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Abstract 24 

Many studies have demonstrated the importance of the gut microbiome in 25 

healthy and disease states. However, establishing the causality of host-26 

microbiome interactions in humans is still challenging. Here, we describe a novel 27 

experimental system to define the transcriptional response induced by the 28 

microbiome in human cells and to shed light on the molecular mechanisms 29 

underlying host-gut microbiome interactions. In primary human colonic epithelial 30 

cells, we identified over 6,000 genes that change expression at various time 31 

points following co-culturing with the gut microbiome of a healthy individual. The 32 

differentially expressed genes are enriched for genes associated with several 33 

microbiome-related diseases, such as obesity and colorectal cancer. In addition, 34 

our experimental system allowed us to identify 87 host SNPs that show allele-35 

specific expression in 69 genes. Furthermore, for 12 SNPs in 12 different genes, 36 

allele-specific expression is conditional on the exposure to the microbiome. Of 37 

these 12 genes, eight have been associated with diseases linked to the gut 38 

microbiome, specifically colorectal cancer, obesity and type 2 diabetes. Our 39 

study demonstrates a scalable approach to study host-gut microbiome 40 

interactions and can be used to identify putative mechanisms for the interplay 41 

between host genetics and microbiome in health and disease.  42 

 43 

 44 

 45 

 46 
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Importance 47 

Study of host-microbiome interactions in humans is largely limited to identifying 48 

associations between microbial communities and host phenotypes. While these 49 

studies have generated important insight on the link between the microbiome and 50 

human disease, assessing cause and effect relationships has been challenging. 51 

Although this relationship can be studied in germ-free mice, this system is costly, 52 

and it is difficult to accurately account for the effect of host genotypic variation 53 

and environmental effects seen in humans. Here, we have developed a novel 54 

approach to directly investigate the transcriptional changes induced by live 55 

microbial communities on human colonic epithelial cells and how these changes 56 

are modulated by host genotype. This method is easily scalable to large numbers 57 

of host genetic backgrounds and diverse microbiomes, and can be utilized to 58 

elucidate the mechanism of host-microbiome interactions.  59 

 60 

Introduction 61 

A healthy, human adult contains over one thousand species of bacteria in their 62 

gut (1). These bacteria live in a symbiotic relationship with us and compose the 63 

gut microbiome. Recent studies suggest that the gut microbiome may play a role 64 

in both physiological and pathological states. The composition of the gut 65 

microbiome has been correlated with complex diseases, such as Crohn’s 66 

disease and diabetes (2–5). The two most abundant phyla in the human gut are 67 

bacteroidetes and firmicutes (1). In obese individuals, the ratio of these two phyla 68 

is altered (6–8). Turnbaugh et al. showed that transplanting the fecal microbiome 69 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2016. ; https://doi.org/10.1101/058784doi: bioRxiv preprint 

https://doi.org/10.1101/058784
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 

of an obese mouse to a germ-free mouse causes greater weight gain in the 70 

recipient as compared to recipients that received the microbiome of lean mice 71 

(9). Goodrich et al. showed that this relationship exists even when the 72 

microbiome from obese humans is transplanted into mice (10). The microbiome 73 

has also been linked to colorectal cancer (11, 12) and to diseases not directly 74 

related to the gut, such as arthritis, Parkinson’s disease, and other types of 75 

cancer (13–16).  76 

 77 

While there are many species that are common among humans, studies have 78 

shown that microbiome composition can vary widely across individuals (17, 18). 79 

These differences have been correlated to several factors, such as 80 

breastfeeding, sex, and diet (19–24). In addition to environmental factors, recent 81 

studies also support a key role for host genetics in shaping the gut microbiome. 82 

Indeed, microbiome composition is more similar in related individuals than in 83 

unrelated individuals (10, 25–28). One caveat of these studies is that, especially 84 

in humans, related individuals often share environments and follow similar eating 85 

habits, which have a strong effect on the microbiome. In an effort to control for 86 

this factor, other studies have attempted to estimate the role of host genetics on 87 

the microbiome in mice, where the environment can be regulated, or in groups of 88 

people that all share the same environment regardless of relatedness (29–32).  89 

 90 

To further examine the effect of host genetic variation on gut microbiome, some 91 

groups have performed association studies between host genotypes and 92 
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microbiome composition (32–35). For example, Blekhman et al. studied 93 93 

individuals and identified loci that are associated with microbiome composition in 94 

15 body sites that were sequenced as part of the Human Microbiome Project (18, 95 

33). Among SNPs associated with microbiome composition, they found an 96 

enrichment in SNPs that were identified as expression QTLs (eQTLs) across 97 

multiple tissues in the Genotype-Tissue Expression (GTEx) project (36). 98 

Additionally, microbiome composition has been found to be tissue-specific and 99 

therefore, likely influenced by host gene expression pattern in the specific tissue 100 

that interacts with the microbiome. Together, these results suggest that host 101 

genetic variants affects microbiome composition through influencing host gene 102 

and protein expression. However, we know little about the interplay between 103 

human genetic variation, gene expression, and variation in microbiome 104 

composition, and the effect of these factors on susceptibility to complex disease.  105 

 106 

Molecular studies of genetic effects on cellular phenotypes (eQTL, dsQTL and 107 

transcription factors binding QTL mapping studies) have been successful in 108 

elucidating the link between genetic variation and gene regulation, and have 109 

identified hundreds of variants associated with gene expression and transcription 110 

factor binding changes (37–42). Here, we present a novel approach to study the 111 

interaction between the microbiome, human genetic variation and gene 112 

expression in a dynamic and scalable system. We co-cultured primary, human 113 

colonocytes (epithelial cells of the colon) with the gut microbiome of a healthy 114 

individual (extracted from a fecal sample) to study host cell gene expression 115 
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response to microbiome exposure. We identified over 6,000 genes that 116 

significantly change their expression in the host following microbiome exposure. 117 

These genes are enriched for GWAS signals, suggesting that regulation of their 118 

expression is a potential mechanism for the associations found between host 119 

disease status and microbiome composition. In addition, to learn about host 120 

genetic variants that play a role in host-microbiome interaction, we studied allele-121 

specific expression (ASE) and identified 12 genes that demonstrate an 122 

interaction between genotype and microbiome exposure. Future studies can use 123 

this approach to characterize host response to the microbiome and determine the 124 

causal relationship in the context of specific diseases and traits. 125 

 126 

Results 127 

Study design 128 

While many recent studies have shown the importance of the microbiome in 129 

physiological and pathological states, in humans, the direct impact of exposure to 130 

the microbiome on host cells is yet unclear. To analyze the host transcriptional 131 

changes induced by a normal gut microbiome, we designed an experiment in 132 

which we co-cultured human colonic epithelial cells (colonocytes) with an extract 133 

containing the fecal microbiome from a healthy individual (Figure 1A and Table 134 

S1). We analyzed the DNA of the fecal extract through 16S sequencing followed 135 

by data processing using QIIME (12, 43, 44) to quantify microbial species 136 

present. This fecal extract showed a normal composition of bacteria phyla with 137 

Firmicutes and Bacteroidetes representing the most abundant taxa, consistent 138 
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with previous studies of gut microbiota composition in healthy individuals (Table 139 

S1) (18). 140 

 141 

We exposed the colonocytes to two different densities of live microbiome 142 

extract (as measured by OD600), including 10:1 and 100:1 bacteria:colonocyte 143 

ratios, termed High and Low concentration, respectively. We cultured the 144 

colonocytes in low Oxygen (5% O2) to recapitulate the gut environment for 4 and 145 

6 hours under three conditions: with high and low concentrations of bacteria and 146 

alone, as controls (Figure 1B). This resulted in 5 experimental conditions: Low-4, 147 

Low-6, High-4, CO4 and CO6. Experimental replicates were collected for each 148 

condition: two replicates for Low-4 and High-4 and three replicates for Low-6, 149 

CO4 and CO6. We collected and sequenced the RNA in order to learn about the 150 

host cell response through study of gene expression and to identify genes with 151 

allele-specific expression induced by the microbiome.  152 

 153 

Transcriptional changes induced by the gut microbiome 154 

First, we searched for genes that were differentially expressed (DE) in the 155 

colonocytes following exposure to the gut microbiome. We used DESeq2 (45) as 156 

described in the methods to characterize differential gene expression in the 157 

treatment samples, across biological replicates. We focused on genes with 158 

significant differences using a Benjamini-Hochberg adjusted p-value < 0.1 and  159 

|log2(Fold-Change)| > 0.25. With this method we identified 3,320 genes that 160 

change expression in Low-4 relative to CO4 (55% up-regulated), 1,790 genes in 161 
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Low-6 relative to CO6 (57% up-regulated) and 5,182 genes in High-4 relative to 162 

CO4  (49% up-regulated) resulting in 6,684 genes that had at least one transcript 163 

that was differentially expressed (DE) under any of the three conditions (Figure 164 

2, Figure S1, and Table S2).  165 

  166 

To determine whether our results recapitulate gene expression patterns 167 

observed in in vivo models, we performed a comparison to an existing dataset 168 

assessing the effect of the microbiome on colonic gene expression in mouse 169 

(46). Camp et al. studied mice that were in three groups: conventionally raised 170 

(CR), mice raised in a germ-free environment that were then conventionalized 171 

with microbiome for 2 weeks (CV) and mice only raised in a germ-free 172 

environment (GF) (46). They performed RNA-seq and identified 194 and 205 173 

genes that were differentially expressed in colonic epithelial cells in CR and CV 174 

mice, respectively, as compared to GF mice. When we searched for the overlap 175 

between our 6,684 differentially expressed genes we found that we had a 176 

significant enrichment for the genes differentially expressed in CR mice (42 177 

genes out of 194 DE genes in CR mice, Fisher's Exact test p-value = 0.001, OR 178 

= 2.3) but not with CV mice (Fisher's Exact test p-value = 0.39). This suggests 179 

that our model more accurately represents a normal, healthy interaction with the 180 

microbiome as compared to the acute response observed in the CV mice. 181 

 182 

We next examined the function of the genes that change their expression in the 183 

host. We identified genes involved in pathways previously shown to be affected 184 
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by exposure to microbiome, including cell-cell junctions (47, 48) and lipid 185 

metabolism (46, 49) (Figure 3A). Similar to Camp et al. (46), we also identified 186 

changes in gene expression of transcription factors. Specifically, we find an 187 

enrichment of genes for which Camp et al. found binding sites near genes 188 

differentially expressed between CV and CR mice (50 transcription factors that 189 

are DE in our data) (Fisher’s exact test p-value = 0.0004, OR = 2.3). This 190 

includes EGR1, a gene involved in intestinal response to injury (50), and several 191 

STAT genes, which are part of a pathway up-regulated in colorectal cancer (51). 192 

This overlap suggests that our in vitro system accurately depicted an in vivo 193 

response and that the changes in host gene expression are mediated by 194 

changes in the abundance of key transcription factors in humans as Camp et al. 195 

had seen in mice.  196 

 197 

Previous reports in animal models have demonstrated enrichment for genes 198 

involved in immune response among those that change expression following 199 

short-term and long-term exposure to the microbiome (46, 52, 53). Indeed, 200 

among the GO categories that are significantly enriched (Benjamini-Hochberg 201 

adjusted p-value < 0.05) with genes that change expression following co-202 

culturing we find immune system process. We wondered whether immune 203 

response activation is stronger under certain conditions. Specifically, we tested 204 

whether the high dose of microbiome at 4 hours had a stronger effect on the 205 

immune response than the low dose at 4 hours. We identified 2,094 genes that 206 

were differentially expressed between High-4 and Low-4, with transcripts from 207 
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1,308 genes showing increased expression at the higher concentration and 208 

transcripts from 788 genes showing decreased expression at the higher 209 

concentration of microbiome (Table S3). When we searched among the genes 210 

that are increased in expression with the higher concentration of microbiome, we 211 

found several immune-related GO categories (Figure S2). These data suggest 212 

that a higher microbiome concentration elicits a stronger immune response in 213 

host cells.  214 

 215 

Transcriptional response and human diseases 216 

The impact of microbiome exposure on gene expression led us to ask whether 217 

these changes may affect human diseases. Several diseases have been linked 218 

to variation in the composition of the gut microbiome, including obesity, type 2 219 

diabetes, inflammatory bowel disease, Crohn’s disease, ulcerative colitis, and 220 

colon cancer (7, 27, 54–61). Many GWAS studies have identified genetic loci 221 

associated with these diseases (62), but in most cases, the mechanism by which 222 

the gene influences the disease is still unclear. Similarly, the mechanisms by 223 

which microbiome composition may influence human diseases are mostly still 224 

unknown. Our data allowed us to investigate these questions using primary 225 

human colonic cells.  226 

 227 

First, we hypothesized that if we identify a differentially expressed gene in our 228 

data that is also associated with a disease, it is likely that changes in the 229 

microbiome influence the gene’s expression, thereby contributing to the health of 230 
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the host. To test this hypothesis, we studied genes that were previously reported 231 

to be associated with any complex trait (NHGRI GWAS database) (62), as 232 

defined in the Methods. We searched among genes that were differentially 233 

expressed, in the same direction, in all 3 treatments and found enrichment for 234 

genes associated with complex traits (Fisher’s Exact test p-value < 10-10, OR = 235 

1.8). We then focused on several diseases that have already been linked to 236 

microbiome composition. We found that DE genes were enriched for genes 237 

associated with obesity-related traits (Fisher’s Exact test p-value = 0.03, OR = 238 

1.5) and colorectal cancer (Fisher’s Exact test p-value =  0.01, OR = 3.0) with 239 

suggestive enrichment for inflammatory bowel disease (Fisher’s Exact test p-240 

value = 0.06, OR = 1.7) and ulcerative colitis (Fisher’s Exact test p-value = 0.09, 241 

OR = 1.9). There was not significant enrichment for type 2 diabetes or Crohn’s 242 

disease (Table S4). Additionally, we found that the enrichment of genes 243 

associated with colorectal cancer is significant also when we used a 244 

complementary approach that accounts for the differences in the distribution of p-245 

values across GWAS (Figure 3C). For this analysis, we used a range of -log10(p-246 

value) cut-offs for each disease in the GWAS catalog, and identified the overlap 247 

between the genes significantly associated with the disease at each cutoff and 248 

DE genes in the current study. Using this approach, we also found enrichment 249 

among several autoimmune diseases that have been previously linked to 250 

variation in the microbiome, such as atopic dermatitis, celiac disease, and 251 

inflammatory bowel disease (63–65). These results support our system as a 252 

useful method for studying genes and interactions involved in organismal traits. 253 
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Moreover, dysregulation of the genes that are both differentially expressed and 254 

associated with these diseases may represent a mechanism that causes the 255 

pathological state through host cell response to the gut microbiome. Future 256 

studies utilizing microbiomes from healthy and diseased individuals will be able 257 

to further shed light on how different microbes may influence disease risk through 258 

changes in host gene expression.  259 

 260 

Allele-specific expression 261 

Genetic variants associated with microbiome composition have previously been 262 

linked to expression changes in humans through eQTL studies (33). However, to 263 

date, there are no reports in humans on the effects of genetic variants on the 264 

host transcriptional response to the microbiome. In order to identify genetic loci 265 

that may influence host gut-microbiome interactions through their influence on 266 

gene expression, we studied allele-specific expression (ASE) (37–42). This 267 

analysis is ideal for our study (using colonocytes from a single individual) as it 268 

uses the genotypes and allelic imbalance for each individual separately to assess 269 

genetic control, as opposed to using multiple individuals to determine a 270 

correlation in a population between genotypes and expression (37–42). The 271 

caveat is that we can only assess SNPs that are heterozygous in our sample and 272 

deeply covered by sequencing reads. To characterize ASE in our samples, we 273 

utilized QuASAR (66), a method to detect heterozygous sites in a sample and 274 

utilize these sites to identify ASE. We found an average of 5,984 heterozygous 275 

SNPs per sample covered by at least 20 RNA-seq reads. Among these 276 
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heterozygous sites, we identified 131 events of ASE at 87 SNPs in 69 unique 277 

genes (Storey FDR < 10%) across our samples, including controls (Figure 4 and 278 

Tables S5 and S6). Three of these SNPs show the same ASE in all samples 279 

suggesting that these may play a role in the baseline regulation of colonocytes. 280 

40 ASE events occur in the treatment samples and 18 occur in genes that are 281 

differentially expressed at the same time point. This suggests that these ASE 282 

events may be a result of either new transcription of the favored allele or specific 283 

degradation of the other allele. The 22 remaining ASE events may involve genes 284 

where there are changes in expression of transcripts containing both alleles such 285 

that the gene expression remains constant though the ASE may change.  286 

 287 

We then formally tested whether host transcriptional response may be 288 

modulated by an interaction between host genetics and the microbiome. 289 

Previous studies have examined gene-by-environment interaction in response to 290 

infection by searching for response expression quantitative trait loci (reQTLs), 291 

where the genetic effect on gene expression is only present under certain 292 

conditions (67–70). However, this type of study requires many individuals to gain 293 

enough statistical power. Instead, we searched for gene-by-environment 294 

interactions by examining ASE conditional on the exposure to the microbiome 295 

(conditional ASE, cASE). We identified 12 SNPs in 12 different genes that show 296 

cASE under any of the three treatment conditions (empirical FDR < 12%) (Figure 297 

5A-B, Table S7 and Figure S3). These genes represent host response that is 298 

regulated by both host genetics and the interaction with the gut microbiome. 299 
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Two of the 12 genes with cASE have been implicated in the immune response 300 

(USP36, PIP5K1A), while 8 of them have been linked to a disease affected by 301 

dysbiosis in the gut (AFAP1L2, PIP5K1A, GIPC1, ASAP2, USP36, RNF213, 302 

KCTD12, LASP1) (71–81). For example, we find cASE at SNP rs1130638 in 303 

LASP1 as well as increased total expression of LASP1 following exposure to the 304 

high concentration of microbiome at 4 hours (Figure 5A and 5C). This suggests 305 

that the gut microbiome has a stronger effect on LASP1 upregulation in the 306 

presence of a specific allelic variant. LASP1 encodes a protein that binds to actin 307 

and regulates the cytoskeleton, and it has previously been shown to increase in 308 

expression following infection. Specifically, infection with hepatitis B virus X 309 

increased LASP1 expression and led to cell migration (82). However, when 310 

LASP1 expression was knocked-down following exposure to the virus, 311 

subsequent cell migration and movement was also reduced. Furthermore, 312 

colorectal cancer cells also show higher expression of LASP1, suggesting that 313 

LASP1 plays a similar role in colonocytes. Together, these data suggest another 314 

mechanism by which exposure to the microbiome may lead to cell migration and 315 

perhaps carcinogenesis through influencing ASE and genotype-dependent 316 

expression of LASP1. 317 

 318 

Discussion 319 

The gut microbiome has been shown to be complex and variable under 320 

physiological and pathological conditions. While studies of the microbiome have 321 

become more common, in humans, they have been mostly limited to identifying 322 
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associations between microbial communities and host phenotypes. Here, we 323 

have developed a novel approach to directly investigate the transcriptional 324 

changes induced by live microbial communities on host colonic epithelial cells 325 

and how these changes are modulated by host genotype. The advantage of this 326 

method as compared to in vivo studies in mice is that it allows for high-327 

throughput testing of multiple microbiome and host combinations with quick 328 

assessment of the interaction. Previous studies examining the host-microbiome 329 

interaction have studied germ-free mice exposed to the gut microbiome of 330 

humans (10, 46). While these studies have generated important insight on host-331 

microbiome interactions, they have distinct caveats and limitations. First, while 332 

the environment of mice can be well-controlled, the interaction of mice and their 333 

microbiome may differ from the interaction of humans and their microbiome. 334 

Additionally, mice can be expensive to maintain and they have limited genetic 335 

variation, making it difficult to investigate a large number of genetic variants and 336 

identify loci involved in the host cellular response. Studies in humans, on the 337 

other hand, are able to use natural genetic variation to identify loci associated 338 

with microbiome composition, but it is difficult to control for the impact of other 339 

environmental factors. Our in vitro system allows for the study of interaction 340 

between many microbiomes and host cell cultures at a relatively much lower 341 

cost. Another advantage of this system is the ability to determine the changes in 342 

host cell response and microbiome composition over a time course, allowing us 343 

to gain insight on the cascade of transcriptional pathways involved in the 344 

response. Even though our system only focuses on one cell type and does not 345 
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fully recapitulate the complexity of cell types and interactions in the gut, our data 346 

suggests that it provides a good representation of the results seen in in vivo 347 

studies in mice.  348 

 349 

In addition to our novel experimental design, our analysis also adds to the 350 

understanding of the interaction between human genetic variation and the 351 

microbiome. Previous work has searched for quantitative trait loci that are 352 

associated with the abundance of certain bacteria but have lacked power to 353 

detect many loci (32, 33, 35). Our analysis of allele-specific expression 354 

maximizes the information available for each individual and allowed us to identify 355 

12 loci that demonstrated conditional allele-specific expression and evidence of 356 

gene-by-microbiome interaction in a single individual. This system is easily 357 

amenable to scaling up in order to perform eQTL and response eQTL analysis 358 

(39, 63–66). 359 

 360 

In this study we were able to learn about human colonocyte response to fecal 361 

microbial communities. We identified over 6,000 host genes that change 362 

expression following co-culture with the microbiome. These genes are enriched 363 

for certain functions including cell-cell interaction and cell migration, and in higher 364 

concentrations of microbiome, we see enrichment for genes involved in the 365 

immune response. When we further searched for genes where genetic variation 366 

affects the response to microbiome exposure, we found 12 genes containing 367 

cASE. Several of these genes can be linked to cell adhesion and migration 368 
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(AFAP1L2, PIP5K1A, GIPC1, ARFGAP3, ASAP2) and LASP1 has also been 369 

shown to change expression in colorectal cancer (80, 81, 83). These interactions 370 

demonstrate how the microbiome may influence cell-cell junctions and cell 371 

surface receptors, likely due to the in vivo reaction of colonocytes to protect the 372 

body from infection by sealing tight junctions and replacing cells that have been 373 

sloughed off by intestinal movement (48, 84–86). Among the genes with cASE, 374 

we also identified several genes that have been associated with diabetes 375 

(GIPC1, USP36, RNF213, KCTD12) or obesity (PIP5K1A) (74, 75, 77–79). Both 376 

diabetes and obesity have been linked to microbiome composition (7, 27, 54). 377 

These genes may play a role in host-microbiome interactions and the dysbiosis 378 

that leads to these diseases.  379 

 380 

Our study demonstrates a scalable approach to study host-gut microbiome 381 

interactions that depicts the in vivo relationship. This technique allowed us to 382 

start deciphering the impact of the microbiome on host cells and will help to 383 

determine how the microbiome may lead to disease through its influence on host 384 

cell gene regulation. We also highlight the importance of gene-by-microbiome 385 

interactions and suggest that it is not simply the genetics of an individual but the 386 

interplay between genetics and microbiome that will influence health and 387 

disease. Future studies using this approach with multiple individuals and 388 

microbiomes will identify key host factors and microbial communities that jointly 389 

influence human disease. 390 

 391 
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Materials and methods 392 

Cell culture and treatment 393 

Experiments were conducted using primary human colonic epithelial cells 394 

(HCoEpiC, lot: 9810), which we also term, colonocytes (ScienCell 2950). The 395 

cells were cultured on plates or flasks coated with poly-L-lysine (PLL) according 396 

to manufacturer’s specifications (ScienCell 0413). Colonocytes were cultured in 397 

colonic epithelial cell medium supplemented with colonic epithelial cell growth 398 

supplement and penicillin/streptomycin according to manufacturer’s protocol 399 

(ScienCell 2951) at 37°C with 5% CO2. 24 hours before treatment, cells were 400 

changed to antibiotic-free media and moved to an incubator at 37°C, 5% CO2, 401 

and 5% O2. 402 

Fecal extract was purchased from OpenBiome and arrived frozen on dry ice. 403 

Extract was not thawed until the day of treatment. Fecal extract was collected 404 

from a healthy, 22 year old male (Unit ID: 02-028-C). Prior to treatment, the fecal 405 

extract was thawed at 30°C and the microbial density was assessed by 406 

spectrophotometer (OD600) (Bio-Rad SmartSpec 3000). Media was removed 407 

from the colonocytes and fresh antibiotic-free media was added to the cells with 408 

a final microbial ratio of 10:1 or 100:1 microbe:colonocyte in each well (Low and 409 

High, respectively). Additional wells containing only colonocytes were also 410 

cultured in the same 24-well plate to be used as controls.  411 

Following 4 or 6 hours, the wells were scraped on ice, pelleted and washed 412 

with cold PBS and then resuspended in lysis buffer (Dynabeads mRNA Direct 413 

Kit) and stored at -80°C until extraction of colonocyte RNA. Control treatments 414 
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and Low-6 were done in triplicate while the Low-4 and High-4 were done in 415 

duplicate. The colonocytes exposed to the high concentration of microbiome for 6 416 

hours were unhealthy and RNA was unable to be collected. 417 

  418 

RNA-library preparation from colonocytes 419 

Poly-adenylated mRNAs were isolated from thawed cell lysates using the 420 

Dynabeads mRNA Direct Kit (Ambion) and following the manufacturer’s 421 

instructions. RNA-seq libraries were prepared using a protocol modified from the 422 

NEBNext Ultradirectional (NEB) library preparation protocol to use Barcodes 423 

from BIOOScientific added by ligation, as described in (87). The individual 424 

libraries were quantified using the KAPA real-time PCR system, following the 425 

manufacturer's instructions and using a custom-made series of standards 426 

obtained from serial dilutions of the phi-X DNA (Illumina). The libraries were then 427 

pooled and sequenced on two lanes of the Illumina Next-seq 500 in the 428 

Luca/Pique laboratory using the high output kits for 75 cycles and 300 cycles to 429 

obtain paired-end reads for an average of 150 million and 50 million total reads 430 

per sample, respectively. 431 

 432 

16S rRNA gene sequencing and analysis of the microbiome preparation 433 

Microbial DNA was extracted from the uncultured microbiome sample in 434 

triplicate using the PowerSoil kit from MO BIO Laboratories as directed, with a 435 

few modifications. Briefly, the fecal extract was spun to collect live microbes. The 436 

pellet was then resuspended in 200µL of phenol:chloroform and added to the 437 
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750µL bead solution from the PowerSoil kit. The kit protocol was then followed 438 

and the column was eluted in 60µL. This eluate was then purified using MinElute 439 

PCR Purification Kit (Qiagen) according to the manufacturer’s instructions. 440 

16S rRNA gene amplification and sequencing was performed at the University 441 

of Minnesota Genomics Center (UMGC), as described in Burns et al. (12). 442 

Briefly, DNA isolated from the fecal extract was quantified by qPCR, and the V5-443 

V6 regions of the 16S rRNA gene were PCR amplified. Nextera indexing primers 444 

were added in the first PCR using the V5F primer 5’-445 

AATGATACGGCGACCACCGAGATCTACAC[i5]TCGTCGGCAGCGTC-3’, and 446 

V6R 5’-CAAGCAGAAGACGGCATACGAGAT[i7]GTCTCGTGGGCTCGG-3’, 447 

where [i5] and [i7] refer to the index sequences used by Illumina. This PCR was 448 

carried out using the KAPA HiFidelity Hot Start polymerase (Kapa Biosystems) 449 

for 20 cycles. The amplicons were then diluted 1:100 and used as input for a 450 

second PCR using different combinations of forward and reverse indexing 451 

primers for another 10 cycles. The pooled, size-selected product was diluted to 452 

8pM, spiked with 15% PhiX and loaded onto an Illumina MiSeq instrument to 453 

generate the 16S rRNA gene sequences (v3 kit, PE 2 x 300), resulting in 2.2 454 

million raw reads per sample, on average. Barcodes were removed from the 455 

sample reads by UMGC and the Nextera adaptors were trimmed using CutAdapt 456 

1.8.1.  457 

The trimmed 16S rRNA gene sequence pairs were quality filtered (q-score > 458 

20, using QIIME 1.8.0) resulting in 1.41, 1.06, and 1.53 million high quality reads 459 

for sample replicates 1, 2, and 3, respectively (43, 44). OTUs were picked using 460 
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the closed reference algorithm against the Greengenes database (August, 2013 461 

release) (12, 43, 44, 88). The resulting OTU table was analyzed to determine 462 

microbial community diversity using QIIME scripts and rarefying to 280,000 463 

reads. 464 

 465 

RNA sequencing and differential gene expression analysis 466 

Reads were aligned to the hg19 human reference genome using STAR (89) 467 

(https://github.com/alexdobin/STAR/releases, version STAR_2.4.0h1), and the 468 

Ensemble reference transcriptome (version 75) with the following options: 469 

STAR --runThreadN 12 --genomeDir <genome>  470 

          --readFilesIn <fastqs.gz> --readFilesCommand zcat  471 

          --outFileNamePrefix <stem> --outSAMtype BAM Unsorted  472 

          --genomeLoad LoadAndKeep 473 

where <genome> represents the location of the genome and index files, 474 

<fastqs.gz> represents that sample's fastq files, and <stem> represents the 475 

filename stem of that sample. For each sample, we merged sequencing 476 

replicates from the 2 different sequencing runs using samtools (version 2.25.0). 477 

We further required a quality score of 10 to remove reads mapping to multiple 478 

locations. We used the WASP suite of tools (vandeGeijn2015) 479 

(https://github.com/bmvdgeijn/WASP, downloaded 09/15/15) for allele-specific 480 

mapping and removing duplicates to ensure that there is no mapping bias at 481 

SNPs. The resulting alignments are used for the following analyses and the read 482 

counts can be found in Table S6. 483 
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To identify differentially expressed (DE) genes, we used DESeq2 (45) (R 484 

version 3.2.1, DESeq2 version 1.8.1) over experimental replicates for each 485 

treatment condition. DESeq2 was performed over each transcript expressed in all 486 

samples. A transcript was differentially expressed when the log2(fold-change) 487 

was greater than 0.25 and had a Benjamini-Hochberg adjusted p-value (90) < 488 

0.1. A gene was considered DE if at least one of its transcripts was DE. 489 

 490 

Gene ontology analysis 491 

We utilized GeneTrail (91) to find enrichment of gene ontology terms. We 492 

compiled a list of unique genes that changed gene expression under any of the 3 493 

conditions (Low-4, High-4, and Low-6) and determined which GO categories 494 

were under/over-represented as compared to a list of all genes expressed in 495 

colonocytes (15,781 genes). We considered a category over/under-represented if 496 

the Benjamini-Hochberg adjusted p-value < 0.05. Figure 3A depicts the top 10 497 

categories over-represented that had an expected number of genes between 10 498 

and 500. Enrichment is calculated by dividing the observed number of genes in a 499 

category by the expected number based on the total gene set. 500 

 501 

Enrichment of DE genes among genome-wide association studies 502 

We downloaded the GWAS catalog (62)(version 1.0.1) on January 5th, 2016. 503 

To identify the overlap between DE genes in our dataset and those associated 504 

with a GWAS trait, we intersected genes that contain transcripts that change 505 

significantly and in the same direction in all 3 treatments with the reported genes 506 
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from the GWAS catalog. We report enrichment with specific categories from the 507 

GWAS catalog: “Obesity-related traits”, “Inflammatory bowel disease”, “Ulcerative 508 

colitis”, “Colorectal cancer”, “Type 2 diabetes”, and “Crohn’s disease”. We used a 509 

Fisher's exact test on a 2x2 contingency table using 2 groups: genes that contain 510 

transcripts that are DE, in the same direction, in the 3 treatments (“ALL”) and 511 

other genes that are expressed in each sample (“NOT”). We then split these 512 

groups into 2: genes that are associated with the select disease (“TRAIT”) and 513 

genes that are associated with any other trait in the GWAS catalog (“OTHER 514 

GWAS”). Values are shown in Table S4. 515 

  516 

Joint genotyping and ASE inference 517 

First, we identified SNPs to be studied for allele-specific expression (ASE). We 518 

used all 1KG SNPs from the phase 3 release (v5b.20130502, downloaded on 519 

08/24/15) but removed SNPs if their minor allele frequency was less than 5% or 520 

they were found in annotated regions of copy number variation and ENCODE 521 

blacklisted regions (39). The resulting 7,340,521 SNPs were then studied in the 522 

following analysis. 523 

Using samtools mpileup and the hg19 human reference genome, we obtained 524 

the read counts at each SNP in each sample from the RNA-seq data. These 525 

pileups were then processed using QuASAR package (66) by combining the 526 

RNA-seq reads from each sample (as they are all derived from the same 527 

colonocyte cell line) for joint genotyping. From the genotype information we 528 

identified heterozygous SNPs with read coverage of at least 20 and we tested 529 
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them for ASE using QuASAR (66). Though we used combined read counts for 530 

genotyping, in order to identify ASE, we studied each sample separately but still 531 

combined the respective reads from the 75 and 300 cycle runs and across 532 

experimental replicates. 533 

 534 

Analysis of cASE 535 

To identify conditional allele-specific expression (cASE) we transformed 536 

QuASAR β parameters to differential Z-scores (ZΔ) using the following formula: 537 

ZΔ = (βT - βC) / √(seT
2 + seC

2) 538 

where β and se represent the estimates for the ASE parameter and its standard 539 

error for either the treatment (T) or control (C) samples.  540 

The ZΔ scores were then normalized by the standard deviation across ZΔ 541 

scores corresponding to control versus control  (controls at 4 and 6 hours). 542 

Finally p-values (pΔ) were calculated from the ZΔ scores as pΔ = 2 X pnorm(-|z|). 543 

Under the null, ZΔ are asymptotically normally distributed. To further correct for 544 

this small deviation we used the control versus control p-values to empirically 545 

estimate the FDR. The list of significant cASE SNPs (empirical FDR < 12%) is in 546 

Table S7. 547 

 548 

 549 

 550 
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Accession numbers for sequencing data 551 

Submission of 16S sequencing data of uncultured microbiome and RNA 552 

sequencing data of colonocytes in all conditions to Short Read Archive (SRA) is 553 

pending. 554 
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Supplemental Figure and Table Legends 907 

 908 

Figure S1: Volcano plots of host gene expression changes following exposure 909 

to the microbiome. Each plot depicts gene expression changes for a different 910 

treatment as compared to the time-specific control sample. X-axis shows the 911 

log2FC and the y-axis shows the -log10(Benjamini-Hochberg adjusted p-value). 912 

The points colored light blue are significantly differentially expressed (Benjamini-913 

Hochberg adjusted p-value < 0.1, |logFC| > 0.25). 914 

 915 

Figure S2: Functional categories of DE genes at High-4. Enrichment of 916 

immune-related GO categories of genes that are significantly increased in 917 

expression in High-4 as compared to Low-4.   918 

 919 

Figure S3: Examples of cASE following exposure to the microbiome. Forest 920 

plots depicting conditional allele-specific expression (cASE) for 7 SNPs. ASE is 921 

shown for samples where at least 20 reads cover the indicated SNP (positive β 922 

indicates ASE favoring the reference allele). 923 

 924 

Table S1: 16S rRNA gene sequencing analysis of microbiome composition. 925 

Sequencing of fecal extract was done in triplicate. The table shows proportional 926 

data. 927 

 928 

Table S2: Differentially expressed genes in colonocytes following co-culturing. 929 
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Low-4 and High-4 are compared to CO4 while Low-6 is compared to CO6 to 930 

determine gene expression changes. Changes are shown for each transcript with 931 

the gene IDs and symbols in the last 2 columns. 932 

 933 

Table S3: Differences in gene expression between High-4 and Low-4. Changes 934 

in expression are shown for each transcript. 935 

 936 

Table S4: Enrichment of GWAS traits among DE genes. Six traits that have 937 

previously been linked to the microbiome were assessed. A 2x2 contingency 938 

table was constructed: “ALL” (genes that contain transcripts that are differentially 939 

expressed, in the same direction, in all three treatments) or “NOT” (any other 940 

gene expressed in this study), “TRAIT” (genes that are associated with the 941 

shown trait in the GWAS catalog) or “OTHER GWAS” (genes associated with 942 

another trait in the GWAS catalog). A Fisher’s Exact test was performed to obtain 943 

the p-values and odds ratios.  944 

 945 

Table S5: Allele-specific expression in colonocytes. ASE is shown for each 946 

SNP in the treatment or control sample in which ASE is found. Positive β 947 

indicates higher expression for the reference allele. 948 

 949 

Table S6: Allele-specific expression as a function of sequencing depth. 950 

 951 

Table S7: Conditional allele-specific expression following exposure to 952 
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45 

microbiome. ASE is shown for the treatment in which cASE occurs and its 953 

respective control. dASE values indicate the significant difference between ASE 954 

in the treatment and control. 955 
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Figure 1: Co-culturing of human colonocytes and fecal extract. A) 16S rRNA gene sequencing results from 
fecal extract of healthy, 22 year old male used to co-culture with colonocytes. Each bar denotes a replicate 
of the same uncultured fecal extract. The most abundant phyla are depicted as a percentage of the total 
microbiome detected. B) Treatment scheme to co-culture colonocytes and microbiome which was then 
followed by RNA-sequencing of mRNA to assess host gene expression. Cells were treated for 4 and 6 hours 
using a high or low concentration of fecal extract (or no fecal extract as controls). 
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Figure 2: Host gene expression changes following exposure to the microbiome. A) Heatmap depicts average 
across replicates of log2(Fold Change) for each sample as compared to the respective control (Low-4 and 
High-4 are compared to CO4 while Low-6 is compared to CO6). Blue indicates a decrease in expression in the 
treatment sample while red indicates an increase in expression. One transcript from each of 6,684 genes 
that are DE in any of the 3 treatments (Benjamini-Hochberg adjusted p-value < 0.1, |logFC| > 0.25) is shown. 
B) The Venn diagram depicts the number of genes that contain any transcript differentially expressed under 
the various treatment conditions. The overlap numbers require that the same gene is DE in the different 
samples. 
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Figure 3: Functional enrichment of differentially expressed genes. A) GO enrichment was assessed 
using GeneTrail (87) for any gene differentially expressed in any of the 3 treatments (6,684 genes). 
Enrichments for the top 10 categories that were over-represented are indicated with a black bar (details 
in methods). GO enrichment was performed for genes differentially expressed in each of the 3 
treatments separately and if these categories were significantly overrepresented, the enrichment in that 
category is shown by a closed circle (Low-4 is blue, High-4 is red, Low-6 is green). The closed circles 
are weighted based on the -log10(Benjamini-Hochberg adjusted p-value). C) Fold enrichment of DE 
genes (y-axis) among genes associated in GWAS for a given disease at progressively stringent p-value 
thresholds (x-axis). For each GWAS and P-value cutoff, we identified the overlap between the genes 
significantly associated with the disease at that cutoff and DE genes in our study, and calculated a fold 
enrichment (plotted along the y-axis), defined as the ratio of observed/expected overlap between the two 
gene sets. Colored lines indicate an enrichment significant at p < 0.05 (using a Fisher’s exact test), with 
the point of maximum enrichment indicated by a circle. The GWAS disease name is listed next to the 
line for diseases with a fold enrichment > 30 or x-axis position of maximum enrichment > 10. 
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Figure 4: Allele-specific expression in colonocytes following co-culturing with microbiome. A) QQ-plot 
depicting the ASE nominal p-values for heterozygous SNPs in human colonocytes. B) Percentage of SNPs 
with allele-specific expression in each of the 5 samples (3 treatments, 2 controls) normalized by the 
number of heterozygous sites covered by at least 20 reads. 
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Figure 5: Gene-by-environment interaction in human colonocytes. A) Forest plots depicting conditional 
allele-specific expression (cASE) for 5 SNPs. Allele-specific expression is shown for samples with at least 20 
reads covering the indicated SNP. Positive 𝛃 indicates allele-specific expression favoring the reference allele. 
B) QQ-plot showing the nominal p-values of SNPs that could be tested for cASE (20 reads covering SNP in 
both a treatment and the corresponding control or for both CO6 and CO4). C) Gene expression changes in 
each treatment (as compared to the corresponding control) for each of 5 transcripts of LASP1 expressed in 
colonocytes. 
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