiking in-
dex values for each pair of beneficial and deleterious sweeps. A
beneficial sweep occurs when the genome with the fewest benefi-
cial substitutions is lost and a deleterious sweep occurs when the
genome with the fewest deleterious substitutions is lost. In both A
and B, uniparental inheritance more often leads to cases in which
a beneficial sweep is very closely followed by a deleterious sweep
(leftmost bar). However, uniparental inheritance also leads to more
cases in which the deleterious sweep is greatly separated from the
beneficial sweep, indicating that genetic hitchhiking is more often
suppressed under uniparental inheritance (right-hand side of the
graph). Overall, uniparental inheritance leads to a higher overall
hitchhiking index (φ)–and thus lower levels of hitchhiking–than bi-
parental inheritance (A. UPI: 0.79; BPI: 0.59. B. UPI: 0.86; BPI:
0.61). Blue bars pertain to uniparental inheritance, the light pink
bars pertain to biparental inheritance, and the dark red bars depict
overlapping bars (the dark red bar pertains to whichever color does
not show on the top of the bar). (We do not plot cases in which
the simulation terminates before a beneficial sweep is followed by
a deleterious sweep. However, we do take these into account when
generating the hitchhiking index value: see Fig. S2 for details.)

the location of the nearest upstream deleterious sweep
(i.e. in the same or in a later generation as the beneficial
sweep). We measured the number of generations separat-
ing the two events and calculated the mean generations
of all such instances. To obtain a “genetic hitchhiking
index” (φ), we normalized by dividing the mean genera-
tions by the expected number of generations for a dele-
terious sweep to follow a beneficial sweep (see Fig. S2
legend for how we calculate the expected number of gen-
erations). If fewer than expected generations separated
the beneficial and deleterious sweeps (φ < 1), we infer
that deleterious substitutions benefited from the spread
of beneficial substitutions (i.e. genetic hitchhiking oc-
curred) (Fig. S2A). If the expected number of gener-
ations separated the beneficial and deleterious sweeps
(φ ≈ 1), we infer that the spread of beneficial substi-
tutions had little or no effect on the spread of deleterious
substitutions (Fig. S2B; see Table S1 for a benchmark of
the index using randomly simulated beneficial and delete-
rious sweeps). If greater than expected generations sep-
arated the beneficial and deleterious sweeps (φ > 1), we
infer that deleterious substitutions were inhibited by the
spread of beneficial substitutions (Fig. S2C). For details
of our genetic hitchhiking index, see Fig. S2.

In all cases, φ < 1 (Fig. 5 and S3), indicating that
genetic hitchhiking plays an important role in aiding the

spread of deleterious substitutions. Free-living genomes
experience higher levels of hitchhiking than cytoplasmic
genomes (Fig. 5A). Uniparental inheritance reduces lev-
els of genetic hitchhiking compared to biparental inheri-
tance (Figs. 5B–C, S3). Uniparental inheritance actually
increases the proportion of deleterious substitutions that
sweep concurrently with beneficial substitutions (Fig. 6;
leftmost bar). This occurs when the genomes that sweep
carry more than the minimum deleterious substitutions
in the population. However, uniparental inheritance also
increases the proportion of deleterious sweeps in which
φ is large (Fig. 6), which occur when the genomes that
sweep carry the minimum number of deleterious substi-
tutions in the population. Overall, the latter outweigh
the former, leading to lower levels of genetic hitchhiking
under uniparental inheritance (Figs. 5, S3).

3.7. Uniparental inheritance promotes adaptive
evolution

Cytoplasmic genomes have higher levels of adaptive
evolution than free-living genomes under the same set of
conditions (Fig. 7A). Strikingly, uniparental inheritance
of cytoplasmic genomes leads to a ratio of beneficial to
deleterious substitutions that is two orders of magnitude
higher than in free-living genomes (Fig. 7A). Among cy-
toplasmic genomes, uniparental inheritance always leads
to higher levels of adaptive evolution than biparental in-
heritance (Figs. 7, S4). While a tight transmission bot-
tleneck combined with biparental inheritance increases
the ratio of beneficial to deleterious substitutions, bi-
parental inheritance always has lower levels of adaptive
evolution than uniparental inheritance, regardless of the
size of the transmission bottleneck (Fig. S4).

4. DISCUSSION

Both theory and experiments indicate that asexual re-
production leads to lower rates of adaptive evolution than
sexual reproduction [5, 7, 8, 10, 11, 15–17]. Free-living
asexual organisms typically have huge population sizes,
allowing them to overcome these limitations of asexual
reproduction [21]. Cytoplasmic genomes, however, have
much smaller effective population sizes and should be
especially susceptible to these limitations of asexual re-
production [25–27]. These predictions, however, are in-
consistent with empirical observations that cytoplasmic
genomes can readily accumulate beneficial substitutions
and purge deleterious substitutions [28, 30, 32, 34].

In this study, we help reconcile theory with empirical
observations. We show that the specific biology of cy-
toplasmic genomes–in particular uniparental inheritance
and their organization within hosts–increases the efficacy
of selection on cytoplasmic genomes relative to compara-
ble free-living genomes. Furthermore, we show that the
mode of inheritance of cytoplasmic genomes has a pro-
found effect on adaptive evolution: uniparental inheri-
tance reduces variation of cytoplasmic genomes within
cells and increases variation of fitness between cells, im-
proving the efficacy of selection relative to biparental in-
heritance.

In particular, uniparental inheritance reduces compe-
tition between different beneficial substitutions (clonal
interference), causing beneficial substitutions to accumu-
late on cytoplasmic genomes more quickly than under bi-
parental inheritance. Uniparental inheritance also facili-
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Figure 7. Uniparental inheritance promotes adaptive evolution. Parameters: N = 1000, n = 50, µb = 10−8, µd = 10−7, sb = 0.1,
and b = 25 (relaxed transmission bottleneck) or b = 5 (tight transmission bottleneck). A. Comparison with free-living genomes. Here,
the fitness function for both beneficial and deleterious substitutions is linear. B–E shows the mean trajectory of the 500 simulations
plotted every 500 generations. Here, the fitness function for beneficial substitutions is linear while the fitness function for deleterious
substitutions is concave down, decreasing. We calculate the ratio of beneficial to deleterious substitutions as follows. First, we calculate the
aggregated mean of the number of beneficial and deleterious substitutions for the population at generation 10,000 (average substitutions
per cytoplasmic genome). Second, for each of the 500 simulations we divide the mean number of beneficial substitutions per genome by
the corresponding mean number of deleterious substitutions per genome. Finally, we take the average of the ratios of the 500 simulations.

tates selection against deleterious substitutions, slowing
the progression of Muller’s ratchet. Finally, uniparental
inheritance reduces the level of genetic hitchhiking in
cytoplasmic genomes, a phenomenon to which asexual
genomes are especially susceptible [10, 11]. Lower lev-
els of hitchhiking under uniparental inheritance means
that beneficial (selective) sweeps are less likely to involve
excess deleterious substitutions. As these genomes lack-
ing excess deleterious substitutions spread, they remove
standing variation in the population, purging genomes
that carry excess deleterious substitutions and slowing
Muller’s ratchet. Furthermore, both theoretical [56] and
empirical [57] evidence suggest that beneficial substitu-
tions can slow Muller’s ratchet by compensating for dele-
terious substitutions. By increasing the ratio of ben-
eficial to deleterious substitutions, uniparental inheri-
tance effectively increases the ratio of beneficial compen-
satory substitutions to deleterious substitutions. Thus,
the accumulation of beneficial substitutions in cytoplas-
mic genomes not only aids adaptive evolution [32] but
improves the ability of cytoplasmic genomes to resist
Muller’s ratchet [43, 56]. Our findings thus help explain
how cytoplasmic genomes are able to undergo adaptive
evolution in the absence of sex and recombination.

We explicitly included a transmission bottleneck as
previous theoretical work seemed to suggest that this
alone could act to slow the accumulation of deleteri-
ous substitutions on cytoplasmic genomes [43]. Sepa-
rate work found that host cell divisions–which act sim-
ilarly to a transmission bottleneck–promoted the fixa-
tion of beneficial mutations and slowed the accumula-
tion of deleterious mutations [49]. In contrast, yet an-
other study found that a tight bottleneck increases ge-
netic drift, reducing the fixation probability of a benefi-
cial mutation and increasing the fixation probability of
a deleterious mutation [44]. Here we show that these
apparently contradictory findings are entirely consistent.
We find that a tight transmission bottleneck indeed in-
creases the rate at which beneficial substitutions are lost
when rare (Fig. 2D). But in a population with recur-
rent mutation, losing beneficial mutations when rare can

be compensated for by a higher rate of regeneration, ex-
plaining how a tight bottleneck promotes adaptive evo-
lution despite higher levels of genetic drift. Although
a tight transmission bottleneck promoted beneficial sub-
stitutions and opposed deleterious substitutions when in-
heritance was biparental, we show that a bottleneck must
be combined with uniparental inheritance to maximize
adaptive evolution in cytoplasmic genomes. A trans-
mission bottleneck is less effective in combination with
biparental inheritance because the mixing of cytoplas-
mic genomes after syngamy largely destroys the varia-
tion generated between gametes during meiosis. For the
parameter values we examined, uniparental inheritance
is the key factor driving adaptive evolution, as the size
of the bottleneck has little effect on the accumulation of
beneficial and deleterious substitutions when inheritance
is uniparental.

Our work illustrates that population genetic theory
from free-living organisms cannot be blindly applied to
cytoplasmic genomes. Consider effective population size
(Ne). A lower Ne leads to higher levels of genetic drift
[23], and it is often assumed that low Ne impairs selec-
tion in cytoplasmic genomes [24]. However, this assumes
that factors which decrease Ne do not alter selective pres-
sures and aid adaptive evolution in other ways. This as-
sumption is violated in cytoplasmic genomes as halving
the Ne of cytoplasmic genomes–the difference between
biparental and uniparental inheritance–improves the ef-
ficacy of selection and can increase the ratio of beneficial
to deleterious substitutions by 2–21 times (Fig. S4).

Although our findings apply most obviously to mito-
chondria and chloroplasts, they can also be applied to
another type of cytoplasmic genomes: obligate endosym-
bionts such as Rickettsia, Buchnera, and Wolbachia.
Endosymbionts share many traits with cytoplasmic or-
ganelles, including uniparental inheritance and multiple
copy numbers per host cell. Thus, uniparental inheri-
tance may also be key to explaining known examples of
adaptive evolution in endosymbionts [58, 59]
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Figure 1. Time to accumulate a beneficial substitution. Each plot shows the number of generations to accumulate a beneficial
substitution (number of generations before each cytoplasmic genome carries at least γ substitutions—where γ = 5—divided by the mean
substitutions per genome in that generation). Parameter values for A–B: N = 1000, n = 50, µb = 10−8, and b = 25 (relaxed transmission
bottleneck) or b = 5 (tight transmission bottleneck). A. Selection coefficient of 0.1. B. Selection coefficient of 0.01. Parameter values for
C (unless otherwise stated on the x-axis): N = 1000, n = 50, µb = 10−8, sb = 0.1, a linear fitness function for beneficial substitutions, and
b = n/2 (relaxed transmission bottleneck) or b = n/10 (tight transmission bottleneck). Error bars are standard error of the mean.
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Bene!cial sweep Deleterious sweep

Figure 2. Genetic hitchhiking index. To calculate the genetic hitchhiking index (φ), we compare the number of generations separating
beneficial and deleterious sweeps to the number of generations we expect if the two events are uncorrelated. We examine all beneficial
sweeps except those involving genomes with > 5 beneficial substitutions (to maintain consistency between the different fitness functions).
We map each beneficial sweep to a single deleterious sweep but do not limit the number of times a single deleterious sweep can be mapped
to (e.g. B and C). The expected separation between beneficial and deleterious sweeps for this hypothetical example is shown at the top of
the figure. See below for details of how the index is calculated. A. When beneficial sweeps are closely followed by deleterious sweeps, φ < 1
and we infer that genetic hitchhiking has occurred. B. When the mean of the number of generations separating beneficial and deleterious
sweeps are as expected, φ ≈ 1 and we infer that the beneficial sweep does not affect the deleterious sweep. C. When deleterious sweeps
follow beneficial sweeps later than expected, φ > 1 and we infer that genetic hitchhiking is suppressed. D. When a beneficial sweep is
followed by a deleterious sweep, we call it a “paired” sweep. In some instances, the simulation terminates before a deleterious sweep can
follow a beneficial sweep (an “unpaired” sweep; e.g. the last beneficial sweep in D). For unpaired sweeps, we add the number of generations
separating the beneficial sweep and the end of the simulation. To calculate the mean generations separating the sweeps, however, we only

divide by the number of paired sweeps. Thus, the equation for the index is φ =

[(
np∑
i=1

(gd(i) − gb(i)) +
nu∑
j=1

(gt − gb(j))

)
/np

]
/E[s]. np is

the total number of paired sweeps, gd(i) is the generation in which the ith paired deleterious sweep occurred, and gb(i) is the generation
in which the ith paired beneficial sweep occurred. nu is the total number of unpaired sweeps, gt is the number of generations in each run
(10000), and gb(j) is the generation in which the jth unpaired beneficial sweep occurred. E[s] is the expected separation in generations and

given by E[s] =

[(
r∑

k=1
gd (k) /d (k)

)
/r

]
− 1, where d(k) is the number of deleterious sweeps we considered in the kth simulation, gd(k) is

the generation at which the d(k)th deleterious sweep occurred in the kth simulation, and r is the number of runs for each set of parameter
values (500). We subtract 1 because the deleterious sweeps can occur in the same generation as the beneficial sweep.
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Figure 3. Genetic hitchhiking when beneficial mutations are rare. Parameters: N = 1000, n = 50, µb = 10−9, µd = 10−7, and
b = 25 (relaxed transmission bottleneck) or b = 5 (tight transmission bottleneck). A shows a selection coefficient of 0.1 while B shows a
selection coefficient of 0.01. The plots show the overall level of genetic hitchhiking in each population, measured by our genetic hitchhiking
index (see Fig. S2 for details). When φ < 1, it indicates the presence of genetic hitchhiking. Error bars are ± standard error of the mean.
Note that this figure depicts a beneficial mutation rate 10 times smaller than shown in Fig. 5 (µb = 10−9 versus µb = 10−8).
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Figure 4. Ratio of beneficial to deleterious substitutions accumulated under the two inheritance modes. Parameters:
N = 1000, n = 50, µd = 10−7, and b = 25 (relaxed transmission bottleneck) or b = 5 (tight transmission bottleneck). Panels A and B
show selection coefficients of sb = sd = 0.01, while panels C and D show selection coefficients of sb = sd = 0.1. For panels A and C,
the beneficial mutation rate is µb = 10−8, while for panels B and D the beneficial mutation rate is µb = 10−9. In all cases, uniparental
inheritance has a higher ratio of beneficial to deleterious substitutions than biparental inheritance. Error bars are ± standard error of the
mean. See Fig. 7 legend for details of how we calculate the ratio of beneficial to deleterious substitutions.

12

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 15, 2016. ; https://doi.org/10.1101/059089doi: bioRxiv preprint 

https://doi.org/10.1101/059089


Table 1
Benchmarking the genetic hitchhiking index using randomly simulated data

Parameters Results
inheritance b sb fitness φ± sd

UPI b = 25 0.01 concave up 1.009±0.040
BPI b = 25 0.01 concave up 1.003±0.040
UPI b = 5 0.01 concave up 0.997±0.047
BPI b = 5 0.01 concave up 1.002±0.040
UPI b = 25 0.01 linear 1.000±0.038
BPI b = 25 0.01 linear 1.005±0.033
UPI b = 5 0.01 linear 0.999±0.039
BPI b = 5 0.01 linear 0.997±0.044
UPI b = 25 0.01 concave down 1.002±0.034
BPI b = 25 0.01 concave down 1.000±0.040
UPI b = 5 0.01 concave down 1.001±0.041
BPI b = 5 0.01 concave down 1.001±0.049
UPI b = 25 0.1 concave up 0.996±0.043
BPI b = 25 0.1 concave up 1.002±0.042
UPI b = 5 0.1 concave up 0.995±0.039
BPI b = 5 0.1 concave up 1.000±0.041
UPI b = 25 0.1 linear 0.995±0.040
BPI b = 25 0.1 linear 0.995±0.038
UPI b = 5 0.1 linear 1.004±0.044
BPI b = 5 0.1 linear 1.000±0.042
UPI b = 25 0.1 concave down 0.996±0.045
BPI b = 25 0.1 concave down 1.001±0.044
UPI b = 5 0.1 concave down 0.998±0.046
BPI b = 5 0.1 concave down 1.004±0.052

Note. — Parameters: N = 1000, n = 50. φ ± sd shows the genetic hitchhiking index for randomly simulated datasets ± standard
deviation. For each set of parameter values, we determined the expected distance between beneficial and deleterious sweeps. (The expected

distance separating beneficial sweeps is E[db] =

(
r∑

i=1
gb (i) /nb (i)

)
/r, where nb(i) is the number of beneficial sweeps we considered in the

ith simulation, gb(i) is the generation at which the nb(i)th beneficial sweep occurred in the ith simulation, and r is the number of runs

for each set of parameter values (500). The expected distance separating deleterious sweeps is E[dd] =

(
r∑

i=1
gd (i) /nd (i)

)
/r, where nd(i)

is the number of deleterious sweeps we considered in the ith simulation, gd(i) is the generation at which the nd(i)th deleterious sweep
occurred in the ith simulation, and r is the number of runs for each set of parameter values.) We used these expected values to generate
500 randomly simulated runs, and for each one, used binomial sampling to generate a random number of beneficial and deleterious sweeps.
(The number of beneficial sweeps is given by the random variable Ri

b and the number of deleterious sweeps by the random variable Ri
d,

where i is the number of the simulated run (out of 500). To obtain Ri
b and Ri

d, we used the R function rbinom with parameters n = 1,
size = 10000, and prob = 1/E[db] for beneficial sweeps or prob = 1/E[dd] for deleterious sweeps.) For each run, we uniformly sampled
Ri

b beneficial and Ri
d deleterious sweeps over 10,000 generations to get the locations of our random beneficial and deleterious sweeps. We

then calculated φ in the same way as our model-generated data (Fig. S2). For each set of parameter values, we repeated this process 100
times, giving us 100 estimates of φ. The fifth column shows the mean and standard deviation of these 100 estimates. As can be seen, when
beneficial and deleterious sweeps are uncorrelated, φ ≈ 1.
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SI Text

The model is an individual-based model, in which we track all cells in the population (and
their gametes). The model is written in R version 3.1.2 [1]. For each set of parameter
values, we ran 500 Monte Carlo simulations. These Monte Carlo simulations were run
using packages that enable R code to be run in parallel (doMC and foreach [2, 3]) and
produce reproducible output doRNG [4]). We ran our simulations on High Performance
Computing clusters at The University of Sydney (“Artemis”) and National Computational
Infrastructure, Australia (“Raijin”).

1 Beneficial mutations only

We store the population of cells in a matrix called C
t,τζ
G that has N rows (each representing

an individual cell) and n columns (each representing a cytoplasmic genome). We will use
the terminology C

t,τζ
G (i, ∗) to refer to the ith row in C

t,τζ
G (equivalently the ith cell in

the population). G represents the inheritance mode and takes values in {U,B}, where U
denotes a cell with uniparental inheritance and B denotes a cell with biparental inheritance.
The generation is given by t, while the stage of the life cycle is given by τζ . Thus,

C
t,τζ
G =




C
t,τζ
G (1, 1) C

t,τζ
G (1, 2) . . . C

t,τζ
G (1, n)

C
t,τζ
G (2, 1) C

t,τζ
G (2, 2) . . . C

t,τζ
G (2, n)

...
...

. . .
...

C
t,τζ
G (N, 1) C

t,τζ
G (N, 2) . . . C

t,τζ
G (N,n)



,

where Ct,τζ
G (i, j) = α represents α beneficial substitutions in the jth cytoplasmic genome of

individual i. Cytoplasmic genomes have l bases, each of which can mutate from a neutral
site to a beneficial site. Initially, all genomes have α = 0 beneficial substitutions. The first
stage of the life cycle is mutation.
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1.1 Mutation

We only consider forward mutation (i.e. genomes can gain beneficial mutations but can-
not lose beneficial mutations). We assume that the jth cytoplasmic genome in the ith
cell receives mb,t

ij new beneficial mutations in generation t, where mb,t
ij takes values in

{0, 1, 2, 3, 4, 5}. The probability that a cytoplasmic genome receives 5 mutations in a single
generation is equal to the probability that a genome receives 5 or more mutations (when
µb = 10−8 and l = 20000, the probability that a cytoplasmic genome receives more than 5
mutations in a single generation is calculated by R as 0, so this is a very accurate approxi-
mation).

The probability that a genome mutates depends on the mutation rate per base per genera-
tion (µb), on the number of base pairs available to be mutated (l− α), and on the number
of mutations that occur (mb,t

ij ). To store these probabilities, we generate a matrix, M , with
l + 1 rows (α can take values in {0, 1...l}) and 5 columns. Thus,

M =




M(0, 0) M(0, 1) M(0, 2) M(0, 3) M(0, 4)
M(1, 0) M(1, 1) M(1, 2) M(1, 3) M(1, 4)
M(2, 0) M(2, 1) M(2, 2) M(2, 3) M(2, 4)

...
...

...
...

...
M(l, 0) M(l, 1) M(l, 2) M(l, 3) M(l, 4)



.

Each generation, we generate a uniformly random number between 0 and 1, rb,tij , which
determines the number of mutations gained by the jth cytoplasmic genome in the ith cell
in generation t (i.e. rb,tij is matched to Ct,τ1

G (i, j)). rb,tij causes mb,t
ij mutations in a genome

that already carries α substitutions according to

mb,t
ij = 5 if rb,tij <M(α, 0),

mb,t
ij = 5− x if M(α, x− 1) ≤ rb,tij <M(α, x) for 1 ≤ x ≤ 4,

mb,t
ij = 0 if rb,tij ≥M(α, 4).

The entries of M are given by

M(α, 0) = 1−
4∑

mb,tij =0

(
l − α
mb,t
ij

)
µ
mb,tij
b (1− µb)l−α−m

b,t
ij

and
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M(α, x) = 1−
4∑

mb,tij =0

(
l − α
mb,t
ij

)
µ
mb,tij
b (1− µb)l−α−m

b,t
ij +

4∑

y=5−x

(
l − α
y

)
µyb (1− µb)

l−α−y for 1 ≤ x ≤ 4.

For the jth cytoplasmic genome in the ith cell, we add the mb,t
ij new mutations to the

existing α substitutions according to

Ct,τ2
G (i, j) = Ct,τ1

G (i, j) +mb,t
ij

1.2 Selection

The next life cycle stage is selection. Here, each cell is assigned a fitness value based on
the number of beneficial cytoplasmic substitutions they carry. The number of beneficial
substitutions carried by the ith cell is given by β(i), where

β(i) =
n∑

j=1

Ct,τ2
G (i, j).

We examine three fitness functions: concave up, linear, and concave down. The fitness of
the ith cell under the concave up fitness function is given by

ωcub (β (i)) = 1 + sb

[(
β (i)

nγ

)2

− 1

]
,

the fitness of the ith cell under the linear fitness function by

ωlb (β (i)) = 1 + sb

[
β (i)

nγ
− 1

]
,

and the fitness of the ith cell under the concave down fitness function by

ωcdb (β (i)) = 1 + sb

[√
β (i)

nγ
− 1

]
,
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where γ is the number of beneficial substitutions each cytoplasmic genome must accumulate
before the simulation terminates, n is the number of cytoplasmic genomes in each cell, and
sb is the beneficial selection coefficient.

We then normalize each cell’s fitness so that the sum of all cells’ fitnesses equals 1. The 1-by-
N vector StG stores the normalized fitness of the population, where StG(i) gives the relative
fitness of the ith cell in the population. To generate StG, we first generate a temporary
1-by-N vector, S′ t

G where

S′ t
G(i) = ωfb (β(i)) ,

where f represents the fitness function used. To generate StG, we normalize this vector
according to

StG(i) =
S′ t

G(i)
N∑
z=1

S′ t
G(z)

.

Finally, we feed these probabilities into a multinomial distribution (function rmultinomial
in the multinomRob package [5]) to generate N new cells for the population. Cells can
thus die, replace themselves, or produce multiple copies of themselves. We pass the
rmultinomial function the arguments N and the probability vector StG, which generates
a 1-by-N vector, Ot

G, whose sum is N and whose ith entry represents the number of “off-
spring” left by the ith cell in the pre-selection population described by Ct,τ2

G . We then use
these offspring to reform the post-selection population described by Ct,τ3

G , assuming that
each offspring is a perfect copy of its parent. For example, if Ot

G(i) = 2 then in Ct,τ3
G there

will be two copies of Ct,τ2
G (i, ∗).

1.3 Meiosis

Each cell produces two gametes: one with mating type A and the other with mating type
a.

1.3.1 Biparental inheritance

To choose which cytoplasmic genomes are passed on, for each mating type we generate a
matrix, Ht

g(i, d) = Y with N rows and b columns populated with uniformly random positive
integers (Y ) in the set {1, 2, ...n}, where g represents the nuclear allele of the gamete and
when inheritance is biparental takes values in {BA, Ba}. Ht

g(i, d) = Y denotes that the dth
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genome chosen for the new gamete of type g is derived from the Y th cytoplasmic genome
of the ith cell. Sampling is with replacement and gametes are stored in a matrix, Gt,τ4

g ,
which has N rows and b columns. Gt,τ4

BA
(i, d) is produced by

Gt,τ4
BA

(i, d) = Ct,τ3
B (i,Ht

BA
(i, d) = Y ).

Gt,τ4
Ba

(i, d) is produced by

Gt,τ4
Ba

(i, d) = Ct,τ3
B (i,Ht

Ba(i, d) = Y ).

1.3.2 Uniparental inheritance

When inheritance is uniparental, g takes values in {UA, Ua}. Gt,τ4
UA

(i, d) is produced by

Gt,τ4
UA

(i, d) = Ct,τ3
U (i,Ht

UA
(i, d) = Y ),

and Gt,τ4
Ua

(i, d) is produced by

Gt,τ4
Ua

(i, d) = Ct,τ3
U (i,Ht

Ua(i, d) = Y ).

1.4 Random mating

1.4.1 Biparental inheritance

Biparental inheritance simply combines the cytoplasmic genomes of both gametes. For each
of the BA- and Ba-carrying gametes, we generate a 1-by-N vector, T t

g(i) = Z that contains
a random ordering (without replacement) of positive integers from the set {1, 2, ...N}. We
use these vectors to pair up gametes according to

C′t+1,τ1
B (i, ∗) = Gt,τ4

BA
(T t

BA
(i) = Z, ∗)‖Gt,τ4

Ba
(T t

Ba(i) = Z, ∗),

where ‖ indicates that the two vectors are concatenated. C′t+1,τ1
B is a temporary matrix (to

be replaced by Ct+1,τ1
B ), which contains 2b columns (representing the 2b genomes). Since

2b < n when we impose a tight transmission bottleneck, the final step for each cell is to
sample n genomes with replacement from these 2b genomes (for consistency, we include this
step even when the transmission bottleneck is relaxed and 2b = n). This sampling follows
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the same approach as described in meiosis, but now instead of choosing b genomes from
a cell with n genomes, we choose n genomes from a cell with 2b genomes. We generate a
matrix, F t

B(i, j) = Q withN rows and n columns populated with uniformly random positive
integers sampled with replacement from the set {1, 2, ...2b}, which we use to sample the
new genomes according to

Ct+1,τ1
B (i, j) = C′t+1,τ1

B (i,F t
G(i, j) = Q).

1.4.2 Uniparental inheritance

Under uniparental inheritance, only the gamete with mating type A passes on its cyto-
plasmic genomes. Thus, to pair up gametes we only need to generate one 1-by-N vector,
T t
UA

(i) = Z that contains a random ordering (without replacement) of positive integers in
the set {1, 2, ...N}, giving

C′t+1,τ1
U (i, ∗) = Gt,τ4

UA
(T t

UA
(i) = Z, ∗).

(Note, randomly ordering the UA gametes is not strictly necessary, but we do it to be
consistent with the model of biparental inheritance.) Now C′t+1,τ1

U (i, ∗) only contains b
columns (representing b genomes), so for each cell we sample n genomes with replacement
from these b genomes.

We generate a matrix, F t
U (i, j) = Q with N rows and n columns populated with uniformly

random positive integers sampled with replacement from the set {1, 2, ...b}. We use this to
sample the new genomes according to

Ct+1,τ1
U (i, j) = C′t+1,τ1

U (i,F t
U (i, j) = Q).

2 Deleterious mutations only

This model differs from the previous model in how it deals with selection.

Mutations are now deleterious, not beneficial. Each cell is assigned a fitness value based on
the number of deleterious cytoplasmic substitutions it carries. The number of deleterious
substitutions carried by the ith cell is given by ρ(i), where

ρ(i) =
n∑

j=1

Ct,τ2
G (i, j).
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For deleterious mutations, we examine the concave down (decreasing) fitness function. The
fitness of the ith cell is given by

ωcdd (ρ (i)) = 1− sd
(
ρ (i)

nγ

)2

,

where n is the number of cytoplasmic genomes in each cell, and sd is the deleterious se-
lection coefficient. To maintain consistency with the model that considers only beneficial
mutations, γ is set to the same value as in the first model.

When we compare cytoplasmic genomes with free-living genomes, we use a linear fitness
function for deleterious substitutions (and likewise for beneficial substitutions), which is
given by

ωld (ρ (i)) = 1− sd
(
ρ (i)

nγ

)
.

If ωfd (ρ (i)) < 0 we set ωfd (ρ (i)) = 0 (as fitness cannot be negative). Everything else
proceeds as detailed in section 1.2.

3 Beneficial and deleterious mutations

In this version of the model, we store the population of cells in a matrix called C
t,τζ
G that has

2N rows and n columns. Ct,τζ
G (i, j) stores the number of beneficial substitutions in the jth

genome of the ith cell, while C
t,τζ
G (i+N, j) stores the number of deleterious substitutions

in the jth genome of the ith cell. As before, G represents the inheritance mode and takes
values in {U,B}. The generation is given by t, while the stage of the life cycle is given by
τζ . Thus,

C
t,τζ
G =




C
t,τζ
G (1, 1) C

t,τζ
G (1, 2) . . . C

t,τζ
G (1, n)

C
t,τζ
G (2, 1) C

t,τζ
G (2, 2) . . . C

t,τζ
G (2, n)

...
...

. . .
...

C
t,τζ
G (2N, 1) C

t,τζ
G (2N, 2) . . . C

t,τζ
G (2N,n)



,

where C
t,τζ
G (i, j) = α and C

t,τζ
G (i + N, j) = κ represent α beneficial substitutions and κ

deleterious substitutions respectively in the jth cytoplasmic genome of individual i. Cyto-
plasmic genomes have l bases, each of which can change from a neutral site to a beneficial
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or deleterious substitution. Initially, all genomes have α = 0 beneficial substitutions and
κ = 0 deleterious substitutions. The first stage of the life cycle is mutation.

3.1 Mutation

We assume that the jth cytoplasmic genome in the ith cell gains mb,t
ij new beneficial muta-

tions in generation t, and md,t
ij new deleterious mutations in generation t, where both mb,t

ij

and md,t
ij take values in {0, 1, 2, 3, 4, 5}.

We store the probabilities of gaining mb,t
ij beneficial mutations in a matrix, Mb, with l + 1

rows (representing the possible states that a cytoplasmic genome can take) and 5 columns.
Thus,

Mb =




Mb(0, 0) Mb(0, 1) Mb(0, 2) Mb(0, 3) Mb(0, 4)
Mb(1, 0) Mb(1, 1) Mb(1, 2) Mb(1, 3) Mb(1, 4)
Mb(2, 0) Mb(2, 1) Mb(2, 2) Mb(2, 3) Mb(2, 4)

...
...

...
...

...
Mb(l, 0) Mb(l, 1) Mb(l, 2) Mb(l, 3) Mb(l, 4)



.

Likewise, we store the probabilities of gaining md,t
ij deleterious mutations in a matrix, Md,

given by

Md =




Md(0, 0) Md(0, 1) Md(0, 2) Md(0, 3) Md(0, 4)
Md(1, 0) Md(1, 1) Md(1, 2) Md(1, 3) Md(1, 4)
Md(2, 0) Md(2, 1) Md(2, 2) Md(2, 3) Md(2, 4)

...
...

...
...

...
Md(l, 0) Md(l, 1) Md(l, 2) Md(l, 3) Md(l, 4)



.

Each generation, we generate two uniformly random numbers between 0 and 1, rb,tij and
rd,tij , where r

b,t
ij determines the number of beneficial mutations gained by the jth cytoplas-

mic genome in the ith cell in generation t and rd,tij determines the number of deleterious
mutations gained by the jth cytoplasmic genome in the ith cell in generation t (i.e. rb,tij
is matched to Ct,τ1

G (i, j) and rd,tij is matched to Ct,τ1
G (N + i, j)). rb,tij causes mb,t

ij beneficial
mutations in the jth genome of the ith cell, which already carries α+κ mutations according
to

mb,t
ij = 5 if rb,tij <Mb(α+ κ, 0),
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mb,t
ij = 5− x if Mb(α+ κ, x− 1) ≤ rb,tij <Mb(α+ κ, x) for 1 ≤ x ≤ 4,

mb,t
ij = 0 if rb,tij ≥Mb(α+ κ, 4).

The entries of Mb are given by

Mb(α+ κ, 0) = 1−
4∑

mb,tij =0

(
l − α− κ
mb,t
ij

)
µ
mb,tij
b (1− µb)l−α−κ−m

b,t
ij

and

Mb(α+ κ, x) = 1−
4∑

mb,tij =0

(
l − α− κ
mb,t
ij

)
µ
mb,tij
b (1− µb)l−α−κ−m

b,t
ij

+

4∑

y=5−x

(
l − α− κ

y

)
µyb (1− µb)

l−α−κ−y for 1 ≤ x ≤ 4.

rd,tij causesmd,t
ij deleterious mutations in the jth genome of the ith cell, which already carries

α+ κ mutations according to

md,t
ij = 5 if rd,tij <Md(α+ κ, 0),

md,t
ij = 5− x if Md(α+ κ, x− 1) ≤ rd,tij <Md(α+ κ, x) for 1 ≤ x ≤ 4,

md,t
ij = 0 if rd,tij ≥Md(α+ κ, 4).

The entries of Md are given by

Md(α+ κ, 0) = 1−
4∑

md,tij =0

(
l − α− κ
md,t
ij

)
µ
md,tij
d (1− µd)l−α−κ−m

d,t
ij

and
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Md(α+ κ, x) = 1−
4∑

md,tij =0

(
l − α− κ
md,t
ij

)
µ
md,tij
d (1− µd)l−α−κ−m

d,t
ij

+
4∑

y=5−x

(
l − α− κ

y

)
µyd (1− µd)

l−α−κ−y for 1 ≤ x ≤ 4.

For the jth cytoplasmic genome in the ith cell, we add the mb,t
ij new beneficial mutations to

the existing α beneficial mutations and the md,t
ij new deleterious mutations to the existing

κ beneficial mutations according to

Ct,τ2
G (i, j) = Ct,τ1

G (i, j) +mb,t
ij ,

and
Ct,τ2
G (i+N, j) = Ct,τ1

G (i+N, j) +md,t
ij .

3.2 Selection

The next life cycle stage is selection. Here, each cell is assigned a fitness value based on
the number of beneficial and deleterious substitutions they carry. The number of bene-
ficial substitutions carried by the ith cell is given by β(i) and the number of deleterious
substitutions carried by the ith cell is ρ(i), where

β(i) =
n∑

j=1

Ct,τ2
G (i, j),

and

ρ(i) =

n∑

j=1

Ct,τ2
G (i+N, j).

We examine concave down fitness (decreasing) for deleterious substitutions, and concave
up, linear, and concave down fitness functions for beneficial substitutions. The fitness of
the ith cell, which carries β(i) beneficial substitutions and ρ(i) deleterious substitutions
under the concave up fitness function for beneficial substitutions is given by
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ωcubd (β (i) , ρ (i)) = 1 + sb

[(
β (i)

nγ

)2

− 1

]
− sd

(
ρ (i)

nγ

)2

,

its fitness under the linear fitness function for beneficial substitutions is given by

ωlbd (β (i) , ρ (i)) = 1 + sb

(
β (i)

nγ
− 1

)
− sd

(
ρ (i)

nγ

)2

,

and its fitness under the concave down fitness function for beneficial substitutions is given
by

ωcdbd (β (i) , ρ (i)) = 1 + sb

(√
β (i)

nγ
− 1

)
− sd

(
ρ (i)

nγ

)2

,

where n is the number of cytoplasmic genomes in each cell, sb is the beneficial selection
coefficient and sd is the deleterious selection coefficient. To maintain consistency with the
first two models, γ is set to the same value as in the model with beneficial mutations
only.

If ωfbd (β (i) , ρ (i)) < 1 we set ωfbd (β (i) , ρ (i)) = 0 (as fitness cannot be negative).

The 1-by-N vector StG stores the normalized fitness of the population, where StG(i) gives
the relative fitness of the ith cell in the population. To generate StG, we first generate a
temporary 1-by-N matrix, S′ t

G where S′ t
G(i) = ωbd (β(i), ρ(i)).

To generate StG, we normalize this vector according to

StG(i) =
S′ t

G(i)
N∑
z=1

S′ t
G(z)

.

Finally, we use the probabilities in StG to generate N new cells for the population, using
the process described in section 1.2.

3.3 Meiosis

3.3.1 Biparental inheritance

To choose which cytoplasmic genomes are passed on, for each mating type we generate a
matrix, Ht

g(i, d) = Y with N rows and b columns populated with uniformly random positive
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integers (Y ) in the set {1, 2, ...n}, where g represents the nuclear allele of the gamete and
when inheritance is biparental takes values in {BA, Ba}. Ht

g(i, d) = Y denotes that the dth
genome chosen for the new gamete of type g is derived from the Y th cytoplasmic genome
of the ith cell. Sampling is with replacement and gametes are stored in a matrix, Gt,τ4

g

which has 2N rows and b columns. Since the beneficial substitutions of the dth genome of
the ith gamete are stored in Gt,τ4

g (i, d) and the deleterious substitutions of the dth genome
of the ith gamete are stored in Gt,τ4

g (i+N, d), both must segregate together. Gt,τ4
BA

(i, d) is
produced by

Gt,τ4
BA

(i, d) = Ct,τ3
B (i,Ht

BA
(i, d) = Y ),

and

Gt,τ4
BA

(i+N, d) = Ct,τ3
B (i+N,Ht

BA
(i, d) = Y ).

Gt,τ4
Ba

(i, d) is produced by

Gt,τ4
Ba

(i, d) = Ct,τ3
B (i,Ht

Ba(i, d) = Y ),

and

Gt,τ4
Ba

(i+N, d) = Ct,τ3
B (i+N,Ht

Ba(i, d) = Y ).

3.3.2 Uniparental inheritance

When inheritance is uniparental, Gt,τ4
UA

(i, d) is produced by

Gt,τ4
UA

(i, d) = Ct,τ3
U (i,Ht

UA
(i, d) = Y ),

and

Gt,τ4
UA

(i+N, d) = Ct,τ3
U (i+N,Ht

UA
(i, d) = Y ).

Gt,τ4
Ua

(i, d) is produced by

Gt,τ4
Ua

(i, d) = Ct,τ3
U (i,Ht

Ua(i, d) = Y ),
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and

Gt,τ4
Ua

(i+N, d) = Ct,τ3
U (i+N,Ht

Ua(i, d) = Y ).

3.4 Random mating

3.4.1 Biparental inheritance

Biparental inheritance simply combines the cytoplasmic genomes of both gametes. For each
of the BA- and Ba-carrying gametes, we generate a 1-by-N vector, T t

g(i) = Z that contains
a random ordering (without replacement) of positive integers from the set {1, 2, ...N}. We
use these vectors to pair up gametes according to

C′t+1,τ1
B (i, ∗) = Gt,τ4

BA
(T t

BA
(i) = Z, ∗)‖Gt,τ4

Ba
(T t

Ba(i) = Z, ∗),

and

C′t+1,τ1
B (i+N, ∗) = Gt,τ4

BA

((
T t
BA

(i) = Z
)
+N, ∗

)
‖Gt,τ4

Ba

((
T t
Ba(i) = Z

)
+N, ∗

)
.

‖ indicates that the two vectors are concatenated. C′t+1,τ1
B is a temporary matrix (to be

replaced by Ct+1,τ1
B ), which contains 2b columns (representing 2b genomes). Since 2b < n

when we impose a transmission bottleneck, the final step for each cell is to sample n genomes
with replacement from these 2b genomes. This sampling follows the same approach as
described in meiosis, but now instead of choosing b genomes from a cell with n genomes, we
choose n genomes from a cell with 2b genomes. We generate a matrix, F t

B(i, j) = Q with
N rows and n columns populated with uniformly random positive integers sampled with
replacement from the set {1, 2, ...2b}, which we use to sample the new genomes according
to

Ct+1,τ1
B (i, j) = C′t+1,τ1

B (i,F t
B(i, j) = Q),

and

Ct+1,τ1
B (i+N, j) = C′t+1,τ1

B (i+N,F t
B(i, j) = Q).
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3.4.2 Uniparental inheritance

Under uniparental inheritance, only the gamete with mating type A passes on its cyto-
plasmic genomes. Thus, to pair up gametes we only need to generate one 1-by-N vector,
T t
UA

(i) = Z that contains a random ordering (without replacement) of positive integers in
the set {1, 2, ...N}, giving

Ct+1,τ1
U (i, ∗) = Gt,τ4

UA
(T t

UA
(i) = Z, ∗),

and

Ct+1,τ1
U (i+N, ∗) = Gt,τ4

UA

((
T t
UA

(i) = Z
)
+N, ∗

)
.

Now Ct+1,τ1
U (i, ∗) only contains b columns (representing b genomes), so for each cell we

sample n genomes with replacement from these b genomes. We generate a matrix, F t
U (i, j) =

Q with N rows and n columns populated with uniformly random positive integers sampled
with replacement from the set {1, 2, ...b}. We use this to sample the new genomes according
to

Ct+1,τ1
U (i, j) = C′t+1,τ1

U (i,F t
U (i, j) = Q),

and

Ct+1,τ1
U (i+N, j) = C′t+1,τ1

U (i+N,F t
U (i, j) = Q).

4 Free-living genomes

In our model of free-living genomes, we store the population of cells in a 1-by-N ×n vector
(or 1-by-2(N ×n) vector for the model with both beneficial and deleterious mutations). In
the model that only considers beneficial mutations, Ct,τζ (i) = α indicates that the ith free-
living cell carries α substitutions. In the model that only considers deleterious mutations,
Ct,τζ (i) = κ indicates that the ith free-living cell carries κ substitutions. In the model that
considers both beneficial and deleterious mutations, Ct,τζ (i) = α and Ct,τζ (i+Nn) = κ in-
dicates that the ith free-living cell carries α beneficial and κ deleterious substitutions.

There are two stages to the free-living life cycle: mutation and selection. Mutation proceeds
in the same way as it does in the model of cytoplasmic genomes (but now the uniformly
random number rti is matched to the ith cell in the population). Selection now acts directly
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on free-living genomes rather than on host cells that carry multiple cytoplasmic genomes.
For example, the fitness of the ith cell (Ct,τζ (i) = α) under the linear fitness function in
the model that considers beneficial mutations only is

ωlb
(
Ct,τζ (i)

)
= 1 + sb

[
α

nγ
− 1

]
.

Based on these fitness values, we generate a 1-by-Nn normalized fitness vector, which we
use to choose Nn cells by multinomial sampling for the new population, as described in
section 1.2.

References

[1] Team RC (2013) R: A language and environment for statistical computing.

[2] Analytics R (2014) doMC: Foreach parallel adaptor for the multicore package. R package
version 1.3.3.

[3] Analytics R, Weston S (2014) foreach: Foreach looping construct for R. R package
version 1.4.2.

[4] Gaujoux R (2014) doRNG: Generic Reproducible Parallel Backend for foreach Loops. R
package version 1.6.

[5] Mebane WR, Jr., Sekhon JS (2013) multinomRob: Robust Estimation of Overdispersed
Multinomial Regression Models. R package version 1.8-6.1.

28

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 15, 2016. ; https://doi.org/10.1101/059089doi: bioRxiv preprint 

https://doi.org/10.1101/059089


29

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 15, 2016. ; https://doi.org/10.1101/059089doi: bioRxiv preprint 

https://doi.org/10.1101/059089

	ABSTRACT
	Introduction
	Model
	Results
	Cytoplasmic genomes accumulate beneficial mutations faster than free-living genomes
	Uniparental inheritance of cytoplasmic genomes promotes the accumulation of beneficial substitutions
	Inheritance mode is more important than the size of the bottleneck
	Varying parameter values does not alter patterns
	Uniparental inheritance helps cytoplasmic genomes purge deleterious substitutions
	Uniparental inheritance reduces hitchhiking of deleterious substitutions during selective sweeps
	Uniparental inheritance promotes adaptive evolution

	Discussion
	Acknowledgements
	SI Figures and Tables
	

