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ABSTRACT 
Background: The serial interval is a fundamentally important quantity in infectious disease 
epidemiology that has numerous applications to inferring patterns of transmission from case 
data. Many of these applications are apropos to efforts to eliminate Plasmodium falciparum (Pf) 
malaria from locations throughout the world, yet the serial interval for this disease is poorly 
understood quantitatively. 
Results: To obtain a quantitative estimate of the serial interval for Pf malaria, we took the sum 
of components of the Pf malaria transmission cycle based on a combination of mathematical 
models and empirical data. During this process, we identified a number of factors that account 
for substantial variability in the serial interval across different contexts. Treatment with 
antimalarial drugs roughly halves the serial interval, seasonality results in different serial 
intervals at different points in the transmission season, and variability in within-host dynamics 
results in many individuals whose serial intervals do not follow average behavior.  
Conclusions: These results have important implications for epidemiological applications that 
rely on quantitative estimates of the serial interval of Pf malaria and other diseases characterized 
by prolonged infections and complex ecological drivers. 
 
Keywords: epidemiology, malaria elimination, mathematical model, statistical inference  
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BACKGROUND 
The basic reproduction number R0, defined as the expected number of secondary cases arising 
from a single primary case in a susceptible population, is well known and of fundamental 
importance in infectious disease epidemiology. Despite extensive efforts to model, measure, and 
map R0 globally for Plasmodium falciparum (Pf) malaria [1, 2], little has been done to quantify 
its temporal analogue, the serial interval. Defined as the time between the clinical presentation of 
primary and secondary cases, the serial interval is also of fundamental importance [3].  
Probabilistic descriptions of the serial interval provide a basis for identifying sources of infection 
[4], for assessing whether cases are causally linked [5, 6], for analyzing incidence data to 
estimate temporal variation in transmission and its environmental drivers [7, 8], and for 
determining whether a pathogen can be declared eliminated [9]. 

For directly transmitted diseases, the serial interval can be measured through contact tracing 
or with household data [10, 11]. For malaria and other mosquito-borne diseases, this would 
require the impossible task of tracing mosquito blood meals between people, so the serial 
interval must be estimated indirectly. Case data have been analyzed with scan statistics to 
estimate the serial interval (e.g., [12]), but the resolution of these estimates is extremely crude. 
Scan statistics are generally not capable of capturing heterogeneity in the serial interval 
distribution across different contexts, but heterogeneity in the ecology of Pf malaria across space, 
time, urban-rural gradients, and other respects is an important feature of its transmission [13,14]. 
An alternative approach [15] with the potential to overcome these shortcomings involves using 
empirical data to characterize variability in components of the transmission cycle and applying 
principles of probability to combine those components to describe variability in the length of the 
transmission cycle as a whole—i.e., the serial interval [3]. 

For P. falciparum malaria, one analysis [7] has used such an approach to describe the 
generation interval, which differs from the serial interval because it pertains to the timing of 
infection rather than case detection. There are two important limitations of how this approach has 
been applied to Pf malaria to date, however. First, applying the generation interval to data on 
case data is questionable, given that the generation interval is intended to quantify the timing 
between infections rather than cases. Second, there are a number of heterogeneities in the Pf 
malaria transmission cycle that have not previously been incorporated into descriptions of its 
generation interval. We achieved a more comprehensive quantitative understanding of the Pf 
malaria generation interval and serial interval by considering 1) differences in the timing of 
secondary infections arising from asymptomatic or untreated cases as compared with 
symptomatic cases treated with antimalarial drugs, 2) variability in entomological parameters 
that affect the timing of transmission, 3) variability due to seasonal fluctuations in mosquito 
densities, and 4) inter-individual variability arising from stochastic variation in the trajectory of a 
given person’s infectiousness over time. 
 
METHODS 
Overview 
To obtain random variables describing the generation interval (GI) and serial interval (SI) of Pf 
malaria, we first derived random variables describing components of the GI and SI: the liver 
emergence period (LEP), the human-to-mosquito transmission period (HMTP), the extrinsic 
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incubation period (EIP), the mosquito-to-human transmission period (MHTP), and the infection-
to-detection period (IDP). We then summed them by direct convolution to obtain random 
variables describing the GI and SI. We repeated this approach under a variety of scenarios to 
describe variability in the GI and SI across a wide range of conditions typical of Pf malaria 
transmission in different settings. 
 
Probabilistic description of components of the generation and serial intervals 
Liver emergence period. We defined the first period comprising the generation interval for Pf 
malaria as the liver emergence period. Consistent with empirical findings [16], we modeled this 
interval between sporozoites entering the skin and asexual merozoites emerging from the liver as 
a constant six days. 

Human-to-mosquito transmission period. To simulate the trajectory of blood-stage parasites 
following their emergence from the liver, we used a simulation model developed by Johnston et 
al. [17], which tracks parasite replication beginning in the 1st generation after emergence from 
the liver (e.g., from the 8th day). Once simulated gametocytes were sufficiently mature and 
abundant to infect mosquitoes (sequestration time ~ Normal(7 d, 1.5 d)), we modeled the 
probability of a person infecting a blood-feeding mosquito as a nonlinear function of their 
gametocyte density, consistent with Johnston et al. [17]. Time-varying gametocytemia and its 
relationship with infectiousness then governed the infectiousness of a person until the infection 
was cleared by either the body’s immune response or with the aid of antimalarial drugs. The 
dynamics of gametocytemia, the immune response, and the effect of antimalarial drugs were 
simulated with the model by Johnston et al. [18]. 

Because the number of mosquitoes blood-feeding on a given day can be highly variable [19], 
we multiplied the time-varying probabilities of infection obtained from the Johnston et al. [17] 
model with potentially time-varying mosquito densities, m(t). The default setting for m(t) was a 
constant, but for some analyses we used a time-varying function, 

 
𝑚(𝑡) = 𝐴	𝜙(𝑡, 180, 𝜎) + 1,								(1) 

 
where A is peak amplitude, 𝜙 is a normal probability density, and 𝜎 corresponds to the width of 
the seasonal peak. To obtain a random variable describing the timing of a mosquito being 
infected by an infectious human, we multiplied the time-varying infection probabilities by m(t) 
and normalized the resulting curve. The sum of the LEP and HMTP for a constant m(t) is shown 
in Fig. 1A. 

Extrinsic incubation period. Once P. falciparum gametocytes have been transmitted from an 
infectious human to a susceptible mosquito, a period of time known as the extrinsic incubation 
period (EIP) must elapse before sporozoites are produced and disseminated to the mosquito’s 
salivary glands, where they can then be transmitted to a human. We assumed that the EIP can be 
reasonably described by a normal random variable with mean estimated from any of four sites 
[20] and standard deviation of 2.47 days, which was estimated based on data digitized from 
Macdonald [21]. Because we performed our calculations on a daily basis, we modeled the EIP as 
a random variable with probability mass, 
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𝑃𝑟	(𝐸𝐼𝑃 = 𝑖) 	=
𝛷(𝑖) − 𝛷(𝑖 − 1)
𝛷(17) − 𝛷(0) ,								(2) 

 
where 𝛷 is a normal cumulative density (Fig. 1B). By setting the maximum possible EIP at 17 
days, eqn. 2 captures over 99% of the probability density of the corresponding normal random 
variable. 

Mosquito-to-human transmission period. After a mosquito has become infectious, the final 
step in the transmission cycle is for the mosquito to transmit parasites to a human. To make this a 
tractable quantity to model, we made three simplifying assumptions. First, we assumed no 
senescence or any other source of variability in mortality, such that mosquitoes are subject to a 
constant daily probability of survival p. Second, we made no assumption about the feeding status 
of a mosquito at the time it completes the EIP and becomes infectious, and we assumed no 
correlation between feeding behavior and lifespan. Third, we assumed no effect of mosquito age 
or time since completion of the EIP on the probability of successfully infecting a human upon 
blood feeding. Together, these assumptions imply that the elapsed time between completion of 
the EIP and the time at which a human is infected can be described as a geometric random 
variable with probability 1 − 𝑝. By setting the maximum possible mosquito lifespan at 30 days 
beyond completion of the lowest mean EIP that we considered, we captured over 99% of the 
probability density of this random variable (Fig. 1C).  

Infection-to-detection period. To calculate the serial interval distribution, we defined one 
additional random variable describing the interval between infection and either presentation at a 
clinic or detection by other means, such as active surveillance [22]. We refer to this interval as 
the infection-to-detection period (IDP). We modeled IDP in different ways for symptomatic (and 
presumably treated) and asymptomatic (and presumably untreated) cases and refer to them as 
IDPS and IDPA, respectively. Common to both was the interval between sporozoites entering the 
skin and asexual parasites emerging from the liver, which we assumed is always six days [17]. 

For symptomatic cases, we added another random variable corresponding to the interval 
between emergence of parasites from the liver and onset of fever, which we obtained as part of 
the simulation output of the model by Johnston et al. [18]. The third random variable for 
symptomatic cases represented time elapsed before seeking treatment some number of days after 
the onset of fever, which we modeled as a Poisson random variable with parameter λ = 3.07. 
This value was obtained by maximum-likelihood estimation using data on the timing of 
treatment seeking relative to fever onset among 1,961 Pf malaria cases from Zanzibar 
(unpublished data). 

For asymptomatic infections, we assumed that they were identified through some form of 
active case detection at some point during their infection when their asexual parasitemia levels 
exceeded 50 per µL of blood. We obtained a probability distribution describing the probability 
that such a level of asexual parasitemia exceeded this threshold on a given day by directly 
calculating the empirical density of the number of days in excess of 50 per µL from 1,000 
realizations of the simulation model by Johnston et al. [17].  
 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 15, 2016. ; https://doi.org/10.1101/058859doi: bioRxiv preprint 

https://doi.org/10.1101/058859
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 	 	 	

	
	

5	

Calculation of generation and serial intervals 
To obtain a probabilistic description of the generation interval, we summed the LEP, HMTP, 
EIP, and MHTP random variables by direct convolution, resulting in 
 
GI 𝑖 + 𝑗 + 𝑘 + 𝑙

= 	 Pr LEP = 𝑖 ×	Pr HMTP = 𝑗 	× Pr EIP = 𝑘
FGHI

×	Pr MHTP = 𝑙 .		(3) 
 
To obtain a probabilistic description of the serial interval, we summed the GI and the IDP twice, 
 

SI −𝑖 + 𝑗 + 𝑘 = 	 Pr IDP = 𝑖 	×	Pr GI = 𝑗 	×	Pr IDP = 𝑘
GHI

,								(4) 

 
once for the primary infection and once for the secondary infection. 
 
Sources of variability in generation and serial intervals 
Using this framework, we quantified variation in GI and SI distributions that arise from the 
following sources of variability in model parameters in different ecological and epidemiological 
contexts. 

Variability between individuals treated with antimalarial drugs or not. To address impacts of 
treatment with antimalarial drugs on the generation interval of P. falciparum malaria, we 
simulated the model by Johnston et al. [17, 18] to obtain human infectivity trajectories assuming 
no drug treatment and assuming a standard regimen of treatment with artemisinin-based 
combination therapy (ACT). Treatment with ACT was modeled according to default settings in 
Johnston et al. [18]. In order to address variation in the lag between the manifestation of 
symptoms and the starting of treatment, we varied the day between the onset of fever and clinical 
presentation from 0-14 days, where a delay of zero days signified that the individual presented in 
the clinic the same day that the fever manifested. We assumed that clinical presentation marked 
the first day of administration of antimalarial drugs.  These infectivity curves were then weighted 
with their respective probabilities from the Poisson distribution describing the time elapsed 
between fever onset and clinical presentation to arrive at a mean infectivity curve for individuals 
treated with antimalarial drugs.   

Geographic variability in entomological indices. To account for variability in entomological 
parameters, we calculated the GI distribution under four different parameterizations of the mean 
EIP and daily probability of mosquito mortality corresponding to four different sites, as reported 
by Killeen et al. [20]. These sites and parameter values were: Kankiya, Nigeria (mean EIP = 
10.3, daily mortality = 0.06); Kaduna, Nigeria (11.6, 0.10); Namawala, Tanzania (11.1, 0.17); 
and Butelgut, Papua New Guinea (8.9, 0.14). In cases where two estimates were reported by 
Killeen et al. [20], we used their average in our calculations. 

Seasonal fluctuations in mosquito densities. To determine the extent to which seasonal 
fluctuations in mosquito densities could introduce variability into the GI distribution, we set m(t) 
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equal to the time-varying function in eqn. 1 and calculated the resulting GI and SI distributions. 
We performed these calculations under four scenarios about the parameters in eqn. 1: A=1, 𝜎 
=14; A=9, 𝜎 =14; A=1, 𝜎 =120; and A=9, 𝜎 =120. Values of A equal to 1 and 9 led to two- or ten-
fold increases, respectively, in the ratio of high-season to low-season mosquito densities. Values 
of 𝜎 of 14 or 120 lead to narrow or wide seasonal peaks in mosquito density, respectively. 

Inter-individual variability in gametocytemia trajectories. To assess the extent of possible 
variability in different GI and SI distributions among different individuals with different realized 
HMTP distributions, we simulated 1,000 realizations of HMTP distributions from the model by 
Johnston et al. [17, 18]. We compared these against our default HMTP distribution, which we 
obtained by taking the mean of these realizations. 
 
RESULTS 
We first analyzed differences in generation interval (GI) distributions arising from treated and 
untreated primary cases (Fig. 1A). The overall shape of the GI distribution was dependent on the 
status of the primary case with respect to antimalarial drug treatment, with mean (SD) of 49.1 
(10.2) and 101.6 (62.2) days for GIs arising from treated and untreated primary cases, 
respectively (Fig. 1D,E). Overall, GIs arising from untreated primary cases were much longer, 
with 95% of secondary cases being infected by day 68 for treated primary cases as opposed to 
219 days for untreated primary cases. 

We then calculated serial interval (SI) distributions and compared four different versions 
with different combinations of treated and untreated primary cases and symptomatic and 
asymptomatic secondary cases. The first step in this process involved calculating probabilistic 
estimates of the infection-to-detection period for treated (symptomatic) and untreated 
(asymptomatic) primary (secondary) cases. The former, IDPS, was relatively short (16.6 (3.1), 
Fig. 2A), whereas the latter, IDPA, was relatively long and leptokurtic (69.8 (48.8), Fig. 2B). 
Relative to the timing of primary cases presenting at a clinic and treated with drugs, symptomatic 
secondary cases would be expected to appear 49.1 (11.1) days later (Fig. 2C) and asymptomatic 
secondary infections detected through active case detection would be expected to appear 102.2 
(49.9) days later (Fig. 2D). Relative to the timing of asymptomatic primary infections, secondary 
cases presenting clinically would be expected to appear 48.4 (79.1) days later (Fig. 2E) and 
asymptomatic secondary infections detected by active case detection would be expected to 
appear 101.6 (92.9) days later (Fig. 2F). These distributions displayed some sensitivity to the 
choice of the asexual parasitemia threshold for detection (Fig. 3), but this sensitivity was small 
for thresholds within an order of magnitude range (10-100 asexual parasites per µL of blood). 
Additionally, we note that 24.5% of secondary cases presenting clinically are expected to do so 
prior to the associated primary infection being detected by active case detection (Fig. 2E), 
assuming that the primary infection is ever detected. Some 11.5% of asymptomatic secondary 
infections detected by active case detection could be detected prior to detection of the associated 
primary infection (Fig. 2F). 

Using entomological parameters from four diverse sites (Fig. 1B,C), means and standard 
deviations of the GI distributions varied from 46.1 (9.3) to 56.6 (16.2) for treated primary cases 
(Fig. 1D) and from 98.7 (62.1) to 109.2 (63.5) for untreated cases in Butelgut and Kankiya, 
respectively (Fig. 1E). By comparison, the modes of the GI distributions ranged 42-46 for treated 
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primary cases and 58-70 for untreated cases (Fig. 1D & 1E). The long GI for Kankiya appears to 
be driven mostly by very low mosquito mortality, and the short GI at Butelgut appears to be 
driven by both a short EIP and relatively high mortality (Fig. 1B,C). 

Differences in GI distributions owing to differences in timing relative to a seasonal 
transmission peak were more substantial, affecting not only the moments of the GI distribution 
but also its shape (Fig. 4). These effects were most pronounced for untreated primary cases, 
whose GI distributions spanned a broader portion of the year (Fig. 4, right column). Primary 
cases infected well before the seasonal peak tended to be associated with more secondary cases 
later than they would have in a constant environment, and the peak of the GI distribution for 
primary cases infected just before the seasonal peak tended to be more peaked and narrower than 
it would have otherwise. The extent of these differences depended on the extent to which 
transmission was seasonally peaked (Fig. 4, second row). 

The final source of variability in the GI distributions that we examined pertained to 
variability in the timing of infectiousness of humans to mosquitoes across 1,000 simulated 
primary cases with the same drug treatment status. For primary cases receiving antimalarial 
drugs, the probabilistic descriptions of the human-to-mosquito transmission period (HMTP) 
across different individuals were relatively uniform, with all individual trajectories that we 
simulated rising and falling relatively quickly (Fig. 5 A,B).  For primary cases not receiving 
antimalarial drugs, probabilistic descriptions of the HMTP across different individuals were 
much more variable. Unlike treated cases, untreated cases displayed simulated HMTP 
distributions with multiple peaks; the number, timing, and height of which varied considerably 
(Fig. 5C). These differences lead to broad variability in quantiles of the GI distribution. For 
example, the median GI varied by over 100 days for the inner 95% of individual GI distributions. 
 
DISCUSSION 
One of the first attempts to quantify the serial interval for Pf malaria was by Macdonald [23], 
who posited that 36 days represents a minimum estimate based on hard biological constraints. 
Much more recently, Churcher et al. [7] posited a mean generation interval of 102 days for 
individuals who do not receive antimalarial drug treatment and 33 days for those who do. Our 
estimates are in good agreement with the former (102 days) but not the latter (48 days). One 
reason for this nearly 50% discrepancy has to do with differences in our assumptions about the 
delay between onset of symptoms and seeking of treatment. Although their means were nearly 
identical, the exponential distribution used by Churcher et al. [7] resulted in appreciably more 
individuals seeking treatment on the same day as symptom onset than our Poisson distribution 
did. Collectively, this and other seemingly subtle differences led to a large discrepancy between 
the means of our and Churcher et al.’s [7] distributions for treated infections. The discrepancy 
between the distributions for untreated infections was smaller due to the dominance of a much 
lengthier period of human infectiousness. 

An increasingly important application of probabilistic descriptions of the serial interval is the 
inference of transmission linkages between cases [5-7, 24]. Given the breadth of the serial 
interval distributions that we calculated, we conclude that using temporal information alone to 
link Pf malaria cases may be inadvisable. First, even in the best-case scenario of a putative 
transmission linkage between two known cases that promptly sought treatment, the serial interval 
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distribution is sufficiently wide that distinguishing that linkage from others within a time period 
of a few weeks should be largely uninformed by temporal data alone. Second, the shape of the 
generation interval distribution differs considerably from person to person due to the complex 
within-host dynamics of Pf infections [6, 25]. This may preclude the inference of transmission 
linkages ensuing from primary cases whose infections do not follow average behavior. Third, 
serial interval distributions associated with cases that were or were not treated with antimalarial 
drugs differ substantially, with the latter even being negative in many cases (i.e., the secondary 
case is detected before the primary case is detected). Given that negative values are strictly 
impossible for generation intervals, this underscores the importance of being conscientious about 
the distinction between generation and serial intervals when applying these methods to case data 
(as in [6]). 

Probabilistic descriptions of generation and serial intervals also have an important role to 
play in population-level models of infectious disease dynamics. Together with an estimate of 
epidemic growth rate, the generation interval distribution can be used to estimate the basic 
reproduction number and related quantities [8, 26, 27]. Any time that there are secular changes in 
factors that affect transmission within the timeframe of a single generation, however, there is a 
risk of being misled by a static description of the generation or serial interval distribution. 
Similar to our analysis of how seasonally varying mosquito densities affect the Pf malaria 
generation interval, an analysis by Vynnycky and Fine [28] showed that not accounting for 
secular trends in contact rates over time lead to an underestimate of tuberculosis transmission 
potential. This result underscores our conclusion that there is no one-size-fits-all description of 
generation and serial intervals, particularly for long-lasting infections such as Pf malaria. 
 
CONCLUSIONS 
We have highlighted a number of reasons why generation and serial interval distributions are 
variable for Pf malaria and have offered quantitative remedies to many of those situations. To 
this end, code for reproducing our figures and for calculating generation and serial interval 
distributions over one or more generations of Pf malaria cases is available at 
https://github.com/TAlexPerkins/malaria_serial_interval. Like many topics in epidemiology, 
robust quantification of generation and serial interval distributions stands to benefit from careful 
and empirically well-grounded use of mechanistic models to describe constituent processes in the 
transmission cycle. 
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FIGURES 
 

 
 
Figure 1. Elements of the Pf malaria transmission cycle (A-C) and their impact on variability in 
the generation interval (D, E). The first such elements that we delineated were the liver 
emergence period (LEP) and human-to-mosquito transmission period (HMTP), which differed 
for primary cases treated with antimalarial drugs or not (A). The third element was the extrinsic 
incubation period (EIP), whose mean values differed across four representative sites (B). The 
fourth element was the mosquito-to-human transmission period (MHTP), the distribution of 
which differed for the same four sites due to differences in mean daily mosquito mortalities (C). 
Combining these elements produced four site-specific generation interval distributions for treated 
(D) and untreated (E) primary case scenarios. Generation interval distributions with values of the 
entomological parameters averaged across sites are shown for comparison in D and E. 
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Figure 2. Probabilistic descriptions of the infection-to-detection periods IDPS and IDPA between 
infection and detection of treated / symptomatic (A) and untreated / asymptomatic (B) cases, 
respectively. Combining IDP random variables with the appropriate generation interval random 
variables yielded four different estimates of the serial interval: treated primary case and either 
symptomatic (C) or asymptomatic (D) secondary case; untreated primary case and either 
symptomatic (E) or asymptomatic secondary case (F). 
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Figure 3. Variability associated with differences in the asexual parasitemia detection threshold 
for a secondary infection detected by active case detection. Panel A shows normalized 
probability densities for the infection-to-detection period IDPA as a function of the detection 
threshold (asexual parasites per µL of blood). Panel B shows normalized probability densities for 
the serial interval given an untreated primary case as a function of the corresponding IDPA 
distributions from A. 
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Figure 4. Variability in the generation interval distribution in a seasonal environment for treated 
and untreated primary cases (columns) in seasonal environments with different properties (rows). 
Seasonality was imposed by forcing mosquito densities consistent with the gray shapes in the 
background of each panel, which vary in their amplitude and the distinctiveness of the seasonal 
peak at day 180 in each of two years. Serial interval distributions are shown for primary 
infections occurring on days 1 through 360 in increments of 30.  
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Figure 5. Variability in generation interval distributions ensuing from primary infections that do 
(right) or do not (left) receive antimalarial drugs. The top row shows normalized probability 
densities for mean and representative generation interval distributions from 15 realizations of the 
simulation model. The bottom row shows quantiles of cumulative probability densities for 1,000 
realizations of the simulation model. 
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