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Abstract. — We utilize an Answer Set Programming (ASP) approach to show that the principles 
of nomenclature are tractable in computational logic. To this end we design a hypothetical, 20 
nomenclatural taxon use case with starting conditions that embody several overarching principles 
of the International Code of Zoological Nomenclature; including Binomial Nomenclature, 
Priority, Coordination, Homonymy, Typification, and the structural requirement of Gender 
Agreement. The use case ending conditions are triggered by the reinterpretation of the diagnostic 
features of one of 12 type specimens anchoring the corresponding species-level names. 
Permutations of this child-to-parent reassignment action lead to 36 alternative scenarios, where 
each scenario requires 1–14 logically contingent nomenclatural emendations. We show that an 
ASP transition system approach can correctly infer the Code-mandated changes for each 
scenario, and visually output the ending conditions. The results provide a foundation for further 
developing logic-based nomenclatural change optimization and compliance verification services, 
which could be applied in globally coordinated nomenclatural registries. More generally, logic 
explorations of nomenclatural and taxonomic change scenarios provide a novel means of 
assessing design biases inherent in the principles of nomenclature, and thus may inform the 
design of future, big data-compatible identifier systems for systematic products that recognize 
and mitigate these constraints.  
 
[alignment; Answer Set Programming; change; knowledge representation and reasoning; logic; 
nomenclature; reasoning; Region Connection Calculus.] 
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   The origins of modern biological nomenclature trace back to the age of Renaissance (Minelli 
2003), culminating in the foundational works of Linnaeus (1753, 1758). The Linnaean rules were 
subsequently embedded, expanded, and refined in the Codes (e.g., ICZN 1999; McNeill et al. 
2012), thus having remained in use for more than 250 years (Schuh 2003; Dayrat 2010). In spite 
of such remarkable persistence, the merits of Linnaean nomenclature are continuously under 
scrutiny (e.g., Bryant and Cantino 2002; Ereshefsky 2007; Dayrat 2010; Dubois 2011; Vences et 
al. 2013; Remsen 2016). Indeed, the demands on any system for identifying the diversity of life 
are not trivial, and may include: precise and reliable connections to physical vouchers; 
congruence with central tenets in evolutionary and systematic theory; responsiveness to changing 
taxonomic and phylogenetic perspectives; proper attribution of authorship – original or 
revisionary; stability in usage across spatial and temporal dimensions; transparency in 
application; support for community-sanctioned rules and updates that accommodate new naming 
challenges; and facilitation of everyday use among human speakers and general alignment with 
evolutionarily constrained human cognitive strengths (Atran 1998; Sterner and Franz 2016). No 
system of nomenclature can fulfill all of these and other potentially conflicting criteria to the 
highest degree. 
   Here we introduce a novel element into the longstanding discourse about the Linnaean 
nomenclature, i.e., its relationship to computational logic. Methods of knowledge representation 
and reasoning (Brachman and Levesque 2004) are on the rise in biomedical and evolutionary 
disciplines (Smith et al. 2007; Franz and Thau 2010; Panahiazar et al. 2013; Deans et al. 2015; 
Thessen et al. 2015). But this dynamic has not yet permeated the realm of nomenclature (though 
see Sereno 2005; Tuominen et al. 2011; Chawuthai et al. 2013; Dmitriev and Yoder 2016). 
   We can conceive of at least four reasons why a better integration of nomenclatural practices 
with logic representation and reasoning is desirable. (1) The language controlled by the rules of 
nomenclature shapes the ways in which humans communicate much of our collective knowledge 
about life (Patterson et al. 2010). Hence an exploration of the extent to which these rules are 
amenable to logic may be of interest in its own right. (2) In light of the current trend towards 
ontology-driven representation of biodiversity data, it appears relevant to assess whether 
nomenclatural entities and relationships can, and should, be integrated with these efforts (e.g., 
Mungall et al. 2010; Midford et al. 2013, Walls et al. 2014). (3) Taxonomic communities such as 
zoologists are in the process of creating registries for names, nomenclatural acts, and related 
information (Pyle and Michel 2008). New submissions could be vetted, with logic reasoners 
configured to enact nomenclatural rules, resulting in improved quality control (Patterson et al. 
2016). (4) Lastly, due to the complex interactions between evolving taxonomic perspectives and 
nomenclatural emendations, the ways in which such changes are implemented can have varying 
effects on nomenclatural stability (e.g., van der Linde and Houle 2008; ICZN 2010; Nicholson et 
al. 2012). Whenever alternatives exist to reconcile taxonomic and nomenclatural changes, logic 
reasoners can be deployed to maximize nomenclatural stability or other criteria (Vences et al. 
2013). In summary, representing nomenclatural rules in computational logic may yield both 
theoretical and practical benefits. 
   What do we mean by "nomenclatural rules"? To clarify, the domain-specific Codes of 
nomenclature are not a monolithic body of rules applicable to all life (Hawksworth 2001; David 
et al. 2012). The particularities of each rule set, combined with the histories of certain taxonomic 
names, can lead to unique complexity challenges, requiring expert knowledge to attain 
nomenclatural resolution (e.g., Vane-Wright 2003; Rhodin and Carr 2009). However, in spite of 
inter-Code differences and sometimes bewildering use cases, there are several overarching 
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principles of Linnaean nomenclature – such as Priority and Typification – that can be translated 
into general, conditional statements and thus become tractable for logic-based reasoning. Our 
present focus is on representing several of these foundational nomenclatural principles in logic. 
   Here we create a hypothetical 20 nomenclatural taxon use case and logically model its 
transition in following a specific taxonomic action. The starting conditions embody several core 
principles (henceforth capitalized) of the International Code of Zoological Nomenclature (ICZN 
1999). These include: Binominal Nomenclature (Article 5), Priority (Article 23), Coordination 
(Article 36), Homonymy (Article 52), Typification (Article 61), and the structural requirement of 
Gender Agreement (Article 31.2). These starting conditions are encoded into an Answer Set 
Programming (ASP) language and program (Gelfond and Lifschitz 1988; Gelfond 2008; Brewka 
et al. 2011). In a subsequent step, modeled with a transition system approach (Lifschitz and 
Turner 1999), one of 12 species-level names (child) and the corresponding type specimen are 
transferred to another genus name (parent). Permutations of this child-to-parent reassignment 
action lead to 36 alternative scenarios, where each ending condition requires 2-14 logically 
contingent nomenclatural emendations (Tables 1 and 2). We show that an ASP reasoner (Gebser 
et al. 2011) can correctly infer the Code-mandated changes for each input and transition scenario, 
and visually output the ending conditions. In the Discussion, we assess the outcomes in relation 
to a broader discourse about the interaction of nomenclature, taxonomy, and logic-based 
representations of systematic change. 
 

MATERIALS AND METHODS 
 
   To our knowledge this is the first application of an ASP transition system approach to model 
an inference process in the nomenclatural-taxonomic domain (though see Brooks et al. 2007; 
Gebser et al. 2008; and Franz et al. 2016a; for different uses of ASP in biology). We regard ASP 
as an alternative or complementary solution to the challenge of knowledge representation and 
reasoning in biology, where Description Logics is the prevailing paradigm (Grenon et al. 2004; 
Smith et al. 2007; Baader et al. 2008). To bring the readership into this field, we first describe the 
properties of ASP in relation to the inference needs for the use case. This review is sets the stage 
for modeling of the nomenclatural change scenario. 
 

Properties of the Answer Set Programming Approach 
 
   The term Answer Set Programming was coined in the late 1990s for a declarative form of logic 
programming rooted in non-monotonic reasoning and stable model semantics (Lifschitz 2008; 
Eiter et al. 2009; Brewka et al. 2011). Problems are solved in ASP by specifying sets of rules and 
constraints and then generating stable models that satisfy these. The stable models are inferred 
by grounding the specified input domains, variables, and conditions during the reasoning 
process. The latter generates all answer sets that are not logically prohibited by the joint 
constraints (Fig. 2). 
    The ASP approach has several desirable properties in connection to the complex rules of 
nomenclature, as follows. (1) Answer Set Programming uses an expressive language resembling 
that of other Semantic Web languages (Eiter et al. 2008). (2) There are powerful ASP reasoners 
(answer set solvers) such as the Potassco Answer Set Solving Collection (Gebser et al. 2011). (3) 
Unlike Description Logic, the approach is based on the closed world assumption, which permits 
deciding that conditions not proven to be true are false ("negation as failure"; Gelfond and 
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Lifschitz 1988). (4) It offers elaboration tolerance, i.e., the ability to retain reasoning abilities 
while taking into account additional constraints (McCarthy 1998). (5) It also supports default 
reasoning, i.e., the ability to stipulate the truth of certain conditions unless specified otherwise 
(Reiter 1980). (6) Answer Set Programming can represent transition systems through automated 
reasoning about action domains, by generating plans for such domains. (7) The approach is 
translatable to other logic paradigms such as First-Order Logic and Description Logic (Eiter et 
al. 2008; Kutz et al. 2010). Jointly these properties make ASP highly suitable for performing 
complex, exception-rich, rule-based reasoning in the biological domain. However, (8) at present 
most ASP applications lack an end user interface as mature as (e.g.) the Protégé platform 
(http://protege.stanford.edu/), instead requiring knowledge of command line and logic program 
coding. 
 

Starting Conditions 
 
   To set the stage for this use case, we must first specify the nomenclatural and taxonomic 
boundaries and reasoning intentions (Figs. 1 and 2; Tables 1 and 2). The ICZN (1999) contains 
90 articles. Of these, only a subset can be represented here. We also recognize that certain 
nomenclatural changes are triggered independently of new taxonomic insights. Conversely, not 
all taxonomic changes are mirrored in nomenclatural adjustments (Franz 2005; Franz et al. 2008; 
Franz et al. 2016a, 2016b; Remsen 2016). The various dependencies between nomenclatural and 
taxonomic emendations make it necessary to characterize the taxonomic starting and change 
conditions for the use case as unambiguously as possible. We thereby model specific principles 
and articles of the IZCN that guide the reasoning process towards succinct ending conditions. 
   The taxonomic names themselves are another set of variables needing prior specification. 
Given a taxonomic change scenario, the reasoner can infer that certain nomenclatural 
emendations are necessary. However, the reasoner has no capacity to conceive which name 
strings should be used. For instance, under the proper rules and change conditions, the program 
can infer that the species-level epithet tertius will require replacement with a new, valid, 
masculine genus name. But it cannot decide whether the name string Zyzzyzus (Brinckmann-
Voss and Calder 2013) is preferentially suited for this purpose in terms of availability, Latin 
grammar (Casadio and Lambek 2005), and perhaps also cognitive or aesthetic considerations. 
Consequently, we must provide the reasoner upfront with a set of Code-compliant name options 
that can be applied – as logically required – to conclude the transition. 
   The use case entails two temporal conditions or steps (t = 0, 1). One condition occurs prior to 
the taxonomic change (t = 0), and the other condition occurs subsequent to the taxonomic change 
(t = 1). The pre-change phase is set in the year 1985, whereas the post-change phase is set in the 
year 2000. Prior to the change, 20 ranked, nomenclaturally connected names exist: one each at 
the family and subfamily level (endings –idae and –inae); two at the tribal level (–ini); four at 
the genus level; and 12 at the species level (Fig. 1A). Each name is assigned a unique numerical 
identifier, displayed in square brackets: [1], [2], …[20]. Lower-level child names are allocated in 
equal numbers among their respective parent names, i.e., each generic name contains three 
species names, and each tribal name contains two generic names. The 12 species-level names 
were validly published in two preceding time clusters, referred to as (1) the "type period" – 
extending from 1775 to 1790 – and (2) the "non-type period" – extending from 1950 to 1985. 
The publication years for species-level epithets are specified such that each generic name 
accommodates exactly one epithet from the earlier type period and two epithets from the later 
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non-type period. No two species-level names were published in the same year, thereby rendering 
judgments of Priority unambiguous. 
   As a consequence of Coordination, the distribution of type period publication years at the 
species level generates four distinct lineages of Priority; viz. (1) Agenus primus, 1775 – [9], [5], 
[3], [2], and [1]; (2) Egena secunda, 1780 – [12] and [6]; (3) Igena prima, 1785 – [15], [7], and 
[4]; and Ogenus secundus, 1790 – [18] and [8]. Two generic names are masculine ([5], [8]) and 
two are feminine ([6], [7]), respectively. Moreover, two pairs of epithets share the same Latin 
root, either prim– ([9], [15]) or secund– ([12], [18]). This circumstance has implications for 
Homonymy under certain change scenarios. 
   Each of the species-level names is anchored by a single, vouchered, unambiguously assigned 
type specimen (Fig. 1A). Note, however, that "assignment" is used here in the nomenclatural 
sense, i.e., there is agreement which specimen is being referred to (Witteveen 2015, 2016). Such 
an unambiguous nomenclatural assignment differs from agreeing on the taxonomic identity, or 
more precisely, the interpretation of certain taxonomic traits that the nomenclatural type 
specimen in question may or may not exhibit according to an expert's re-/assessment. 
   Because the logic of reasoning ultimately falls back on the perceived taxonomic identity of 
type specimens, we need to stipulate traits for the latter as well (Fig. 1A). Accordingly, each type 
specimen within the same genus-group name varies in one species-level taxonomic trait related 
to its pigmentation: (1) unpigmented, (2) lightly pigmented, and (3) strongly pigmented. In 
addition, all three type specimens assigned to the same genus-group name prior to the change 
share a second, genus-level diagnostic feature, as follows: (i) the type specimens for the three 
Agenus species names have a square shape; (ii) those for the three Egena species names have a 
rectangular shape; (iii) those for the three Igena species names have a hemi-elliptical shape; and 
(iv) those for the three Ogenus species names have a pentagonal shape. The combination of three 
species-level and four genus-level diagnostic traits establishes each of the 12 type specimens as 
taxonomically unique in the original assessment. Jointly the above conditions specify the pre-
change status of the use case, which is complete as of 1985. 
 

The Change – Type Specimen Reinterpretation 
 
   The transition from the pre- to the post-change phase is triggered by the reinterpretation of the 
taxonomic identity of one individual type specimen (Fig. 1B). This reinterpretation occurs in the 
year of 2000. Recall that the respective shapes of the four specimens anchoring the type period 
epithets (1775–1790) – square, rectangular, hemi-elliptical, and pentagonal – formed the 
diagnostic foundation for delimiting the corresponding genus-level taxon (concept) to which 
additional species-level entities were subsequently assigned. These additions were performed 
under the assumption of taxonomic correspondence, thus effectively reconfirming the original 
shape descriptions. However, in 2000 matters are reassessed with a different outcome. The 
original interpretation of a type specimen's diagnostic feature is now found to have been 
erroneous, creating a case of "reference by misdescription" (Donnellan 1966). Instead, the type 
specimen is diagnosed to exhibit one of the other shapes present in species-level entities assigned 
to one of the respective three generic entities (Fig. 1B). 
   While the example is contrived, in practice such type reinterpretations are not infrequent (e.g., 
Ribot et al. 1996; Woodley et al. 2011; Cappellini et al. 2013; Laloy et al. 2013; Witteveen 
2015). Reassessments of the taxonomic identity of type specimens are very frequently involved 
in determining heterotypic synonymy. In the present use case, the type reinterpretation requires 
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an adjustment that achieves taxonomic congruence across the named entities such that similarly 
shaped type specimens are assigned to the same genus-level name. 
   The reinterpretation of the type specimen has specific consequences. In particular, the 1:1 
cardinality relationship between type specimens and valid species-level epithets is not altered 
through the transition, remaining at 12:12 for each phase. With regards to taxonomic or 
topological congruence, a genus that previously contained three species now entails one species 
less, whereas another genus entails one additional species. Considering the 3-3-3-3 numerical 
allocation of specific to generic entities in the pre-change phase (Fig. 1A), this means that 
exactly two of these numbers shift to 2 and 4, respectively. Because the asserted shape of the 
type specimen anchoring each of the 12 species-level epithets is potentially 'corrigible' to match 
any of the three alternative shapes (Fig. 1B), there are 36 possible ending conditions for the use 
case (12 type specimens x 3 alternative shapes). 
 

Ending Conditions 
 
   Each of the 36 ending scenarios produced in the year of 2000 (t = 1) requires application of a 
unique set of logically induced, Code-mandated nomenclatural rules, and therefore triggers 
specific but different nomenclatural emendations. The particular rules and changes to be enacted 
depend on the individual type specimen under reinterpretation and the morphological shape 
newly ascribed to this specimen. Differential sets of principles and articles in the ICZN (1999) 
are invoked accordingly.  
   The outcomes fall into two broad categories. Twenty-four of the 36 ending conditions are 
caused by reinterpretations of type specimens anchoring eight species-level epithets that were 
created in the later (non-type) phase; i.e., [10], [11], [13], [14], [16], [17], [19], and [20]. These 
names lack Priority in relation to other same-ranked names typifying both the source and target 
genus-level names between which the names transition. Thus, each of these transfers requires 
only a limited set of nomenclatural changes; specifically, the creation of one new combination 
(Fig. 1C). 
   The remaining 12 transition scenarios are nomenclaturally more complex (Figs. 3–6). Here the 
act of reinterpretation affects type specimens anchoring one of four species-level epithets created 
in the earlier (type) phase; i.e., [9], [12], [15], and [18]. Priority considerations now drive the 
nomenclatural outcomes through multi-level dependencies. First, the epithets whose types are 
reinterpreted have Priority over each of the two epithets accommodated under the respective 
(starting phase) genus-level name (Fig. 1A). We may call this kind of Priority relative to initially 
congeneric epithets "local Priority". An example of an epithet with local Priority is secundus, 
1790 – relative to nonus, 1980, and decimus, 1985. "Global Priority", in turn, holds throughout 
the entire nomenclatural hierarchy. The epithet primus, 1775, holds this status among all 12 
epithets. Hence, in deciding on the appropriate nomenclatural emendations for the 12 more 
complex cases, one must assess the relative Priority among paired epithets that each have local 
Priority; e.g., (1) primus, 1775, versus (2) secunda, 1780; or (1) prima, 1785, versus (2) 
secundus, 1790, etc. Whichever epithet lacks Priority in the pairwise comparison effectively 
transitions into a new combination, where the post-transition genus-level name is that 
corresponding to the Priority-carrying epithet.  
   Second, we need to account for the principle of Coordination, which further complicates 
matters. Consider an epithet with initial, local Priority – e.g., secundus, 1790 – in relation to 
another such epithet, which has Priority in the more expansive context – e.g., secunda, 1780 
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(Fig. 4C). In such cases the two epithets' respective genus-level names – Egena, 1780, and 
Ogenus, 1790 – also enter into a synonymy relationship: only one name remains valid. In some 
instances, the coordinated tribe-level names must enter into synonymy as well; see ICZN (1999), 
Article 40.1. In addition, certain epithets that originated in the non-type period will newly 
acquire local Priority, and thereby trigger the creation of new genus- and/or tribe-level names, 
new typifications of these, and new genus name/epithet combinations (e.g., Fig. 4C). 
   Lastly, no taxonomic change in the use case can affect the validity of the nomenclatural lineage 
of Agenini, 1775, to Agenus primus, 1775 ([3] → [5] → [9]), which has global Priority (Fig. 3). 
In the 3/12 complex cases where the type specimen anchoring the epithet primus, 1775, is 
reinterpreted to have a non-square shape, this novel insight will not affect the validity of the 
globally Priority-carrying name lineage. Instead, it is required that the other lineage in the 
comparison, having local Priority, move into synonymy. The two additional, non-type period 
epithets subsumed under that latter lineage are thus also newly combined with the genus-level 
name Agenus. Moreover, the two names Agenus tertius, 1950, and Agenus quartus, 1955, no 
longer represent valid combinations (given their square-shaped types), and trigger the creation 
and typification of a new genus-level name. Thus, even though the name Agenus primus, 1775, is 
nomenclaturally stable across all 36 scenarios, reinterpretations of the type specimen anchoring 
this name can have considerable and cascading nomenclatural effects for other names and 
relationships modeled in the use case (Fig. 3). 
 

Documentation of Logic Approach and Outcomes 
 
   We assume that the ASP approach is novel to most readers, and therefore make an effort to 
present the methods and results in an accessible way. Our analysis entails two main components: 
(1) the specification of a transition system with starting and ending conditions that require 
application of multiple principles of zoological nomenclature (Figs. 1 and 2); and (2) the 
translation of these conditions and action rules into a logic program that an ASP reasoner can 
analyze to generate the 36 possible outcomes (Tables 1 and 2). The finer details of our logic 
program are likely not of great interest to the systematics readership, and are therefore presented 
in the Supplementary Materials S1–S5. 
   The code for this program is written in the language F2LP (Lee and Palla 2009), and comprises 
less than 600 lines including annotations (Supplementary Materials S1). F2LP is a logic 
programming language that permits encoding sets of First-Order Logic formulas into stable 
model semantics suited for an ASP reasoner. Our program is written to interface with software 
tools produced by Potassco – the	Potsdam Answer Set Solving Collection (Gebser et al. 2011). In 
particular, the code is processed with the system clingo, which combines the variable grounder 
gringo with the Answer Set solver claspD to process disjunctive logic programs (Gebser et al. 
2015). 
   The output inferred by the system contains both hierarchical taxonomic and nomenclatural 
information; in particular: (1) relationships (edges) among nodes in the single starting tree and 
set of ending trees, and (2) information on the names and nomenclatural relationships, actions, 
and changes that reflect the ending conditions at each node. To visually represent and confirm 
the correctness of the outcomes, we configured a simple Java program that translates the clingo 
text string output into .dot files. The latter can be displayed as taxonomic trees with edges and 
named nodes in the open source GraphViz visualization software (Ganser and North 2000). The 
nomenclatural (relationship) information is output directly in textual format by clingo. 
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Information on the corresponding clingo commands, textual reasoner output, Java visualization 
program, and generated GraphViz visualizations is provided in the Supplementary Materials S2–
S5, respectively – all are available via the Dryad Digital Repository. 
   The Results are separated into two main sections. The first of these focuses on presenting the 
principal components and actions of the logic program in a high-level pseudocode. This non-
technical code review explains how our ASP approach succeeds in representing the taxonomic 
and nomenclatural conditions and transitions of the use case. We thereby illustrate to the 
readership how specific nomenclatural principles such as Priority or Coordination are encoded in 
ASP logic. The second section presents the use case outcomes, emphasizing the relationship of 
nomenclatural and taxonomic changes across the 36 transition scenarios. To this end, we 
aggregate the numbers of new combinations, new names (species, genus, tribe), new synonymies 
(genus, tribe), and new typifications (genus, tribe), at the respective taxonomic ranks. For new 
combinations and new species names, we also report on the number of cases where application 
of Gender Agreement requires changing the ending of an epithet from masculine to feminine, or 
vice-versa. 
   While the present analysis is merely an exploratory step, the compiled numbers provide some 
general insights into the logical interdependencies of nomenclatural starting and ending 
conditions in light of a change in taxonomic assessment. As outlined in the Discussion, a better 
understanding of these dependencies may eventually lead to logic-enabled optimizations of 
nomenclatural and taxonomic change actions in biodiversity data environments. 
 

RESULTS 
 

Documentation of the Answer Set Programming Approach 
 
   The general structure of our ASP programming approach is provided in Table 1. All sections 
are necessary to run the code with clingo and obtain the desired outcomes. However, because the 
ASP reasoner evaluates all constraints simultaneously, the sequence of the sections and 
subsections is relevant only to enhancing human readability of the code. Accordingly, Section 1 
defines the overarching transition system domains, variables for subsequent if–then constraints, 
and starting conditions; including two steps, 20 nodes, all node-associated ranks, node-associated 
names, Priority-constrained name lineages, mono- and binomial names, and name-associated 
years of publication. An important feature allowing further elaboration of this code is the semi-
independent modeling of (1) name identities and relationships ('nomenclature'), and (2) node 
identities and relationships ('taxonomy'); where "semi-independent" corresponds to the complex 
cardinality interactions that occur in nomenclatural/taxonomic change scenarios (e.g. Vane-
Wright 2003; Franz 2005; Remsen 2016). 
   Sections 2–5 establish several globally applicable conditions, i.e., conditions that must hold 
true for any step in the transition system. These include: assignment of a single valid name to 
each node, with rank, year, and parent, excepting the root node; inertia conditions – all t = 1 
conditions are equal to the t = 0 conditions unless the change triggered by the species-level node 
move overwrites this constraint; Priority among children nodes that have the same parent node; 
and persistence of taxonomic ranks throughout the transition. 
   Sections 6–8 represent the key rules needed to compliantly model the taxonomic change and 
nomenclatural emendations to be enacted at t = 1. The core change itself is specified in Section 
8.1., by simply requiring one species-level node to not have the same parent node at t = 1 which 
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it had at t = 0. This constraint in effect creates a new species- to genus-node edge at t = 1, while 
keeping the total number of nodes consistent. Sections 6 and 7 establish which existing and new 
names are held as valid at t = 1. These rules specify how the Priority (and hence validity) of a 
genus-level name is determined by the most senior epithet associated with that generic name at 
time = 0. They furthermore allow epithets to 'newly become the most senior' for the respective 
parent genus name at t = 1, if the taxonomic change (see above) triggers this transition. However, 
this latter constraint – and others logically tied to it – has an important exception (Section 6.4.): 
if the mandated node move violates the relative or global Priority status of genus names and 
species epithets as established at t = 0, then an 'inverse move' is executed (e.g., Fig. 3). This 
means that, in spite of the reassignment of a child node to a new parent node, the globally 
Priority-carrying binomial – e.g., Agenus primus, 1775, in all Fig. 3 scenarios – is maintained as 
valid. Moreover, the other locally Priority-carrying binomial will 'move into Agenus', even 
though neither its type specimen nor those of other congeners recognized at time = 0 were 
reinterpreted to exhibit another shape (hence we say "inverse", as in: initially intended to affect 
the status of another node/name association). The remainders of Sections 6 and 7 constrain that 
Coordination propagates from the lowest to the highest represented taxonomic rank, and that any 
new name(s) requiring creation at t = 1 should start with the letters Nov– prefixing the previously 
valid name. For instance (Fig. 5), Novigena, 2000, is used as a new genus name for valid epithets 
(septima, octava) previously associated (t = 0) with the now synonymized genus name Igena (t = 
1). Lastly, if the move of a node and its associated epithet is bound to create two (binomial) 
homonyms, then this Code violation will be prohibited by adding the endings –ulus (e.g., prim–
ulus instead of prim–us) or –ula (e.g., instead of secund–a) to the epithet that will no longer have 
local Priority at t = 1 (see, e.g., Figs. 4C and 5A). These cases are not recorded as new 
combinations, but instead are new replacement names, and are recognized as new species-level 
names in Table 2.   
   Sections 9 and 10 respectively identify all resulting nomenclatural emendations and generate 
the corresponding output topologies, valid nodes names, and nomenclatural status and 
relationship updates. The code of Section 9 includes if–then constraints that identify at t = 1: new 
combinations and concomitant applications of Gender Agreement leading to new epithet 
endings; new synonymies at the generic and tribal levels; new species-, genus-, and tribe-level 
names; and new typifications of higher-level names by their entailed, newly senior lower-level 
names. The Section concludes with commands that aggregate totals for each of these 
emendations for the corresponding stable model. The final Section 10 provides code to output 
each possible node topology as a set of "revised edges", the valid node names for each rank, as 
well as the list of nomenclatural emendations. If an inverse move is indicated in the model, this 
information is also printed out (see Supplementary Materials S5). 
 

Analysis of Nomenclatural Transition Scenarios 
 
   The ASP programming approach correctly generates all 36 transition scenarios (stable models) 
and the required nomenclatural changes (Figs. 1C, 3–6; Table 2). Given the use case constraints, 
exactly six of the 36 scenarios require an inverse move: three involving the node/binomial 
Agenus primus, 1775 (Figs. 3A–3C); two concerning the node/binomial Egena secunda, 1780 
(Figs. 4B and 4C); and one including the node/binomial Igena prima, 1785 (Fig. 5C). The 
node/binomial Ogenus secundus, 1790, does not have Priority over the three aforementioned 
names, and thus cannot trigger an inverse move (Fig. 6). 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2016. ; https://doi.org/10.1101/058834doi: bioRxiv preprint 

https://doi.org/10.1101/058834
http://creativecommons.org/licenses/by/4.0/


10 
	
   The 12 complex scenarios involving reinterpretations of specimens designated during the type 
period (1775–1790) account for 114/154 (74%) of the recorded nomenclatural emendations at t = 
1 (14 of these are changes of epithet endings to achieve Gender Agreement). This corresponds to 
an average of 9.5 changes per scenario. As many as five new combinations and/or new species-
level names are triggered in several of these scenarios. In contrast, the 24 remaining scenarios 
involving reassessments of non-type period specimens require only 40/154 changes in 
nomenclature (26%) – all singular new combinations (16 of which also require epithet changes to 
comply with Gender Agreement) – for an average of 1.7 changes per scenario. 
   The nomenclatural particularities of the 12 complex scenarios are well documented in Figs. 3– 
6 and require little additional explanation. Each scenario requires the creation and typification of 
a new generic name at t = 1, as well as a genus-level synonymy (Table 2). In four cases, the node 
transfer affects an epithet associated with a source genus-level name (either Igena prima, 1785, 
or Ogenus secundus, 1790) sat t = 0 that is homonymous with that of another epithet associated 
with the target genus-level name (Agenus primus, 1775, and Egena secunda, 1780, respectively). 
These cases require the creation of new species-level replacement names in accordance with 
Priority, resulting in the new epithets primulus, 2000 (Figs. 3B and 5A) or secundula, 2000 
(Figs. 4C and 6B). In two of these scenarios (Figs. 3B and 5A) and two others (Figs. 4B and 5B), 
Igena, 1785, is synonymized at t = 1 with another generic name in the Agenini, 1775 (either 
Agenus or Egena). Consequently, and in compliance with Coordination, the tribal name Igenini, 
1785, is also synonymized with Agenini. This means that a new tribal name Ogenini, 2000, must 
be created and typified with the generic name Ogenus, 1790. These scenarios have the most 
wide-ranging consequences in terms of requiring the application of diverse set of nomenclatural 
principles and rule. 
 

Complementary Representation Approach – Taxonomic Concept Alignments 
 
   Elsewhere we have applied ASP to promote the taxonomic concept approach (Franz et al. 
2015, 2016a, 2016b). This approach represents each published taxonomy (t = 0, 1) separately, 
via taxonomic concept labels (name sec. author; where sec. means "according to") and parent–
child (is_a) relations, and then employs expert-provided Region Connection Calculus (RCC–5) 
articulations to express taxonomic congruence or non-congruence (inclusion, overlap, exclusion) 
between regions pertaining to multiple taxonomies. An ASP reasoning toolkit (Chen et al. 2014) 
is available to (1) check for the logical consistency of these input constraints under certain 
taxonomic covering assumptions, (2) infer additional implied articulations, and (3) visualize 
consistent multi-taxonomy alignments. The latter may be viewed as taxonomic meaning 
resolution maps that can guide information integration across the varying taxonomies. In this 
sense, the alignments can complement representations of 'identity in light of change' as provided 
by Linnaean names and nomenclatural relationships (homonymy, synonymy). Simple RCC–5 
metrics are also suitable for assessing the performance of taxonomic names as identifiers of 
congruent or non-congruent taxonomic meanings (Franz et al. 2008, 2016a, 2016b). 
   Because the transition scenarios of this use case are strongly and heterogeneously affected by 
the application of Priority, Coordination, Homonymy, Typification, and Gender Agreement – all 
key principles in the Linnaean tradition – it is illustrative to model the starting and ending 
conditions as RCC–5 alignments of taxonomic concept hierarchies. The complete set of 36 
alignments, each with relevant input and output data files, is provided in the Supplementary 
Materials S6–S8. 
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   Four exemplary alignments are shown in Figs. 7 and 8, corresponding to scenarios 1, 2, 4, and 
5. Table 3 summarizes the alignment patterns obtained for the 36 scenarios. Interestingly, there 
are only three general patterns that can be categorized as follows: either a species-level node is 
transferred among genus-level nodes placed under two tribe-level nodes at t = 0 (Agenini and 
Igenini, respectively), and in that case it is either (1) an intended move or (2) an inverse move; or 
(3) the transfer involves genus-level nodes placed within in the same tribe-level node at t = 0 
(Agenini or Igenini). Pattern (1) is exemplified by scenario 5 and shown in Fig. 7A (compare 
with Fig. 1C). This pattern holds for 20 scenarios, and in each case corresponds to alignments 
that have 15 congruent regions – 3 above the species level – and 6 overlapping articulations. 
Pattern (2) is true for scenario 2 and shown in Fig. 7B (compare with Fig. 3B). This pattern is 
present in 4 scenarios, where the alignments have 15 congruent regions and 4 overlapping 
articulations. Lastly, pattern (3) is represented by scenarios 4 and 1 and displayed in Figs. 8A 
and 8B (compare the latter with Fig. 3A). The pattern applies to 12 scenarios, each with an 
alignment that has 17 congruent regions – 5 above the species level – and only 1 overlapping 
articulation. Two of the 12 scenarios (scenarios 1 and 21) that constitute pattern (3) are inverse 
move scenarios; however, this has no effect on the alignment pattern (compare Figs. 8A and 8B). 
   Comparison of the RCC–5 alignment representations and the nomenclatural change scenarios 
shows two rather different approaches to modeling identity and change relationships for this use 
case (Table 3, last column). In particular, patterns (1) and (2) are by some measure the most 
taxonomically impacting: the reinterpretation of a type specimen triggers that a species-level 
entity is transferred from one tribe-level entity to another (as conceived at t = 0). This move 
consistently translates into 6 or 4 overlapping articulations among the affected genus- and tribe-
level concepts, depending on whether it is carried out in the intended or inverse direction. 
Nomenclaturally, this pattern does not hold well (compare Figs. 7A and 7B). Pattern (1) is 
variously associated with 1–11 nomenclatural changes (average: 2.9 ± 3.0), whereas pattern (2) 
involves 8–14 nomenclatural changes (average: 11.0 ± 2.4). The nomenclatural change trend 
between patterns (1) and (2) (less → more) is somewhat opposed to that of the RCC–5 
alignments (more → less), in addition to being less homogenous. The greater average number of 
changes under pattern (2) is caused by global Priority constraints requiring inverse moves. 
Pattern (3) is taxonomically less impacting in comparison, because the reinterpretation of the 
type and associated species-level node transfer are confined to one tribe-level entity (as 
recognized at t = 0). Nevertheless, this relatively minor reclassification translates into a range of 
2–11 nomenclatural changes (average: 4.3 ± 3.7), with either 2 or 7 changes in transfer scenarios 
in the intended direction, and 11 changes in transfer scenarios in the inverse direction (compare 
Figs. 8A and 8B).  
 

DISCUSSION 
 

Compatibility of Nomenclature and Computational Logic 
 
   We have shown, likely to an unprecedented degree of sophistication, that many overarching 
principles of zoological nomenclature can be modeled with computational logic. Such logic can 
then be applied to specific taxonomic change scenarios to yield diverse but nomenclaturally 
accurate reasoning outcomes. While our approach and encoded program are not immediately 
designed to resolve real-life reclassification challenges, they demonstrate that ASP 
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representation and reasoning powers are fully adequate to do so. In short, the rules of zoological 
nomenclature are logically tractable. 
   We reach this conclusion not because we have covered every principle, application, and 
exception represented in the 90 articles of the ICZN (1999). For instance, our use case does not 
account for the principle of the First Reviser (Article 24) or for the use of the Commission's 
Plenary Power (Article 81) to preserve or suppress names or other nomenclatural acts under 
certain conditions, and typically with the intent to conserve "prevailing usage" (Vences et al. 
2013). We have also not addressed issues of uncertainty in taxonomic judgment (Confalonieri et 
al. 2012). However, in the language of ASP these are simply additional constraints, each with 
specific trigger conditions (some of which may require user interaction). As needed, each novel 
constraint can be added to the elaboration-tolerant code to model increasingly complex cases. 
The size of the input taxonomies can be augmented, and additional variables such as author 
names or page numbers can be included to resolve Homonymy or Priority disputes more finely. 
Constraints can be applied to specific taxonomic ranks ("groups"). More input classifications and 
more steps can be accommodated. 
   We see no elements in the ICZN (1999) that are principally incompatible with ASP 
representation and reasoning to produce valid stable models for complex 
nomenclatural/taxonomic transition scenarios. Once the appropriate rules are encoded, the 
burden of producing viable stable models will depend largely on the systematists' ability to 
specify sufficiently precise starting conditions upon which these rules can act. 
   However, demonstrating the ability to model nomenclatural change in logic is not the same as 
showing that such an approach is worth the effort. Hence we should ask: under what 
circumstances might the benefits of applying ASP logic outweigh the costs represented by 
encoding the rules, starting conditions, and then selecting suitable answer sets? The best but 
nevertheless tentative answer we have points to global nomenclatural registry and vetting 
services. Virtual environments such as ZooBank (Pyle and Michel 2008; Penev et al. 2016; Pyle 
2016) aspire to act as globally coordinated repositories for taxonomic and nomenclatural acts. 
For instance, since 2012 registration with ZooBank is mandatory for electronic publications to 
acquire availability under ICZN rules (Krell and Pape 2015). 
   In the case of publishing complex sets of nomenclatural acts – such as those under 
consideration for the fruit fly name Drosophila where approximately 1500 valid names are in 
play (van der Linde and Houle 2008; O'Grady and Markow 2009; ICZN 2010) – ASP-encoded 
logic could be used to explore alternative valid change scenarios. Given multiple 
nomenclaturally viable options, the application logic could be further optimized identity 
solutions that maximize stability under certain prioritized criteria. Such criteria might include (1) 
minimize the total number of nomenclatural changes, or (2) minimize the number of changes at 
the generic level, or (3) maximize stability for the most frequently used binomials, etc. A likely 
less strict set of rules could nevertheless be applied for higher-level names where the Codes have 
no jurisdiction (Dubois 2015), and strive to maximize naming stability in light of taxonomic 
change at these supra-familiar levels. 
   In addition, ASP logic could be used as a means of verifying compliance of proposed 
emendations with nomenclatural rules, by blocking new submissions to the registry that are not 
consistent with any stable model. Following the rules of the ICZN (1999) is not always trivial, 
even for systematist users, and hence an automated service that checks for logic errors in human-
proposed nomenclatural emendations could increase user confidence in enacting necessary 
changes and reduce rule-violating errors. 
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   We realize that the suggested applications of ASP logic to nomenclatural registries require 
much further development – conceptual, technical, and social – to possibly lead to real-life 
implementations. This study is limited to illustrating the general compatibility of zoological 
nomenclature and computational logic. Yet we may also remind ourselves that the enterprise of 
discovering and naming nature's diversity is far from finished. While estimates of global species 
richness remain uncertain, most indicate that millions of such entities remain unnamed (Caley et 
al. 2014). Future additions, synonymizations, and rearrangements of entities at varying 
taxonomic levels may have minimal or rather dramatic nomenclatural consequences. We hope 
that the scale of this challenge will motivate further work aimed at developing logic-enabled 
solutions based on this foundation-laying study. 
 

Computational Logic as an Assessment Tool for Nomenclatural Constraints 
 
   Modeling nomenclatural change scenarios in ASP logic may also give us a new perspective on 
the nature of nomenclature itself. In particular, our contrived use case illustrates how Priority and 
Coordination constraints may create dissimilar nomenclatural outcomes for what could be 
regarded as taxonomically identical, or at least highly comparative, triggers of change. From a 
strictly taxonomic perspective, the reinterpretation of the type specimen of A. primus and A. 
tertius as having a hemi-elliptical shaped instead of a square shape (as originally assessed), may 
by viewed as 'the same amount of taxonomic change'. In each case, it would appear in retrospect 
that a single, species-level entity had been misdiagnosed and hence taxonomically misplaced. 
However, Priority makes these two scenarios highly unequal, considering that A. primus was 
coined in 1775 and A. tertius was coined in 1950 (Fig. 1A). Consequently, the reinterpretation of 
the older type 'costs' 14 nomenclatural emendations (Figs. 3B and 7A), whereas that of the 
younger type 'costs' 2 such changes (Figs. 1C and 7A). 
   Generally speaking, it appears that zoological nomenclature is designed so as to make changes 
to the taxonomic identities of names with older ages more costly, whereas those of younger 
names are less costly. Clearly such a design achieves that there is increased stability in naming 
taxonomic entities. Older names tend to persist in part by virtue of their higher age. But this is 
not necessarily the same as optimizing change ratios for the interaction of nomenclature and 
taxonomy. For that to be the case, one might instead design a naming system whose behavior in 
light of taxonomic change is less driven by Priority – which along with Coordination can 
produce highly unequal cascading effects – and more receptive to the 'relative amount' of 
taxonomic change to be enacted. 
   The RCC–5 alignments shown in Figs. 7 and 8 (see also Table 3) are aiming in this direction, 
and mitigate the more dramatic nomenclatural disparities to up to point, while still also modeling 
valid nomenclatural conditions for the starting and ending conditions. In particular, one might 
argue that type specimen reinterpretations that motivate taxonomic rearrangements of species-
level entities spanning across multiple tribes (Fig. 7) should be consistently more costly than 
within-tribe moves (Fig. 8). After all, alignments for the former scenarios only generate 15 
congruent Euler regions, whereas the latter generate 17 congruent Euler regions. However, such 
considerations of the relative taxonomic quantity of change are not primary design features of the 
ICZN (1999) principles and rules. 
   The history of Codes is deep and multi-faceted (Winsor 2001; Minelli 2003; Schuh 2003; 
Dayrat 2010; Dubois 2011; David et al. 2012). For instance, Witteveen (2016) connects the 
origins or the modern type concept in nomenclature to the struggle between the "metropolitan 
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establishment" and "provincial radicals" in the colonial 19th century United Kingdom. This 
struggle to avert the "chaos of synonymy" is ultimately grounded in human cognitive constraints. 
Atran (1998) argues that the Linnaean naming tradition retains important features of folk 
biology, and in this sense is well aligned what he calls cognitive universals. These include 
evolutionarily constrained notions of taxonomic rank, generic species, and rank-associated 
essences. Both folk biology, which is functional in localized ecological contexts, and Linnaean 
classification, which is global in scope, are designed to satisfy our cognitive preferences to 
maximize our inductive learning and reasoning potential for the given context. 
   Our logic explorations show that the principles of nomenclature are not designed in the main to 
respond proportionally to complex nomenclatural and taxonomic change scenarios. The 
principles may perform best under the cognitive premise that old and long-established names 
experience relatively minimal taxonomic reassignments at late stages in the history of human 
taxonomic making. If on the other hand the taxonomic identities of these early-period names are 
frequently redefined 'late in the game', then this may result in disproportionately many 
nomenclatural emendations. Another way of saying this is that the Linnaean system may be 
biased to favor early success in achieving natural, inductively projectible classifications. Such 
early success is certainly possible if perceived taxonomic groups are not very diverse and are 
otherwise favorably accessible to human cognition. However, other complex groups may well 
experience abundant and significant late-stage reassessments – a circumstance that in some sense 
runs counter to both our cognitive biases and those (logically) embedded in the Codes of 
nomenclature. Many naming controversies in systematics reflect the tension of apparent early- 
versus late-stage success in recognizing complex natural entities and relationships. 
   Applications of computational logic to nomenclatural/taxonomic change scenarios can inform 
future designs of identifier systems for systematics that find the best balance between human 
cognitive preferences and logic-informed representation and reasoning maxims. We have shown 
that the ASP approach can provide both diagnostic and prescriptive input in this regard. It is not 
too late do pursue this path, and doing so may enable us to more fully bring nomenclature into 
the realm of computationally enabled big data science (Page 2016).  
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SUPPLEMENTARY MATERIALS 
 
SUPPLEMENTARY MATERIALS S1. – Answer Set Programming code (.txt), written in F2LP and 
with extensive comments, to perform the 20 nomenclatural taxon use case in conjunction with 
the Potassco solver clingo. See also Table 1. 
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SUPPLEMENTARY MATERIALS S2. – Data file (.txt) with installation instructions and command 
line interface operations to run the ASP code and obtain the related reasoning and visualization 
outputs. 
 
SUPPLEMENTARY MATERIALS S3. – Data file (.txt) with the complete textual clingo solver output 
for the 20 nomenclatural taxon use case. This output is used to produce the GraphViz 
visualizations.  
 
SUPPLEMENTARY MATERIALS S4. – Java Archive file (.jar) needed to translate the clingo solver 
output into the corresponding GraphViz visualizations. 
 
SUPPLEMENTARY MATERIALS S5. – Collated set of GraphViz visualizations (transformed into 
.pdf) for the 20 nomenclatural taxon use case. 
 
SUPPLEMENTARY MATERIALS S6. – Set of 36 Euler input data files for the respective alignments 
(summarized in Table 3). Each file is saved is saved in .txt format and contains annotations and 
instructions for run commands to yield the alignments and input/output visualizations. 
 
SUPPLEMENTARY MATERIALS S7. – Set of 36 Euler/X toolkit output Maximally Informative 
Relations (MIR) for the input data files provided in the Supplementary Materials S6. Each output 
file is saved in .csv format. 
 
SUPPLEMENTARY MATERIALS S8. – Set of 36 Euler/X output alignment visualizations (.pdf) for 
the input data files provided in the Supplementary Materials S6. 
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TABLES 
 
TABLE 1. High-level ASP pseudocode for the 20 nomenclatural taxon use case. The actual F2LP 
code, input commands, and output results (clingo text, GraphViz visualizations) are presented in 
the Supplementary Materials S1–S5, respectively.  
 
  

Section Constraint or action modeled in Answer Set Programming logic 
  
  

1. Define the transition system domains, variables, and starting conditions 
  

  1.1. Define a system that has two phases or steps: 0 = original; 1 = revised. 
  1.2. Define that the system has 20 nodes, labeled node 1 to node 20. One or more nodes can share the same rank (family to species). 
  1.3. Define that rank-specific nodes are part of the entire set of nodes. 
  1.4. Specify that higher-level names are constrained by coordinated (type-lineage) identities (Coordination). Generic names and  

   epithets are constrained by gender identities and corresponding spellings (Gender Agreement). 
  1.5. Define multiple domains for nodes: generally, and for each taxonomic rank (family to species). 
  1.6. Specify the original tree shape at time = 0, with 19 edges connecting the 20 nodes.  
  1.7. Specify the original generic name/epithet combinations for the corresponding nodes at time = 0, with the corresponding publication  

   years and gender identities. 
  1.8. Constrain each epithet to remain assigned to its original node; thereby, species-level node numbers remain consistent throughout  

   the two phases of the transition scenario. 
  1.9. Specify the coordinated (type-lineage) identities for sets of names – including each name's prefix and rank-specific endings – for  

   the starting and ending conditions. 
  1.10. Constrain the publication year for each name, including new names created in the year of 2000 (though excluding epithets which 

   were previously specified in 1.7.) 
  

2. Specify the globally applicable uniqueness and existence constraints 
  

  2.1. Constrain that each node is assigned a single, rule-compliant name – either mono- or binomial – as well as the year and the edge to  
   the parent node, excepting the root node which has no parent node. 

  

3. Specify the globally applicable inertia conditions for entities and relationships that remain consistent unless change is  
   mandated by the transition model 

  

  3.1. Constrain that all edges, node-name-year-gender assignments, and node years specified as valid at time = 0 will remain so at time =  
   1, ranging from the family level down to the genus level (however, species-level edges may change). 

  

4. Specify that the Priority of an epithet-level node and its coordinated higher-level nodes is established by having the more  
   senior publication year in comparison to another epithet-level node (Priority) 

  

5. Assign nodes persistently to their respective names and years at each taxonomic rank (family to species) 
  

6. Infer the rule-mandated nomenclatural changes at time = 1, for persisting and newly valid names (ending conditions) 
  

  6.1. Constrain that the valid generic name (at any time) has the senior, Priority-carrying epithet. 
  6.2. Constrain that epithets persist from time = 0 to time = 1; however, the corresponding generic name is determined by the identity of  

   the senior, Priority-carrying epithet. 
  6.3. Infer that an epithet is combined with a new generic name if it newly acquires Priority at time = 1 through the transfer of a  

   previously Priority-carrying epithet (at time = 0). 
  6.4. Exception to 6.3.: The node of the more senior, Priority-carrying epithet is not transferred in the transition from time = 0 to time =  

   1. Instead, another, not Priority-carrying node is transferred "inversely".  
  6.5. Infer that the tribe-level name is coordinated (newly, if required) with the Priority-carrying genus-level name. 
  6.6. Infer that the subfamily-level name is coordinated (newly, if required) with the Priority-carrying tribe-level name. 
  6.7. Infer that the family-level name is coordinated (newly, if required) with the Priority-carrying subfamily-level name. 
  

7. Specify the available new names and their respected years of publication, as required by previous constraints 
  

8. Specify the changed taxonomic conditions (stable models) that are valid at time = 1: choose exactly one species-level node to  
   be transferred as the child of another parent genus-level node than that which it had at time = 0 

  

  8.1. Select one species-level node to change its parent genus-level node at time = 1. 
  8.2. Exception to 8.1.: The change is not executed if the new node placement affects the same original edge (i.e., no effective change). 
  8.3. Establish that the new placement of the species-level node creates an edge to the corresponding genus-level node. 
  

9. 9. Identify and aggregate the required nomenclatural changes at time = 1  
  

  9.1. Record a new combination when the node names at times = 0 and 1 are not identical. 
  9.2. Record a new placement strictly in recognition of the relative Priority of locally and globally senior children; in particular, the latter  

   are not transferred (as specified in 6.4.). 
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TABLE 1. Continued. 
 
  

Section Constraint or action modeled in Answer Set Programming logic 
  
  

  9.3. Record all nomenclaturally valid and synonymous names at time = 1. 
    9.3.1. Create a species-level synonym if an epithet combined with a generic name at time = 0 is combined with another generic name at      

   time = 1. 
    9.3.2. Create a genus-level synonym if a locally Priority-carrying epithet at time = 0 is combined with another generic name at time = 1. 
    9.3.3. Create a tribe-level synonym if a locally Priority-carrying generic name at time = 0 is transferred to a tribal name with a globally  

   Priority-carrying generic name at time = 1. 
  9.4. Create all required new names at time = 1. 
    9.4.1. Categorize all unchanged names as those whose corresponding nodes experience no name change at time = 1. 
    9.4.2. Create a new generic name, with Gender Agreement, for those genus-level nodes that do not fall under 9.4.1. 
    9.4.3. Create a new tribal name, with Gender Agreement, for those tribe-level nodes that do not fall under 9.4.1. 
    9.4.4. If the transfer at time = 1 creates a new generic name/epithet combination that is homonymous with another (valid) one, then  

   modify the epithet of the new combination, with Gender Agreement, to prohibit this outcome. 
  9.5. Create all required new typifications at time = 1. 
    9.5.1. Establish new genus-level typifications by assigning the Priority-carrying epithet to the new genus-level name at time = 1. 
    9.5.2. Establish new tribe-level typifications by assigning the Priority-carrying genus-level name to the new tribe-level name at time = 1. 
  9.6. Aggregate all nomenclatural novelties at time = 1. 
    9.6.1. Aggregate all new generic name/epithet combinations. 
    9.6.2. Aggregate all new placements of species-, genus-, and tribe-level names. 
    9.6.3. Aggregate all genus- and tribe-level synonyms. 
    9.6.4. Aggregate all new genus- and tribe-level names. 
  

10. Output the ending conditions: taxonomy visualization constraints and aggregated nomenclatural changes 
  

  10.1. Prohibit the display of non-terminal nodes (at any rank) that lack children (family to species). 
  10.2. Show valid species-level names by providing the genus-level name, gender-agreeing epithet, and year of publication. 
  10.3. Constrain the new taxonomic hierarchy to show only the set of revised edges, with all nodes showing the Priority-carrying names. 
  10.4. Show, for each stable model, the changed species-level placement (specified in 8.1.), indicate whether 6.4. ("inverse transfer") is  

   invoked, and output the aggregate nomenclatural changes. 
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Problem Instance I
_

• Fully specify 20 nomenclatural taxon use case,
   including nomenclatural entities, relationships,
   and Code-compliant constraints for changes

Encoding Program P
_

• Encode fully speci�ed 20 nomenclatural
  taxon use case, with change conditions
  to be valid at time = 1

ASP Solver (clingo)
_

• Ground all domains, variables, and
   constraint to hold at times = 0, 1

Output Stable Model Solutions
for the Program P,  given Instance I

Fig. 2
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Fig. 3

A

B

Novagenus tertius, (1950)* [10]

Novagenus quartus, (1955) [11]

Agenus quintus, (1960) [13]

Agenus sextus, (1965) [14]

Agenus secundus, (1780)* [12] 

Igena prima, 1785* [15]

Igena septima, 1970 [16]

Ogenus nonus, 1980 [19]

Ogenus secundus, 1790* [18]

Ogenus decimus, 1985 [20] 

Novagenus, 2000 [5']

= Egena, 1780 [6]

Igena, 1785* [7]

Ogenus, 1790 [8]

Agenini, 1775* [3]

Igenini, 1785 [4]

Ageninae, 1775* [2]Agenidae, 1775* [1]

Agenus primus, 1775* [9]

Igena octava, 1975 [17]

Agenus, 1775* [5]

Scenario 1: 9 → 6
                 (12 → 5)

Nomenclatural changes
_

Egena → Agenus, new synonymy (genus)
Egena secunda → Agenus secundus, new comb.1

Egena quinta → Agenus quintus, new comb.1

Egena sexta → Agenus sextus, new comb.1

Novagenus, new genus name 
Agenus tertius → Novagenus tertius, new comb.
Agenus quartus → Novagenus quartus, new comb.
Novagenus tertius → Novagenus, new typ. (genus)

Scenario 2: 9 → 7
                 (15 → 5)

Novagenus tertius, (1950)* [10]

Novagenus quartus, (1955) [11]

Egena quinta, 1960 [13]

Egena sexta, 1965 [14]

Egena secunda, 1780* [12] 

Agenus primulus, 2000* [15]

Agenus septimus, (1970) [16]

Ogenus nonus, 1980 [19]

Ogenus secundus, 1790* [18]

Ogenus decimus, 1985 [20] 

Novagenus, 2000 [5']

Egena, 1780 [6]

= Igena, 1785* [7]

Ogenus, 1790* [8]

Agenini, 1775* [3]

Ageninae, 1775* [2]Agenidae, 1775* [1]

Agenus primus, 1775* [9]

Agenus octavus, (1975) [17]

= Igenini, 1785 [4]

Ogenini, 2000 [4']

Agenus, 1775* [5]

Nomenclatural changes
_

Igenini → Agenini, new synonymy (tribe)
Igena → Agenus, new synonymy (genus)
Igena prima → Agenus primulus, new species name1,2 
Igena septima → Agenus septimus, new comb.1

Igena octava → Agenus octavus, new comb.1

Novagenus, new genus name  
Agenus tertius → Novagenus tertius, new comb.
Agenus quartus → Novagenus quartus, new comb.
Novagenus tertius → Novagenus, new typ. (genus)
Ogenini, new tribe name
Ogenus → Ogenini, new typ. (tribe)

Novagenus tertius, (1950)* [10]

Novagenus quartus, (1955) [11]

Egena quinta, 1960 [13]

Egena sexta, 1965 [14]

Egena secunda, 1780* [12] 

Igena prima, 1785* [15]

Igena septima, 1970 [16]

Agenus nonus, (1980) [19]

Agenus secundus, (1790)* [18]

Agenus decimus, (1985) [20] 

Novagenus, 2000 [5']

Egena, 1780 [6]

Igena, 1785* [7]

= Ogenus, 1790 [8]

Agenini, 1775* [3]

Ageninae, 1775* [2]Agenidae, 1775* [1]

Agenus primus, 1775* [9]

Igena octava, 1975 [17]

Igenini, 1785 [4]

Agenus, 1775* [5]

C
Scenario 3: 9 → 8
                 (18 → 5)

Nomenclatural changes
_

Ogenus → Agenus, new synonymy (genus)
Ogenus secundus → Agenus secundus, new comb.
Ogenus nonus → Agenus nonus, new comb.
Ogenus decimus → Agenus decimus, new comb.
Novagenus, new genus name
Agenus tertius → Novagenus tertius, new comb.
Agenus quartus → Novagenus quartus, new comb.
Novagenus tertius → Novagenus, new typ. (genus)
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Fig. 4

A

B

Scenario 10: 12 → 5

Nomenclatural changes
_

Egena → Agenus, new synonymy (genus)
Egena secunda → Agenus secundus, new comb.1

Novegena, new genus name
Egena quinta → Novegena quinta, new comb.
Egena sexta → Novegena sexta, new comb.
Novegena sexta → Novegena, new typ. (genus)

Scenario 11: 12 → 7
                     (15 → 6)

C
Scenario 12: 12 → 8
                     (18 → 6)

Agenus tertius, 1950 [10]

Agenus quartus, 1955 [11]

Novegena quinta, 1960* [13]

Novegena sexta, 1965 [14]

Agenus secundus, (1780)* [12] 

Igena prima, 1785* [15]

Igena septima, 1970 [16]

Ogenus nonus, 1980 [19]

Ogenus secundus, 1790* [18]

Ogenus decimus, 1985 [20] 

Agenus, 1775* [5]

Novegena, 2000 [6']

Igena, 1785* [7]

Ogenus, 1790 [8]

Agenini, 1775* [3]

Igenini, 1785 [4]

Ageninae, 1775* [2]Agenidae, 1775* [1]

Agenus primus, 1775* [9]

Igena octava, 1975 [17]

= Egena, 1780 [6]

Agenus tertius, 1950 [10]

Agenus quartus, 1955 [11]

Novegena quinta, 1960* [13]

Novegena sexta, 1965 [14]

Egena secunda, 1780* [12] 

Egena prima, (1785)* [15]

Egena septima, (1970) [16]

Ogenus nonus, 1980 [19]

Ogenus quartus, 1790* [18]

Ogenus decimus, 1985 [20] 

Agenus, 1775* [5]

Novegena, 2000 [6']

= Igena, 1785* [7]

Ogenus, 1790* [8]

Agenini, 1775* [3]
= Igenini, 1785 [4]

Ageninae, 1775* [2]Agenidae, 1775* [1]

Agenus primus, 1775* [9]

Egena octava, (1975) [17]

Egena, 1780 [6]

Ogenini, 2000 [4']

Nomenclatural changes
_

Igenini → Agenini, new synonymy (tribe)
Igena → Egena, new synonymy (genus)
Igena prima → Egena prima, new comb.
Igena septima → Egena septima, new comb.
Igena octava → Egena octava, new comb.
Novegena, new genus name
Egena quinta → Novegena quinta, new comb.
Egena sexta → Novegena sexta, new comb.
Novegena quinta → Novegena, new typ. (genus)
Ogenini, new tribe name
Ogenus → Ogenini, new typ. (tribe)

Agenus tertius, 1950 [10]

Agenus quartus, 1955 [11]

Novegena quinta, 1960* [13]

Novegena sexta, 1965 [14]

Egena secunda, 1780* [12] 

Igena prima, 1785* [15]

Igena septima, 1970 [16]

Egena nona, (1980) [19]

Egena secundula, 2000* [18]

Egena decima, (1985) [20] 

Agenus, 1775* [5]

Novegena, 2000 [6']

Igena, 1785* [7]

= Ogenus, 1790 [8]

Agenini, 1775* [3]

Igenini, 1785 [4]

Ageninae, 1775* [2]Agenidae, 1775* [1]

Agenus primus, 1775* [9]

Igena octava, 1975 [17]

Egena, 1780 [6]

Nomenclatural changes
_

Ogenus → Egena, new synonymy (genus)
Ogenus secundus → Egena secundula, new species name1,2

Ogenus nonus → Egena nona, new comb.1

Ogenus decimus → Egena decima, new comb.1

Novegena, new genus name 
Egena quinta → Novegena quinta, new comb.
Egena sexta → Novegena sexta, new comb.
Novegena quinta → Novegena, new typ. (genus)
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Fig. 5

A

B

Scenario 19: 15 → 5

Nomenclatural changes
_

Igenini → Agenini, new synonymy (tribe)
Igena → Agenus, new synonymy (genus)
Igena prima → Agenus primulus, new species name1,2

Novigena, new genus name
Igena septima → Novigena septima, new comb.
Igena octava → Novigena octava, new comb.
Novigena septima → Novigena, new typ. (genus)
Oginini, new tribe name
Ogenus → Ogenini, new typ. (tribe)

Scenario 20: 15 → 6

C
Scenario 21: 15 → 8
                     (18 → 7)

Nomenclatural changes
_

Igenini → Agenini, new synonymy (tribe)
Igena → Egena, new synonymy (genus)
Igena prima → Egena prima, new comb.
Novigena, new genus name
Igena septima → Novigena septima, new comb.
Igena octava → Novigena octava, new comb.
Novigena septima → Novigena, new typ. (genus)
Oginini, new tribe name
Ogenus → Ogenini, new typ. (tribe)

Nomenclatural changes
_

Ogenus → Igena, new synonymy (genus)
Ogenus secundus → Igena secunda, new comb.1

Ogenus nonus → Igena nona, new comb.1

Ogenus decimus → Igena decima, new comb.1

Novigena, new genus name
Igena septima → Novigena septima, new comb.
Igena octava → Novigena octava, new comb.
Novigena septima → Novigena, new typ. (genus)

Agenus tertius, 1950 [10]

Agenus quartus, 1955 [11]

Egena quinta, 1960 [13]

Egena sexta, 1965 [14]

Egena secunda, 1780* [12] 

Agenus primulus, 2000* [15]

Novigena septima, 1970* [16]

Ogenus nonus, 1980 [19]

Ogenus secundus, 1790* [18]

Ogenus decimus, 1985 [20] 

Agenus, 1775* [5]

Egena, 1780 [6]

Novigena, 2000 [7']

Ogenus, 1790* [8]

Agenini, 1775* [3]

Ogenini, 2000 [4']

Ageninae, 1775* [2]Agenidae, 1775* [1]

Agenus primus, 1775* [9]

Novigena octava, 1975 [17]

= Igena, 1785* [7]

= Igenini, 1785 [4]

Agenus tertius, 1950 [10]

Agenus quartus, 1955 [11]

Egena quinta, 1960 [13]

Egena sexta, 1965 [14]

Egena secunda, 1780* [12] 

Egena prima, (1785)* [15]

Novigena septima, 1970* [16]

Ogenus nonus, 1980 [19]

Ogenus secundus, 1790* [18]

Ogenus decimus, 1985 [20] 

Agenus, 1775* [5]

Egena, 1780 [6]

Novigena, 2000 [7']

Ogenus, 1790* [8]

Agenini, 1775* [3]

Ogenini, 2000 [4']

Ageninae, 1775* [2]Agenidae, 1775* [1]

Agenus primus, 1775* [9]

Novigena octava, 1975 [17]

= Igena, 1785* [7]

= Igenini, 1785 [4]

Agenus tertius, 1950 [10]

Agenus quartus, 1955 [11]

Egena quinta, 1960 [13]

Egena sexta, 1965 [14]

Egena secunda, 1780* [12] 

Igena prima, 1785* [15]

Novigena septima, 1970* [16]

Igena nona, (1980) [19]

Igena secunda, (1790)* [18]

Igena decima, (1985) [20] 

Agenus, 1775* [5]

Egena, 1780 [6]

Novigena, 2000 [7']

= Ogenus, 1790 [8]

Agenini, 1775* [3]

Ageninae, 1775* [2]Agenidae, 1775* [1]

Agenus primus, 1775* [9]

Novigena octava, 1975 [17]

Igena, 1785* [7]

Igenini, 1785 [4]
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Fig. 6

A

B

Scenario 28: 18 → 5

Nomenclatural changes
_

Ogenus → Agenus, new synonymy (genus)
Ogenus secundus → Agenus secundus, new comb.
Novogenus, new genus name
Ogenus nonus → Novogenus nonus, new comb.
Ogenus decimus → Novogenus decimus, new comb.
Novogenus nonus → Novogenus, new typ. (genus)

Scenario 29: 18 → 6

C
Scenario 30: 18 → 7

Nomenclatural changes
_

Ogenus → Egena, new synonymy (genus)
Ogenus secundus → Egena secundula, new species name1,2

Novogenus, new genus name
Ogenus nonus → Novogenus nonus, new comb.
Ogenus decimus → Novogenus decimus, new comb.
Novogenus nonus → Novogenus, new typ. (genus) 

Nomenclatural changes
_

Ogenus → Igena, new synonymy (genus)
Ogenus secundus → Igena secunda, new comb.1

Novogenus, new genus name
Ogenus nonus → Novogenus nonus, new comb.
Ogenus decimus → Novogenus decimus, new comb.
Novogenus nonus → Novogenus, new typ. (genus)

Agenus tertius, 1950 [10]

Agenus quartus, 1955 [11]

Egena quinta, 1960 [13]

Egena sexta, 1965 [14]

Egena secunda, 1780* [12] 

Igena prima, 1785* [15]

Igena septima, 1970 [16]

Novogenus nonus, 1980* [19]

Novogenus decimus, 1985 [20] 

Agenus, 1775* [5]

Egena, 1780 [6]

Igena, 1785* [7]

Novogenus, 2000 [8']

Agenini, 1775* [3]

Igenini, 1785 [4]

Ageninae, 1775* [2]Agenidae, 1775* [1]

Agenus primus, 1775* [9]

Igena octava, 1975 [17]

Agenus secundus, (1790)* [18]

= Ogenus, 1790 [8]

Agenus tertius, 1950 [10]

Agenus quartus, 1955 [11]

Egena quinta, 1960 [13]

Egena sexta, 1965 [14]

Egena secunda, 1780* [12] 

Igena prima, 1785* [15]

Igena septima, 1970 [16]

Novogenus nonus, 1980* [19]

Novogenus decimus, 1985 [20] 

Agenus, 1775* [5]

Egena, 1780 [6]

Igena, 1785* [7]

Novogenus, 2000 [8']

Agenini, 1775* [3]

Igenini, 1785 [4]

Ageninae, 1775* [2]Agenidae, 1775* [1]

Agenus primus, 1775* [9]

Igena octava, 1975 [17]

Egena secundula, 2000* [18]

= Ogenus, 1790 [8]

Agenus tertius, 1950 [10]

Agenus quartus, 1955 [11]

Egena quinta, 1960 [13]

Egena sexta, 1965 [14]

Egena secunda, 1780* [12] 

Igena prima, 1785* [15]

Igena septima, 1970 [16]

Novogenus nonus, 1980* [19]

Novogenus decimus, 1985 [20] 

Agenus, 1775* [5]

Egena, 1780 [6]

Igena, 1785* [7]

Novogenus, 2000 [8']

Agenini, 1775* [3]

Igenini, 1785 [4]

Ageninae, 1775* [2]Agenidae, 1775* [1]

Agenus primus, 1775* [9]

Igena octava, 1975 [17]

Igena secunda, (1790)* [18]

= Ogenus, 1790 [8]
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Fig. 7
A B

T1 concept

T0 concept
T1 & T0: Congruent concepts

Inclusion (<) - deduced

T1 concept T1: Non-congruent concept T0 concept T0: Non-congruent concept

Inclusion (<) - inferred Overlapping articulation (><)

Scenario 5: 10 → 7
_

→ Transfer across tribes
→ 6 overlapping articulations

Comb. nov. *

Scenario 2: 9 → 7
                 (15 → 5)
_

→ Inverse transfer across tribes
→ 4 overlapping articulations

Syn. nov. Syn. nov. Nomen nov. *

Comb. nov. *

Comb. nov. *

Comb. nov.
Typ. nov.

Comb. nov.

Nomen
nov.

Nomen nov.
Typ. nov.
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Fig. 8
A B

T1 concept

T0 concept
T1 & T0: Congruent concepts

Inclusion (<) - deduced

T1 concept T1: Non-congruent concept T0 concept T0: Non-congruent concept

Inclusion (<) - inferred Overlapping articulation (><)

Scenario 4: 10 → 6
_

→ Transfer within tribe
→ 1 overlapping articulation

Comb.
nov. *

Scenario 1: 9 → 6
                 (12 → 5)
_

→ Inverse transfer within tribe
→ 1 overlapping articulation

Syn. nov.
Comb. nov. *

Comb. nov.
Typ. nov.

Comb. nov.

Nomen
nov.

Comb. nov. *

Comb. nov. *
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