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Abstract
Obesity is linked to insulin resistance, high insulin levels, chronic inflammation, and alterations in the
behavior  of  CD4+ T cells.  Despite  the  biomedical  importance  of  this  condition,  the  system-level
mechanisms that alter CD4+ T cell differentiation and plasticity are not well understood. We model
how  hyperinsulinemia  alters  the  dynamics  of  the  CD4+  T regulatory  network,  and  this,  in  turn,
modulates  cell  differentiation and plasticity. Different  polarizing  micro-environments  are  simulated
under  basal  and high  levels  of  insulin  to  assess  impacts  on cell-fate  attainment  and robustness  in
response to transient perturbations. In the presence of high levels of insulin Th1 and Th17 become
more stable to transient perturbations and their basin sizes are augmented, IL10 producing regulatory T
cells become less stable or disappear, while TGFB producing cells remain unaltered. Hence, the model
provides a dynamic system-level explanation for the documented apparently paradoxical role of TGFB
in both inflammation and regulation of immune responses  and the emergence of the adipose Treg
phenotype.  Furthermore,  our  simulations  provide  novel  predictions  on  the  impact  of  the  micro-
environment in the coexistence of the different cell types, proposing that in pro-Th1, pro-Th2 and pro-
Th17 environments effector and regulatory cells can coexist, but that high levels of insulin severely
affect regulatory cells, specially in a pro-Th17 environment. This work provides a system-level formal
and dynamic framework to integrate further experimental data in the study of complex inflammatory
diseases.

Introduction
Obesity-associated chronic inflammation is a complex phenomenon that results from the interaction
between  adipose  tissue,  hyperinsulinemia,  and  chronic  inflammation  (1-4).  Together,  these  linked
conditions increase the risk to develop metabolic syndrome and type 2 diabetes mellitus. To understand
how such complex syndrome emerges, it is necessary to use an integrative, system-level and dynamic
approach that takes into consideration: the non-linearity of the interactions, the strong effect of the
environment, the constant crosstalk and feed forward interactions among the genetic and non-genetic
components  involved,  and  the  synchronic  or  concerted  nature  of  various  regulatory  events  and
conditions  involved  occur  (5-8).  Most  studies  have  focused  on  the  direct  relationship  between
macrophages  and obesity  (9),  meanwhile,  important  questions  concerning the  relationship between
obesity,  insulin,  and  CD4+  T  cell  types  populations  and  plastic  changes  among  them  remain
unaddressed. These probably play important roles in the onset of inflammatory responses, and their
systemic  impact  remains  unresolved.  A  starting  point,  involves  understanding:  (i)  the  complex
regulatory network involved in the cell fate attainment of CD4+ T cell types (10-12), (ii) how such
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network  responds  to  extracellular  metabolic  and  environmental  conditions  (13-14)  (iii)  how  the
resulting system modulates the inflammatory and immune responses (1-4).

Obesity-associated chronic inflammation result from prolonged excessive nutrient intake (15,
16). Under such condition, adipocytes in the visceral adipose tissue (VAT) stimulate the inflammatory
response by producing pro-inflammatory cytokines, increasing activated macrophages, but also altering
the  CD4+ T cell  population  which  likely  feedbacks  to  inflammation  (15,  17).  This  inflammatory
response causes a decrease in glucose intake, which affects glucose metabolism and may indirectly
promote an increase in insulin production by beta cells (1-4, 15, 16, 18). Hyperinsulinemia is strongly
associated  with  metabolic  syndrome  that  is  typified  by  obesity,  hypertension,  dyslipidemia,  renal
failure, fatty liver disease, certain cancers and cardiovascular diseases, among others. Despite the fact
that such syndrome is clearly characterized, we still  do not understand the system-level underlying
mechanisms, as well as the global health consequences associated to hyperinsulinemia (18).

CD4+ T cells are fundamental modulators of immune challenges and the homeostasis of the
immune  system.  Naive  CD4+  T  cells  (Th0)  are  activated  when  they  recognize  an  antigen  in  a
secondary lymphoid organ. CD4+ T cells may attain different cell fates depending on the cytokine
milieu and other signals in their micro-environment. The cytokines can be produced by the lymphocyte
(intrinsic)  or  by  other  immune  cells  (extrinsic).  The  different  cell  types  express  characteristic
transcription factors and cytokines and have been associated with specific roles in the immune system
(19).  The  classification  of  CD4+  T  cells  in  subsets  has  been  complicated,  as  they  are  highly
heterogeneous  and  plastic.  There  are  reports  of  hybrid  cells  that  express  transcription  factors  and
cytokines  from  more  than  one  cell  type  (20,  21),  for  example.  Furthermore,  CD4+  T  cells  can
plastically  alter  their  expression  patterns  in  response  to  environmental  conditions  (22-24).  Such
complex and dynamic plastic behavior has started to be explained at the system level using multistable
network models (10-12).

Regulatory T cells maintain immune tolerance; regulate lymphocyte homeostasis, activation,
and function. Regulatory T cells can be classified into various types. Treg cells are characterized by the
transcriptional factor Foxp3, high expression of CD25+, and they produce TGFβ and IL10. But, these
two cytokines can also be expressed independently of Foxp3. TGFβ is necessary for the differentiation
of regulatory Tregs and effector Th17 cells. TGFβ has a context-specific role in the immune response;
it  can  suppress  or  enhance  the  immune  reaction,  depending  on  its  cofactors  (25-27).  IL-10 is  an
immunosuppressive cytokine produced by many cells of the immune response. It acts as a feedback
regulator  of  the  immune  response  by  inhibiting  the  production  of  inflammatory  cytokines  (28).
Moreover, T cells that express Tbet or GATA-3, in addition to certain regulatory factors, are important
in regulating the Th1 and Th2 response (29-31).

CD4+ T cells  are  involved  in  the  inflammatory  feedback  loop  in  obesity-associated  tissue
inflammation.  In  the obese VAT murine models  and humans,  an enrichment  of the Th1 and Th17
populations and a decrease in regulatory T cells has been described (3, 32-34). Th1 and Th17 cells
produce  proinflammatory  cytokines  that  inhibit  insulin  signaling.  The  transcriptional  profiles  and
functions of Tregs are also altered, they express proinflammatory cytokines like IFNγ, and IL-10. This
change in expression patterns causes Tregs to cluster with inflammatory T cells (3, 32-34). While TGFβ
is detectable in adipose tissue, its role in regulating Treg cells is unclear (34). Paradoxically, it has been
reported that adipose tissue Treg cells decrease seems to both, improve and worsen insulin resistance
(33, 35, 36). Such behavior could be linked to a multistable dynamic underlying system such as that
recently proposed to study CD4+ T cell differentiation and plasticity (10-12). On the other hand, the
general metabolic state of an individual also affects CD4+ T cells. Obesity is associated with increased
insulin levels, which affects CD4+ T cells. Insulin is necessary for the survival and proliferation of
activated CD4+ T cells. Effector T cells, such as Th1, Th2 and Th17, depend on glycolysis, while
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resting (not activated) regulatory and memory T cells depend mainly on lipid oxidation. But in obese
VAT, the high levels of insulin over-activate the AKT pathway, inhibiting IL-10 production and its
regulatory functions in CD4+ T cells (14). Hence, the relationship between insulin resistance and CD4+
T cells is still unclear.

We propose here a theoretical simulation study, to explore the molecular interactions between
the previously published CD4+ T cell regulatory network (12) and insulinemia (14). Such a system-
level mechanistic approach is fundamental for understanding CD4+ T cell differentiation and plasticity
dynamics at the cellular level in response to the metabolic state of hyperinsulinemia. We also analyze
such altered dynamics  of  CD4+ T cell  dynamics  under  different  IL10 environments.  We used the
Boolean  regulatory  network  for  studying  CD4+  T  cell  differentiation  and  plasticity  dynamics  in
response  to  insulin.  The  system  includes  transcription  factors,  signaling  pathways,  intrinsic  and
extrinsic cytokines (12), as well as the impact of basal and high levels of insulin (14). The model
recovers the differentiation of T CD4+ cells, including effector (Th1, Th2, Th17) and regulatory (iTreg,
Th1R,  Th2R,  Foxp3-IL10+  and  Foxp3-TGFβ+  cells)  cell  types  (12,19).  Here,  we  show  how
hyperinsulinemia shapes CD4+ T cell attainment by reducing the production of IL-10 and causing a
shift  towards  pro-inflammatory,  resting,  or  TGFβ+  producing  cell  types.  Constant  pro-regulatory
signals can counteract this change. We also explore how the presence of high levels of insulin in the
environment alters the plasticity of CD4+ T cell in response to transient fluctuations in the elements of
the network. High insulin also favors transitions towards inflammatory, resting or TGFβ+ producing
cell types and reduces the stability of regulatory cell types. In this way, we show how the CD4+ T cell
molecular network model proposed before (12) seems to mediate the observed cellular behavior in
obesity-associated chronic inflammation. This network model constitutes a useful framework to further
explore the system-level mechanisms involved in inflammatory conditions including obesity.

Results
CD4+ T cell regulatory network

We expanded the previously published T CD4+ cell transcriptional-signaling regulatory network (12) to
include the effect of insulin in the differentiation of CD4+ T cells, according to experimental data (14).
The CD4+ T cell differentiation/plasticity network focuses in activated CD4+ T cells in VAT, and was
grounded on experimental data [File S1]. Using this model we studied the role of the different network
components in the cellular dynamics and the impact of the environment in cell fate attainment and
plasticity patterns [Figure 1]. The model focuses on inactivated CD4+ T cells; it assumes that the T cell
receptor (TCR) and its cofactors are active, and ignores the differences in glycolysis and lipid oxidation
metabolism between effector and regulatory T cells. Furthermore, as the model is a minimal network,
various components of the system were simplified, but previous simulations guarantee that the main
dynamic  regulatory  motifs  and feedback are  considered  (12).  Given the  available  data,  the  model
focuses on the observed behaviors in the VAT ignoring the contributions of other tissues. It also focuses
on the first stage of hyperinsulinemia, ignoring long term effects, such as those presented under insulin
resistance  (9,  34,  36).  The  model  does  not  include  the  dynamic  interaction  with  adipocytes  or
macrophages, nor the effect of sexual hormones (15-17). 
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Fig 1. Experimental design of simulations. (A) The network and regulatory functions were grounded
on published experimental results. (B) The different inflammatory conditions were simulated by fixing
the values of the input nodes of the network, that represent the extrinsic cytokines present in the micro-
environment. For each simulated condition, the attractors and basins of attraction of the network were

obtained. (C) The attractors of the network were perturbed by fixing the value of the target node for one
time step and then returning the node to its original function or value; the system attractor was

determined.

The nodes of the network correspond to transcription factors, signaling pathways and cytokines,
while  the  edges  correspond  to  the  regulatory  interactions  between  the  nodes  and  are  modeled  as
Boolean  functions  [Figure  1A;  [Table  S1]].  The  resulting  network  contains  19  nodes  and  54
interactions  [Figure 2,  BioModelsDatabase:  MODEL1606020000].  The nodes include: transcription
factors (Tbet, GATA3, RORγt, Foxp3), the effector and regulatory cytokines produced by the cell and
their  signaling pathways (intrinsic)  (IFNγ,  IL-2,  IL-4,  IL-21,  TGFβ and IL-10),  and the cytokines
produced by the rest of the immune system (extrinsic) (IFNγe, IL-2e, IL-4e, IL-10e, IL-12e, IL-21e,
IL-27e, and TGFβe). To simulate the effect of hyperinsulinemia we extended the previous network to
add the regulation of IL-10 by insulin via the AKT pathway (14); and the STAT3-signaling cytokines:
IL-10, IL-6, and IL-21 all use STAT3. We assumed that a different pathway mediates IL-10 signaling
than IL-6/IL-21. As the model focuses on activated CD4+ T cells, we assume that the TCR signaling
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pathway is constitutively active and did not include explicitly this component in the network. The state
of a node represents whether the biological component is active (1) or inactive (0). A node is active
when it is capable of altering the regulation of other components of the immune system. For example,
as CD4+ T cells require a basal level of insulin to survive, we considered this basal level to have a
value of 0, while a higher insulin concentration, that is capable of affecting IL-10, is fixed to 1(14, 37).
In other words, hyperinsulinemia is simulated by setting the “insulin” node to 1.

Fig 2. CD4+ T cell regulatory network. The network includes transcription factors (rectangles),
intrinsic cytokines and their signaling pathways (ellipses), and extrinsic cytokines and insulin (ellipses).

Node colors correspond to cell types in which each molecule is generally expressed (state = 1): Th1
(yellow), Th2 (green), Th17 (red), iTreg (blue), and insulin (orange). Activations between elements are
represented with black arrows, and inhibitions with red dotted arrows. An * is used to indicate the new

nodes considered in this network model with respect to that in (12).

Cytokines can be produced by the cell (intrinsic) or by other cells of the immune system (extrinsic).
Such extrinsic cytokines constitute the micro-environment and have an important role in CD4+ T cell
differentiation and plasticity. Extrinsic cytokines were considered as inputs of the system [Figure 1B].
To study the effect of the micro-environment we focused on six biologically relevant environments:
pro-Th0 or resting, pro-Th1, pro-Th2, pro-Th17, pro-iTreg, and pro-IL10 [Table 1].

Environment Cytokines Active nodes
pro-Th0 no cytokines None
pro-Th1 IFNγ, IL-12 IFNGe, IL12e
pro-Th2 IL-2, IL-4 IL2e, IL4e
pro-Th17 IL-21 (or IL-6), TGFβ IL21e, TGFBe
pro-iTreg IL-2, TGFβ IL2e, TGFBe
pro-IL10  IL-10, 1L-27 IL10e, IL27e

Table 1: Environments of the CD4+ T cell regulatory network.
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The stable  states  to  which  a  regulatory  network  converge  are  called  attractors,  and can  be
interpreted as the expression profiles of the biological cell types (37, 38) [Figure 1B]. We labeled each
attractor according to the active transcription factors and intrinsic cytokines [Table S2]. Th0, resting T
cells, were defined as expressing no transcription factors or regulatory cytokines. Th1 was defined as
having Tbet and IFNγ active, Th2 as GATA3 and IL-4 active and GATA3+ (a Th2-like cell type) as
GATA3+IL4-. Th17 cells are characterized by the expression of RORγt and STAT3 signaling mediated
by IL-6 or IL-21, all of which require the presence of TGF-βe. The iTreg type has Foxp3 and TGFβ,
IL-10 or both, all of which require the presence of IL-2e. T regulatory Foxp3-independent cells feature
IL-10 (IL10+), TGF-β (TGFβ+) or both (IL10+TGFβ+), without expressing Foxp3. Th1 regulatory
cells  (Th1R) express a regulatory cytokine and T-bet [46].  Th2 regulatory cells  (Th2rR) express a
regulatory cytokine and GATA3. The attractors obtained by the CD4 + T cell network correspond to
configurations  that  are  characteristic  of:  Th0,  Th1,  Th1R,  Th2,  GATA3+,  Th2R,  Th17,  iTreg,
TGFβ+IL10+, TGFβ+ and IL10+ CD4+ T cells [Figure S1] {Zhu2010, MartinezSanchez2015}.

Effect of insulin on CD4+ T cell differentiation
To simulate the effects of insulin, we obtained the attractors in the different micro-environments in the
presence of basal levels (state of the “insulin” node to 0) or high levels (state of the “insulin” node to 1)
of insulin [Figure 3]. To simulate the different environments we fixed the values of the input nodes
according to each environment as listed in Table 1. Then, we determined and labeled the resulting
attractors to obtain the predicted cell types under each environment and insulin condition [Figure 1B].

Our model shows that in effector polarizing environments with basal levels of insulin, like pro-
Th1, pro-Th2 and pro-Th17, effector and regulatory cells coexist. In a pro-iTreg environment there is a
coexistence of iTreg and Th17 cells. But in a pro-IL10 we see a strong polarization towards regulatory
T cells and no effector CD4+ T cells. We observed that in the presence of high levels of insulin there is
a  marked  decrease  of  the  attractors  that  express  IL-10 (Th1R,  Th2R,  and  IL10+TGFβ+),  and the
remaining attractors tend to express TGFβ. There is an increase in the size of the basins of attraction of
the Th17 and Th1 attractors. This is particularly notable in the pro-Th17 insulin environment, where the
Th1R and IL10+TGFβ+ disappear, and the network converges to Th17. In the case of the Th1 attractor
the increase in its basin size is smaller. Interestingly, this behavior corresponds to the observed increase
in Th1 and Th17 and the decrease in Treg cells and IL-10 in obesity-associated chronic inflammation.
The  only  exception  to  this  pattern  was  observed  under  the  pro-IL10  environment  that  remains
unchanged by the level of insulin.
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Fig 3. Effect of the micro-environment on CD4+ T cell differentiation. The values of the extrinsic
signals of the TSRN were fixed according to different polarizing microenvironments. The color

corresponds to the size of the basins of attraction on a logarithmic scale.

Effect of insulin on CD4+ T cell plasticity
CD4+  T  cells  are  plastic  and  dynamically  change  from  one  type  to  others,  depending  on  the
microenvironment  and  transient  perturbations  or  initial  conditions.  This  implies  that  these  cells
configurations and behavior can be altered dynamically. The multistable Boolean network model used
here is  a  useful  tool  to  study CD4+ T cell  plasticity  (12)  as well.  To explore this,  we transiently
perturbed the attractors for each microenvironment (Table 1) under the constitutive presence of basal
(0) and high levels of insulin (1). For each attractor, we transiently perturbed each node for one time
step. Then, we returned the node to its original value and used the original logical rules, to recover the
resulting attractor [Figure 1C]. We established that a labeled attractor was robust to a perturbation if it
returned to the same configuration after such transient perturbation, or to one that corresponds to the
same cell type, after a perturbation. When the system transitioned to an attractor that corresponds to a
different cell type, we considered the original attractor to be plastic under transient perturbations.

Our results suggest that the effect of insulin on the differentiation and plasticity of CD4+ T cells
depends  on  the  cytokines  that  are  present  in  the  microenvironment  [Figure  4,  File  S2].  In  each
microenvironment, without insulin, most of the transitions lead the system to the favored cell type,
which tends to be the most stable one, as expected. But in these cases, other cell types also coexist in
the environment, especially regulatory cell types, even though the attractors that characterize them are
less stable. Under high levels of insulin, that simulates an acute hyperinsulinemia condition, the CD 4+
T plasticity  patterns  are  altered.  In  general,  the  activation  of  insulin:  (1)  causes  the  loss  of  the
regulatory attractors, particularly those that express IL-10-, reduces cell stability, and the number of
transitions towards the original cell  type. This is particularly notable in the pro-Th17 environment,
where  Th17  is  the  only  possible  attractor.  In  the  case  of  the  pro-iTreg  environment,  there  is  a
coexistence of iTreg with Th17. This is caused by the extrinsic TGFβ. The role of TGFβ is bivalent, as
it can induce both regulation and inflammation through iTreg and Th17 cells. In the case of TGFβ,
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insulin shifts the equilibrium towards inflammatory cell types. The addition of insulin caused the loss
of the IL10+TGFβ+ attractor, stabilized Th17, and reduced the stability of iTreg and Th1R. In the only
case that this did not occur, was under the pro-IL10 environment, where a regulatory phenotype is
attained independently  of  the  insulin  level,  avoiding a  pro-inflammatory  condition  even under  the
presence of hyperinsulinemia.
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Fig 4. Cell fate map under different microenvironments. The values of the extrinsic signals of the
CD4+ T regulatory network were fixed according to different polarizing microenvironments as listed in
Table 1, and the resulting attractors were transiently perturbed for one time step. Nodes correspond to

cell types, node size is proportional to the number of configurations in a basin of attraction. Edges
represent transitions from one cell type to another, their width represents the number of times the

transition occurred, self-loops correspond to perturbations in which the network returned to the original
cell type. The following micro-environments were studied:: (A) pro-Th1, (B) pro-Th1+ Insulin, (C)

pro-Th17, (D) pro-Th17 + Insulin, (E) pro-iTreg, (F) pro-iTreg + Insulin, (G) pro-IL10 (H) pro-IL10.

The role of IL10 on CD4+ T cell plasticity alterations under normal and hyperinsulinemic 
conditions
We assessed how many transitions among attractors were caused by transient perturbations of insulin
and IL10 under normal and hyperinsulinemic conditions. On average perturbations of any node caused
transitions to new cell types in 38% of the cases. But the number of transitions between cell types
varied  according  to  the  node  and  the  microenvironment.  The  transient  increase  of  insulin  caused
transitions towards inflammatory or TGFB producing cell types under basal insulin level, while, as
expected,  under  hyperinsulinemia  the  transient  activation  of  insulin  did  not  cause  any  further
transitions. The attractors of the pro-Th17 environment with basal levels of insulin were very sensitive
to  perturbations  in  the  insulin  node,  while  the  attractors  found in  the  pro-iTreg  and  the  pro-IL10
environment  were robust  to  this  perturbations.  The transient  activation of  IL-10 caused transitions
towards regulatory cell types. The attractors of the pro-Th1, pro-Th17 with basal levels of insulin and
the  pro-iTreg  with  high  level  of  insulin  environments  were,  on  the  other  hand,  very  sensitive  to
transient perturbations of IL10. In environments with basal levels of insulin, the transient activation of
IL-10 caused some transitions towards Th1 and Th2 cell types in pro-Th1 and pro-Th2 environments,
respectively. In these cases, the transient activation of IL-10 was sufficient to destabilize the attractor
but not to shift the network towards a regulatory cell type. 
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Fig 5. Transitions between cell types caused by the transient activation of the insulin and the IL-
10 nodes. (A) Percentage of transitions between attractors in response to transient perturbations of: all

nodes (grey); insulin (red) or IL-10 nodes (blue) under basal and high levels of insulin. (B, C)
Transitions between cell types caused by the transient activation of: insulin (red) or IL-10 nodes (blue)

under basal (B) and high levels (C) of insulin.

Discussion
The theoretical simulation study presented here suggests that the impact of hyperinsulinemia on the
inflammatory  response  (14),  is  mediated  by  the  multistable  dynamic  GRN  in  (12).  Overall,  our
simulation study provides a system-level platform to explain the relationship between hyperinsulinemia
and altered proportions of T regulatory cells that have been observed in adipose tissue (3, 32-34, 36). It
also highlights and provides a dynamic explanation to the different roles of TGFβ and IL-10 (25-28).

The  model  shows  that  in  pro-Th1,  pro-Th2,  pro-Th17  and  pro-iTreg  microenvironments,
effector and regulatory cells coexist. This pattern is observed in any disease, where it is common to
observe  cells  from different  subsets,  even if  a  specific  one  is  over-represented(39).  Moreover,  the
simulations  predict  that  different  types  of  regulatory  cells  will  predominate  depending  on  the
environment, being especially important to distinguish Foxp3+ and Fop3- regulatory T cells. Future
experiments should consider that CD4+ T cells are highly heterogeneous, phenotypically plastic and
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sensitive to the microenvironment. A CD4+ T cell can express markers for more than one cell type at
the same time, and its expression patterns can change over time, especially for regulatory T cells. It is
necessary  to  measure  the  expression  of  Foxp3,  IL-10,  and TGFβ to  systemically  distinguish  Treg
(Foxp3+CD25high),  Foxp3-IL10+,  Foxp3-TGFβ+  and  Th1R  and  Th2R  hybrid  cell  types.
Distinguishing these cell types will be necessary to understand the different roles that they play in
obesity-associated  chronic  inflammation.  Future  assays  should  also  consider  multiple  transcription
factors  and cytokines,  carefully  separate  CD4+ T cell  populations  and compare  their  behaviors  in
different tissues.

Our simulation results recovered the altered CD4+ T cell populations that have been observed in
murine  models  and  humans  during  obesity-associated  chronic  inflammation  (3,  32-34,  36).  In  the
presence of hyperinsulinemia, increased proportions of Th1 and Th17 cells and decreased proportions
of regulatory T cells are observed (3, 33, 34). Specifically, in a pro-Th17 environment, the presence of
insulin predicts a complete shift towards Th17 cells. In contrast, in a pro-Th1 environment the Th1
attractor  alteration  is  less  dramatic  than  the  alterations  observed in  vivo,  probably  because  of  the
involvement of macrophages in the real condition, that are not considered in the simulation model of
this study (3, 33, 34).

The model also provides an explanation to some paradoxical behaviors observed in CD4+ T
regulatory cell populations during obesity-associated chronic inflammation. TGFβ can promote both
inflammatory  Th17  cells  and  regulatory  Tregs,  and  transitions  between  both  subsets  have  been
observed (3, 33, 34, 40, 41). The model gives a mechanistic explanation to the fact that Th17 cells and
iTregs are closely related and that Th17 cells can be observed sometimes during the iTreg response.
TGFβ is  necessary  for  the  differentiation  of  both  subsets,  and  transient  signaling  via  the  STAT3
pathway may be enough to shift  some cells  towards  Th17,  as  the model  shows. In obesity,  Tregs
expression profiles are similar to inflammatory T cells (32). Transfer and depletion of adipose Treg
cells have been reported to both, improve or worsen insulin sensitivity, depending on the model and the
population  studied  (33,  35,  36).  Such  apparently  paradoxical  behaviors  can  be  explained  by  the
relationship between TGFβ and IL-10 in the context of the dynamic regulatory network model used
here.  Under  hyperinsulinemia,  Th17  cells  become  more  stable  while  IL10+  cells  are  lost.  The
remaining regulatory cells express TGFβ that is involved in Th17 differentiation, while insulin alters
iTregs  stability.  In  this  way,  the model  predicts  that  hyperinsulinemic inflammatory  environments,
specially  under  pro-Th17  conditions,  T regulatory  cells  are  lost  and  the  rest  become unstable.  In
contrast, a pro-IL10 environment can induce regulatory T cells, regardless of the level of insulin in the
environment. Nonetheless, while this pro-regulatory environment might decrease inflammation, it may
have adverse effects as inflammation is relevant for the function of adipose tissue (42).

The  model  predicts  that  the  transitions  between  cell  types  vary  depending  on  the
microenvironment  and  the  perturbed  node.  Transient  activation  of  insulin  is  sufficient  to  cause
transitions towards inflammatory or TGFB+ cells, while transient activation of IL10 is sufficient to
cause  transitions  towards  regulatory  cells.  The  stability  of  the  different  cell  types  will  also  vary
depending on the microenvironment  and the  perturbation.  We predict  that  the cells  in  a  pro-Th17
environment are more sensitive to transient increases in insulin, while the cells in a pro-iTreg and pro-
IL10 environments are more stable under this perturbation.

The  model  used  here  considers  a  minimum  regulatory  network  underlying  CD4+  T  cell
differentiation and plasticity under hyperinsulinemia, but it still lacks other cells and signals that are
fundamental  to  fully  understand  obesity-associated  chronic  inflammation.  For  example,  since  the
network used here is a minimal model, it ignores cytokines such as IL-1 and TNFα, the role of sexual
hormones, and additional cell types such as adipocytes and macrophages, that play important roles
during obesity-associated chronic inflammation (15-17). The model is restricted to assess the role of
insulin on the differentiation dynamics of an activated CD4+ T cell in VAT, but still lacks the regulation
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of the TCR signaling pathway and the contrasting metabolism among effector, resting and regulatory
conditions. 

Furthermore,  future  efforts  should  consider  continuous  versions  of  the  model  to  enable
simulations of the strength and length of the signals in the dynamics of the immune system. Such
simulations  may  be  useful  to  assess  different  treatments  of  metabolic  disorders  and  chronic
inflammation, as well as the actual timing and progression of the obese inflammatory response. The
model used here, still simplifies the microenvironment, that is more complex in vivo. For example, it is
interesting to asses how the small initial signals that occur in response to nutrient overload, eventually
give rise to significant alterations associated to obesity-associated chronic inflammation (15). Further
studies of the effect of transient signals in a continuous version of the minimum and extended CD4+ T
cell regulatory network, will likely yield important insights concerning such temporal patterns. Such
system-level  approach  will  be  also  useful  for  toxicological  studies,  and  for  providing  predictions
concerning the biological impact of drugs, assessing therapeutic targets or secondary effects. 

Materials and Methods
Logical modeling formalism: Boolean networks
A Boolean network is  composed of  nodes  that  represent  the  system´s  molecular  components  (i.e.,
cytokines,  signaling  pathways  or  transcription  factors)  and  edges,  that  represent  the  interactions
between nodes. The value of the nodes can be associated with a discrete variable denoting its current
functional level of activity: if the node is functional its value is 1, and if it is not functional it is 0. The
value of a node xi(t+1) depends on the value of its input nodes or regulators, this can be expressed with
a Boolean function:

xi(t+1)=f( x1(t), x2(t), … , xn(t) )
For  the  Th+insulin  network,  the  Boolean  functions  were  defined  based  on  available  T  CD4+
differentiation models(10-12) and experimental data  for the reported interactions among a network
more than 90 nodes  [Table S1].  The network was then simplified as  (43) and GINSIM(44) .  The
resulting network has 19 nodes and 54 interactions.

Dynamic analysis
The state of the network X can be represented by a vector that specifies the value of all the nodes of the 
system. The state of the network will change over time depending on the Boolean functions associated 
with each node. When the values of a state vector X at t+1 are the same as those at time t+τ, the system
has reached an attractor X*:

X*(t) = X(t+τ), τ >= 1.
An attractor can be interpreted as a stable expression phenotype of a cell or cell type (45). All the states
that lead to a solution X* constitute the basin of attraction of such an attractor. We determined the stable
states and basins of attraction of the network using GINSIM (44) and BoolNet(46).

Labeling
Attractors  were  labeled  depending  on  the  expression  of  both  the  master  transcription  factors  and
cytokines. Labeling was automatized using BoolNetPerturb (47).

Perturbations

To study the plasticity in response to perturbations we used BoolNetPerturb (47). First, we took all the
attractors in each microenvironment, and systematically perturbed the value of the node for a time step,
fixing the value of the target  node during the corresponding time period.  As the perturbation was
transient, after a time step the node returns to its original function or -in the case of the inputs- to is
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original value. Finally, we reported the attractor that was reached after the perturbation. If the network
returned to an attractor with the same label as the original attractor we said it was stable to that specific
perturbation, if the network return to a different labeled attractor we said there had been a transition
from one cell type to an other.
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Supplementary Materials

Fig S1: Attractors of the CD4+ T cell regulatory network. Each column corresponds to an attractor.
Each node can be active (green) or inactive (red), extrinsic cytokines may be active or inactive

(yellow). The following attractors were found in the network: Th0, Th1, Th1R, Th2, GATA3+, Th17,
iTreg, TGFβ+IL10+, TGFβ+ and IL10+ regulatory cells. Attractors where labeled according to the

active transcription factors and intrinsic cytokines.

Node Function
TBET ((IFNG | (IL12e &  ! (IL21 | IL4 | IL10)) )  | TBET) &  ! (IL4  | GATA3 | IL21)
IFNG (IFNGe | ((IFNG | TBET) & ! (GATA3 | TGFB))) &  ! (IL21 | IL4 | IL10)
GATA3 ((IL2 & IL4)  | GATA3) &  ! (TBET | TGFB | IL21 | IFNG)
IL2 (IL2e | (IL2 &  ! FOXP3)) &  ! (IFNG | IL21 | (IL10 & ! FOXP3))
IL4 (IL4e | (GATA3 & (IL2 | IL4) &  ! TBET)) &  ! (IFNG | IL21)
RORGT (IL21 & TGFB) &  ! (TBET | FOXP3 | GATA3)
IL21 (IL21e | IL21 | RORGT) &  ! (IFNG | IL4 | IL10 | IL2)
FOXP3 (IL2 & (TGFB | FOXP3)) &  ! (IL21 | RORGT)
TGFB TGFBe | ((TGFB | FOXP3) &  ! IL21 )
IL10 IL10e | (IL10 & (IFNG | IL21 | TGFB | GATA3  | IL27e) & ! INSULIN)
IFNGe IFNGe
IL12e IL12e
IL2e IL2e
IL4e IL4e
TGFBe TGFBe
IL10e IL10e
IL27e IL27e
Table S1. Rules of the CD4+ T cell regulatory network.
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Labels Rules
Th0 ! (TBET | GATA3 | RORGT | FOXP3 | IL10 | TGFB)
Th1 (TBET & IFNG) & ! (IL10 | TGFB | FOXP3)

TBET+ TBET & ! (IFNG | IL10 | TGFB | FOXP3)
Th1R TBET & (IL10 | TGFB | FOXP3)
TH2 (GATA3 & IL4) & ! (IL10 | TGFB | FOXP3)
GATA3+ GATA3 & ! (IL4 | IL10 | TGFB | FOXP3)
Th2R GATA3 & (IL10 | TGFB | FOXP3)
Th17 RORGT & IL21 & ! IL10
RORGT+ RORGT & ! (IL21 | IL10)
iTreg FOXP3 & TGFB & ! (TBET | GATA3 | RORGT)
IL10+ IL10 & ! (TBET | GATA3 | FOXP3 | RORGT)
TGFB+ TGFB & ! (TBET | GATA3 | FOXP3 | RORGT)
Table S2. Labeling rules of the CD4+ T cell regulatory network.
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