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Abstract	  	  
Pathogen traits, such as the virulence and the transmissibility of an infection, can vary 
significantly between patients. A major challenge is to measure the extent to which the 
genetic differences between infecting strains explain the observed variation of the trait. 
This is quantified by the so-called broad-sense heritability !!H2  – a term borrowed from 
quantitative genetics of sexual species. A recent discrepancy between estimates of HIV-
virulence-heritability has opened a debate on the accuracy of the estimators. Here, we 
show that the discrepancy originates from model limitations and important lifecycle 
differences between sexually reproducing organisms and transmittable pathogens. In 
particular, current quantitative genetics methods are prone to underestimate !!H2 , because 
they do not account for rapid within-host mutation combined with natural selection on the 
trait. We introduce two independent approaches correcting these errors: ANOVA-CPP and 
our POUMM method. Empirical analyses reveal that at least 20% of the variation in 
virulence is explained by the virus genome both for European and African data. These 
results should terminate the ongoing discussion whether the virus affects virulence at all, 
and should motivate further genome-wide association studies on the virus, as well as 
studies on the interaction between host- and viral factors for virulence. Beyond HIV, we 
discuss that ANOVA-CPP is ideal for slowly evolving protozoa, bacteria and DNA-
viruses, while POUMM is ideal for rapidly evolving RNA-viruses, thus, enabling 
heritability estimation for a broad range of pathogens.  

Significance	  statement	  
Pathogen traits, such as the virulence of an infection, can vary tremendously between 
patients. To what extent the pathogen rather than the host determines these traits remains a 
mystery for many infectious diseases. This is quantified by the traits’ “heritability” – a 
term borrowed from quantitative genetics of sexual species. Recently, a discrepancy 
between studies of HIV‐virulence has opened a debate on the appropriate estimators of 
pathogen trait heritability. We find the origin of this discrepancy in the inability of current 
quantitative genetics methods to account for rapid pathogen mutation in combination with 
natural selection on the trait. We introduce two independent approaches correcting these 
errors and report agreeing heritability estimates of these approaches on synthetic and 
empirical HIV-data. 
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Introduction	  
Pathogens transmitted between donor and recipient hosts are genetically related 

much like children are related to their parents through inherited genes. This analogy 
between transmission and biological reproduction has inspired the use of heritability (!!H2 ) 
– a term borrowed from quantitative genetics (1-‐3) – to measure the contribution of 
pathogen genetic factors to pathogen traits, such as virulence, transmissibility and drug-
resistance of infections. 

Two families of methods enable estimating the heritability of a pathogen trait in 
the absence of knowledge about its genetic basis: 

a. Resemblance estimators measuring the relative trait-similarity within groups of 
transmission-related patients. Common methods of that kind are linear regression 
of donor-recipient pairs (DR) (4,	  5) and analysis of variance (ANOVA) of patients 
linked by (near-)identity of carried strains (6,	  7).  

b. Phylogenetic comparative methods measuring the association between observed 
trait values from patients and their (approximate) transmission tree inferred from 
carried pathogen sequences. Common examples of such methods are the 
phylogenetic mixed model (PMM) (8) and Pagel’s λ  (9). 

Most of these methods have been applied in studies of the viral contribution to 
virulence of an HIV-1 infection (4,	  5,	  7,	  10-‐16), quantified by log10 set point viral load – 
!lg(spVL)  – the amount of virions per blood-volume stabilizing in HIV-1 patients at the 
beginning of the asymptomatic phase and best-predicting its duration (17). In the view of 
discrepant reports of !lg(spVL) -heritability, several authors have questioned the methods’ 
accuracy (4,	  5,	  7). Shirreff et al. 2012 used simulation of trait-values on existing HIV-1 
transmission trees to reveal that phylogenetic comparative methods report strongly under- 
or over- estimated values depending on the true heritability value used in the simulation 
(7). Later, Fraser et al. 2014 claimed that DR is unbiased w.r.t. !lg(spVL)-heritability and 
is robust to trait-based selection for transmission (4). Finally, Leventhal & Bonhoeffer (5) 
simulated Wright-Fisher generations of transmission confirming that DR outperforms 
PMM in terms of robustness and accuracy and suggesting that current phylogenetic 
methods are compromised by questionable assumptions - such as ultrametricity of trees 
(all measurements collected at the same time) and neutral evolution of the trait. These 
three studies assume that once the trait value is set in the recipient upon infection, it 
remains constant throughout its infectious time. This assumption is partially acceptable for 
lg(spVL), see (18) and references therein, but it is arguable in general for traits of chronic 
infections due to continuous within-host adaption. Moreover, the theory of heritability, 
which was developed by quantitative geneticists to study populations of animals and 
plants (1-‐3), does not account for individual gradual evolution and other lifecycle 
differences between pathogens and mating species. This reveals the need for a careful 
transfer of the quantitative genetics terminology and methods to the domain of pathogen 
traits.  

Herein, we review the definitions of heritability in sexually reproducing species, 
transfer these definitions to pathogens and point out the principle sources of bias in 
commonly used heritability estimators, in particular, PMM, DR and ANOVA. Using 
simulations, we validate two independent approaches to counter these sources of bias and 
show that these approaches yield agreeing !lg(spVL) -heritability estimates across HIV 
cohorts. 
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Theory	  
Heritability in sexual species. Jacquard, 1983 (19) noticed that the term 

“heritability” has been used by quantitative geneticists to serve three different concepts: (i) 
the genetic determination of a trait; (ii) the resemblance between relatives; (iii) the 
efficiency of selection. Due to this terminological discrepancy and the fact that most 
estimators are sample statistics matching or approximating the target definition of 
heritability only in the validity of a number of assumptions, it is confusing to use the term 
“heritability” without an accompanying definition or a qualifier like “narrow-sense”, 
“broad-sense” and “realized”. We briefly introduce this terminology, referring to 
equations in SI for the formal definitions. 

Considering a real-valued (quantitative) trait, the degree to which the genes of 
individuals determine their trait-values is quantified in a statistical sense by the broad-
sense heritability, !!H2  (eq. S2). !!H2  summarizes how much of the observed trait variance 
in a population can be explained by genetic differences between individuals in the 
population. In the world of animals and plants, it is usually hard to measure !!H2  directly. 
Thus, quantitative genetics focuses on estimating its lower bound – the narrow-sense 
heritability, !!h2 , summarizing how much of the trait variance is attributable to single-
locus additive genetic effects (eq. S4). Sexual reproduction ensures that additive effects 
constitute most of the heritable genetic effects. Thus, !!h2  is estimable from measures of the 
trait-resemblance between genetically related individuals in the population.  

Relatives resemble each other not only for carrying similar genes but also for 
living in similar environments. Hence, it is necessary to disentangle the concept of 
resemblance from that of genetic determination. Considering an ordered relationship such 
as parent-offspring, their resemblance is usually measured by the regression slope, !b , of 
least squares regression of expected offspring values on mean parental values (eq. S5). 
Considering members of unordered relationships, such as identical twins, sibs and cousins, 
their relative resemblance is quantified by the one-way analysis of variance (ANOVA), 
which estimates the so-called intraclass correlation (ICC) denoted here as 

!!rA[type!of!relationship]  (eq. S6). 

The last of the three concepts is that of the efficiency of selection for breeding of 
the individuals with “best” trait-values. This is quantified by the realized heritability, !!hR

2 , 
defined in (3) as the response to selection relative to the selection differential (eq. S7). 

Connecting the dots. The success of quantitative genetics in the pre-genomic era 
relies on the insight that “inferences concerning the genetic basis of quantitative traits can 
be extracted from phenotypic measures of the resemblance between relatives (1)”. 
Mathematically, this quote is expressed as a set of approximations, which have become 
dogmatic in quantitative genetics:  

 !! H
2 ! rA[identical!twins]   (1) 

 !! h
2 ! b! 4rA[half!sibs]! hR2 ,   (2) 

Equation 1 above is valid in general, provided there is no strong maternal effect on 
the trait, the observed twins have been separated at birth and raised in independent 
environments and the assumptions of ANOVA such as normality and homoscedasticity 
are at least approximately met. Equation 2, though, relies on genetic segregation and 
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recombination during sexual reproduction and is, therefore, provable only for diploid 
sexually reproducing species (1,	  3). The reason is that during sexual reproduction a child 
inherits random halves of its parents’ alleles but, due to meiotic segregation and 
chromosomal crossover, couples and higher order combinations of alleles are inherited at 
decreasing proportions (1,	  2). Thus, it can be assumed that the phenotypic resemblance 
between relatives originates predominantly from inherited single-locus additive effects, 
rather than multi-locus (epistatic) interactions.  

In summary, in sexually reproducing populations, heritability is used to quantify to 
what extent the genetics explain a trait (broad-sense heritability, !!H2 ) as well as to measure 
or predict the response to trait-based selection for reproduction (realized heritability, !!hR

2 ). 

Since it is practically hard to measure !!H2 , one often uses empirical measures of the 
resemblance between relatives (i.e. parent-offspring regression, !b , or ICC from half sibs, 

!rA ) to estimate the extent, to which single-locus additive effects determine the trait (!!h2 ). It 

turns out that !! h
2 ! hR

2 , justifying the dual role of !!h2  as a measure of genetic determination 
and a measure for the rate of trait-evolution resulting from selection. 

Transfer to pathogen traits. The transfer of the above terminology from traits of 
diploid organisms to pathogen traits is almost verbatim and only requires substituting 
“pathogen genes” for “organism genes”, “donor value” for “mean parental value” and 
“recipient value” for “offspring value”. However, three important differences between the 
lifecycles of diploid organisms and pathogens alter the interpretation and the connections 
between the definitions: 

• Asexual haploid nature of pathogen transmission 

The first difference is that, unlike reproduction of diploid organisms, the 
transmission of a pathogen from a donor to a recipient is more similar to asexual 
reproduction in haploid organisms, because, typically, whole pathogens get transferred 
between hosts. Importantly, in the absence of genetic segregation and recombination at 
transmission, there is no preference in transmitting single-locus over multi-locus genetic 
effects. 

• Partial quasispecies transmission 
The second difference is that, due to transmission bottlenecks, typically, only a 

tiny sample of the large and genetically diverse pathogen population in the donor (aka 
quasispecies) penetrates and survives in the recipient (20). The transmitted proportion of 
genetic information characterizing the quasispecies is unknown and varying between 
transmission events. 

• Within-host pathogen evolution 
The third difference involves the change in phenotypic value due to within-host 

pathogen mutation and recombination. While genetic change is rare during the lifetime of 
animals and plants and its phenotypic effects are typically delayed to the offspring 
generations, it constitutes a hallmark in the lifecycle of pathogens and causes an 
immediate phenotypic change such as increased virulence, immune escape or drug 
resistance. 

Due to the asexual nature of transmission, the donor-recipient regression (DR) 
estimates the broad-, rather than the narrow-sense heritability. Fraser et al. 2014 (4) have 
used Wright’s method of path coefficients (21) to prove that !b  estimates !!H2  under 
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several assumptions including linear dependence of recipient- on donor trait-values and 
matching pathogen strains in donor- and recipient hosts. Leventhal & Bonhoeffer 
performed simulations where DR is unbiased in the case of minute evolution in the 
recipient host upon infection (5). In their simulation, partial quasispecies transmission and 
gradual within-donor/-recipient evolution throughout the infection is ignored. However, 
these two phenomena cause a negative bias in !b  as estimator of !!H2 , because they co-act 
for decreased trait-resemblance. Thus, it is necessary to regard !b  as a statistic 
summarizing the resemblance in transmission couples observable after partial quasispecies 
transmission and delay between transmission and measurements. Further in the text, we 
use the symbol !!b[τ ]  to emphasize that it has been calculated on a sample of donors and 
recipients with (variable) periods !τ d  and !τ r  between transmission and measurements, 

!τ = τ d +τ r  denoting the total amount of time (Fig. 1). By contrast, we use !!b[0]  to 
emphasize that the calculation has been done on the immediate trait-values right after 
transmission.  

In summary, for pathogen traits, measures of resemblance, such as !!b[0] , estimate 

!!H2  rather than !!h2 . However, due to delayed diagnosis, data from transmission couples for 
estimating !!b[0]  is rarely available in practice, while !!b[τ ]  is a negatively biased estimator 
of !!H2 . In the absence of genetic segregation and recombination at transmission, !!h2  loses 
its double role as an accessible measure of genetic determination and as a predictor for the 
rate of evolution. 

By the above logic, all resemblance-based estimators of !!H2  are negatively biased 
by partial quasispecies transmission and measurement delays. In principle, both of these 
sources of bias can be addressed in a genome-wide association study (GWAS) on 
pathogen sequence- and phenotypic data. However, this approach is usually technically 
involved, because it needs the collection of deep sequence data from multiple host-tissues 
(see e.g. (22)) from numerous patients and its statistical power is often compromised by 
multiple testing (23). We now discuss two simpler methods that allow overcoming 
measurement delays, while using increasingly available pathogen consensus sequences. 

Filtering the data. The first approach is to minimize the bias from measurement 
delays by limiting the analysis to the observations with minimal delays. For example, 
Hecht et al 2010 (11) used Pearson correlation (a measure similar to !b ) in donor-
recipient couples with recent transmission and other authors (6,	  7) used ANOVA (!rA ) on 
patients grouped by phylogenetic proximity. In particular, Shirreff et al. 2012 (7) defined 
the method of phylogenetic pairs (PP) as ANOVA on pairs of tips in the transmission tree 
that are mutually nearest to each other by phylogenetic distance, τ . We will consider this 
method in two forms: (i) the original one as proposed in (7) and denoted here as ANOVA-
PP with estimate !!rA[PP:τ ]  and (ii) ANOVA on the closest phylogenetic pairs (CPP) 
defined as PPs that are not farther apart than a cut-off phylogenetic distance !τ '  and 
denoted here as ANOVA-CPP with estimate !!rA[PP:τ ≤τ '] . The main drawback of these 
filtering techniques is their reduced statistical power due to fewer observations. 

Phylogenetic heritability. A different approach allowing overcoming 
measurement delays is to use the transmission tree connecting all available observations. 
Like a species tree tracing the common ancestry of a set of species, the transmission tree 
connecting a set of infected hosts is a tree structure representing transmission events as 
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branching points and evolutionary time between events as branch-lengths (Fig. 1). For 
rapidly evolving pathogens, such as RNA viruses, it is possible to infer the approximate 
transmission tree from pathogen sequences sampled at the moment of trait measurement 
(24). This has inspired the use of phylogenetic comparative methods, such as the 
phylogenetic mixed model (PMM) (8,	  25), to estimate virulence heritability in HIV (7,	  
14,	  15). The PMM method decomposes the trait value into a non-heritable component, 

!! e~N (0,σ e
2) , and a genetic component, !G , which (i) evolves continuously according to a 

Brownian Motion (BM) process along branches; (ii) gets inherited by the two daughter 
branches descending from each internal node. Thus, PMM allows inferring the so-called 
phylogenetic heritability as the expected genetic variance relative to the total variance at 
the tree tips (eq. 4). In biological terms, !G  is a genetic contribution to the trait value that 
evolves according to random drift, !e  is the non-genetic contribution such as the host 
immune response. By staying free of assumptions about the behavior of !e  during 
infections (i.e. along tree branches), PMM is suitable to different biological scenarios, 
such as a stable or a variable effect of the immune system throughout infections. However, 
as noticed also by other authors, an important issue with the PMM method is that the BM-
assumption of linearly increasing variance through time rarely holds for pathogen traits, 
which are typically constrained by some natural limits or by balancing selection (5,	  16). 
Later, we show that such BM violations lead to negative bias in the phylogenetic 
heritability w.r.t. !!H2 . To remedy this, inspired by the work of other authors (26-‐28), we 
develop the POUMM method – an extension of PMM, in which we replace the BM-
assumption with an assumption of an Ornstein-Uhlenbeck (OU) process acting on !G  
(Methods). As a final note, we mention that the standard definition of phylogenetic 
heritability depends on the tree-length, which is not defined in the case of non-ultrametric 
transmission trees. Thus, we prefer a time-independent formulation, denoted as !!HBMe

2  and 

!!HOUe
2  for PMM and POUMM respectively (eq. 5). 

Results	  
A toy-model of an epidemic. To test the different estimators of heritability 

introduced above, we developed a toy-model of an epidemic, in which an imaginary 
pathogen trait, !z , was determined by the interaction between the alleles at two loci in the 
pathogen genotype and one of two immune system types encountered at equal frequencies 
in the susceptible population (Fig. 2A). This toy-model was embedded into a stochastic 
Susceptible-Infected-Recovered (SIR) epidemic model with demography and frequency 
dependent transmission (29), implementing “neutral” and “selection” modes of within- 
and between-host dynamics (Fig. 2B, Methods).  

Using different contact-rates between individuals, !κ ∈ 1
2 , 14 ,..., 112{ } , we performed 

240 simulations, of which 175 resulted in epidemic outbreaks of at least 1,000 diagnosed 
individuals. A detailed analysis of the different heritability estimates on samples between 
1,000 and 10,000 diagnosed individuals (see Fig. 3C,E, Fig. S1, Fig. S2 and Supporting 
Text) confirmed the negative bias due to measurement delays in the resemblance-based 
estimators (mostly pronounced in !!b[τ ]  and !!rA[PP:τ ] , but also noticeable in !!b[τ ≤D1] and 

!!rA[PP:τ ≤D1] , !!D1  denoting the first decile (10th quantile) of τ ). In addition, the 
simulations showed that a worsening fit of the BM model on longer transmission trees 
without growth of phenotypic variance (Fig. 3D) caused an inflated estimate of the 
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environmental variance, !!σ e
2 , in the PMM method and, therefore, a negative bias in !!HBMe

2  
(Fig. 3E). Several other sources of bias, such as non-linear dependence of recipient on 
donor-values and deviation from normality were identified and are summarized in Table 
S3.  

We conclude that, apart from the practically inaccessible immediate donor-
recipient regression (!!b[0] ) and ICC of patients grouped by identity of carried strain (

!!rA[id]), the most accurate estimator of !!H2  in the toy-model simulations is !!HOUe
2  followed 

by estimators minimizing measurement delays such as !!b[τ ≤D1] and !!rA[PP:τ ≤D1] . 
Analysis of HIV-data. We performed ANOVA-CPP and POUMM on data from 

the UK HIV-1 cohort comprising !lg(spVL)  measurements and a tree of viral (pol) 
sequences from 8,483 patients inferred previously in (15). The goal was to test our 
conclusions on a real dataset and compare the !!H2 -estimates from ANOVA-CPP and 
POUMM to previous PMM/ReML-estimates on exactly the same data (15). A scatter plot 
of the phylogenetic distances of tip-pairs against the absolute phenotypic differences, 

!|Δ lg(spVL)|, reveals a small set of 116 PPs having !τ ≤10−4  while the phylogenetic 
distance in all remaining tip-pairs is more than an order of magnitude longer, i.e. !τ >10−3  
(Fig. 4A). The random distribution of these PPs along the transmission tree suggests that 
these phylogenetic pairs correspond to randomly occurring early detections of infection 
(Fig. 4B). Based on the observed gap of τ , we defined these PPs as closest ones (CPP). 
By applying the !!1.5× IQR -rule on !|Δ lg(spVL)| in CPPs (Methods), we identified five 
outlier CPPs shown as blue bullets on Fig. 4. 

We compared the following estimators of !!H2 , with and without inclusion of these 
outlier CPPs in the data:  

• ANOVA on CPPs/PPs; 

• POUMM/PMM on the whole tree (including tips belonging to CPPs); 

• POUMM/PMM on the tree obtained after dropping tips belonging to CPPs; 
Excluding outlier CPPs, ANOVA-CPP (222 patients) reported lg(spVL)-

heritability estimates of 0.31, 95% CI [0.19, 0.43]. POUMM (8,473 patients) reported 
agreeing estimates of 0.25, 95% CI [0.16, 0.36] and 0.22, CI [0.13, 0.35] upon omitting all 
222 patients belonging to CPPs. The slightly lower POUMM estimates could be explained 
by errors in the transmission tree, which are not present in CPPs. These results show first, 
that ANOVA-CPP and POUMM agree on disjoint subsets of the UK data and, second, 
that POUMM provides an alternative to resemblance-based methods in the absence of 
early-diagnosed cases.  

Figure 5 compares these estimates to previous !lg(spVL)  studies (estimates 
including outliers written in Table S4). In agreement with the toy-model simulations, 
estimates of !!H2  using PMM or other phylogenetic methods (i.e. !K  and λ ) are notably 
lower than all other estimates, suggesting that current phylogenetic comparative methods 
underestimate !!H2  due to violation of the BM-assumption (see also Fig. 3D and Fig. 4B); 
resemblance-based estimates are down-biased by measurement delays (compare early vs 
late on Fig. 5).  
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In summary, POUMM and ANOVA-CPP yield agreeing estimates for !!H2  in the 
UK data and these estimates agree with DR-based estimates in datasets with short 
measurement delay. Similar to the toy-model simulations, we notice a well-pronounced 
pattern of negative bias for the other estimators, PMM and ANOVA-PP, as well as for the 
previous DR-studies on data obtained under long measurement delay. 

Discussion	  
Clarifying the terminology and notation. The first task of this study was the 

transfer of quantitative genetics terminology to the domain of pathogen traits. Due to 
important lifecycle differences between pathogens and mating organisms, it is essential to 
disentangle the concepts of relative resemblance and genetic determination. In essence, the 
estimators of trait resemblance between transmission-related patients, such as DR and 
ICC, and the phylogenetic heritability, must be regarded as estimators of the broad-sense 
heritability, !!H2 , compromised by partial quasispecies transmission, within-host evolution 
and various violations of model assumptions (Table S3). A few examples from recent 
studies of HIV-1 demonstrate the need for a careful consideration of these concepts. For 
example, in (15) and (5) the authors introduce the PMM/ReML and the DR methods for 
estimating heritability after a definition of the heritability in the narrow sense, !!h2 . This 
can leave a confusing impression that the reported values are estimates of !!h2  rather than 
!!H2 , because these methods are popular for estimating narrow-sense heritability for sexual 
species. As another example, in (4,	  7), the authors use the lower-case notation “!!h2 ” to 
denote estimates of !!H2 . In fact, there are historical reasons to associate the symbol “!!h2 ” 
with the regression slope, !b (4,	  21). However, “!!h2 ” is the standard symbol for narrow-
sense heritability and !b  is, most of all, a measure of phenotypic resemblance. To avoid 
confusion, we recommend using the standard symbol “!!H2” for broad-sense heritability(1,	  
3) and different symbols for its indirect estimators. 

A disagreement between simulation studies. Using simulations of a classical 
epidemiological model, we have shown that two methods based on phenotypic and 
sequence data from patients - ANOVA-CPP and POUMM - provide more accurate 
heritability estimates compared to previous approaches like DR and PMM. However, we 
should not neglect the arising discrepancy between our and previous simulation reports 
advocating either PMM (15) or DR (5) as unbiased heritability estimators. Compared to 
these simulations, the toy-model presented here has several important advantages: (i) it is 
biologically motivated by phenomena such as pathogen mutation during infection, 
transmission of entire pathogens instead of proportions of trait values and within-
/between-host selection; (ii) it is a fair test for all estimators of heritability, because it 
doesn’t obey any of the estimators’ assumptions, such as linearity of recipient- on donor 
values, normality of trait values, OU or BM evolution, independence between pathogen 
and host effects; (iii) it generates transmission trees that reflect the between-host 
dynamics, e.g. clades with higher trait values exhibit denser branching in cases of 
between-host selection. As a criticism, we note that the toy-model does not allow strain 
coexistence within a host. Although it may be exciting from biological point of view, the 
inclusion of strain coexistence comes with a series of conceptual challenges, such as the 
definition of genotype and clonal identity, the formulation of the trait value as a function 
of a quasispecies- instead of a single strain genotype, etc. At the same time, such an 
extension is unlikely to change our understanding of partial quasispecies transmission as a 
cause of negative bias in estimators of !!H2 . To conclude, the discrepancy between 
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simulation studies teaches that no method suits all simulation setups ergo biological 
contexts. Thus, rather than proving universality of a particular method, simulations should 
be used primarily to study how particular biologically relevant sources of bias affect the 
methods on table. 

The heritability of HIV set-point viral load is at least 20%. Applied to data 
from the UK, ANOVA-CPP and POUMM reported four to five times higher point 
estimates and non-overlapping CIs compared to a previous PMM/ReML-based estimate 
on the same data (0.06, 95% CI [0.02, 0.09]) (15). Our PMM implementation confirmed 
this estimate. However, these results are based on assuming BM, which is clearly violated 
by the data. Based on our simulation study, these estimates are thus underestimates of the 
true heritability. To give an intuition about this negative bias, we note that BM assumes a 
linear increase in trait variance through time. Thus, fitting PMM to a trait with constant 
variance through time results in a vanishing time unit variance increment (speed) of the 
BM process leading to !!σ e

2  explaining all the observed variance in the trait. Overall, our 
analyses yield an unprecedented agreement between estimates of donor-recipient 
resemblance and phylogenetic heritability in a large European dataset and African cohorts 
(11,	  13) (Fig. 5A). All datasets support the hypothesis of HIV influencing spVL (!!H2 >0.2
). The particular estimates provided here should be interpreted as lower bounds for !!H2 , 
because the partial quasispecies transmission, the noises in spVL measurements and 
transmission trees are included implicitly as environmental (non-transmittable) effects. 
These results motivate further HIV whole-genome sequencing (30) and genome-wide 
studies of the viral genetic association with viral load and virulence. 

Outlook. Beyond HIV, ANOVA-CPP and POUMM have great potential to 
become widely used tools in the study of pathogens. ANOVA-CPP works on pairs of trait 
values from carriers of nearly identical strains and can be easily extended to groups of 
variable size (1,	  6). Thus, ANOVA-CPP is ideal for slowly evolving pathogens such as 
DNA-viruses, bacteria and protozoa, where clusters of patients carrying identical-by-
descent (IBD) strains are frequently found. For example, Anderson et al. 2010 identified 
27 clusters of two to eight carriers of IBD strains in a small set of 185 malaria patients, i.e. 
41% of the patients participated in clusters (6). On the other hand, IBD-pairs are rare for 
rapidly evolving RNA-viruses, such as HIV and HCV. For instance, we identified only 
116 CPPs in a large dataset of 8483 HIV-sequences, i.e. less than 3% of the patients 
involved in IBD-pairs. However, the rapidly accumulating sequence diversity of RNA-
viruses allows building large-scale phylogenies, which approximate transmission trees 
between patients. Thus, RNA-viruses should make the ideal scope for the POUMM. We 
believe that, together, the two methods should enable accurate and robust heritability 
estimation in a broad range of pathogens. 
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Methods	  

The	  phylogenetic	  Ornstein-‐Uhlenbeck	  mixed	  model	  (POUMM)	  
In this section we describe technical details concerning the PMM method and its 

extension advocated in this paper, the Phylogenetic Ornstein-Uhlenbeck Mixed Model 
(POUMM).  

The PMM method (8,	  25) is based on the simplest decomposition of the trait value 
in which the observed value of an individual is represented as a sum of a genetically 
determined (heritable) component, !G , and an environmental (non-heritable) component, 
!e :  

 !z =G+e  (3) 
While quantitative genetics theory defines !G  in a statistical sense as a mean 

observed phenotype of the carriers of a given genotype, i.e. configuration of alleles at 
quantitative trait loci in the genome (aka QTLs, defined in Supporting Information), the 
PMM method is ignorant about genotypes and defines !G  as an unobserved value assigned 
at any point on the tree. 

It is assumed that !G  evolves according to a BM process. This means that at any 
point on any branch of the tree !G  is a normally distributed random variable with mean !!g0  

and variance !!σ BM
2 t , where !!g0  denotes the value of !G  at the root, !!σ BM

2  denotes the unit-
time variance of the BM process and !t  denotes the branch-distance from the point to the 
root. The covariance of the values !G  at any two distinct points on the tree is equal to 

!!σ BM
2 ta , where !ta  is the branch-distance from the most recent common ancestor of the two 

points to the root of the tree. Thus, the conditional likelihood of an observed vector of tip-
values !z , given a phylogeny Τ  and model parameters, is given by a multivariate normal 
probability density function !!! N [z; g0 ,ΣBM(Τ ,σ BM

2 ,σ e
2)] . The variance-covariance matrix 

!!ΣBM(Τ ,σ BM
2 ,σ e

2)  has diagonal elements equal to !! σ BM
2 ti +σ e

2( )  and off-diagonal elements 

equal to !! σ BM
2 tij( ) , !ti  denoting the distance from the root to tip !i  and !

tij  denoting the 

distance from the root to the most recent common ancestor of tips !i  and !j .  

The phylogenetic heritability, !!HBM
2 , is defined as the proportion of phenotypic 

variance attributable to !G  at the tips of the tree (8): 

 !!HBM
2 (t)=σ BM

2 t /(σ BM
2 t +σ e

2)   (4) 

Note that !!hBM
2 (t)→1  as !t→∞ . As mentioned previously, in the case of a non-

ultrametric phylogeny, the choice of !t  in eq. 4 is not obvious. Thus, we prefer the 
following tree-independent formulation of phylogenetic heritability, assuming that the 
sample phenotypic variance at the tips, !!s

2(z) , is a good approximation of the phenotypic 
variance in the population: 

 !!HBMe
2 =1−σ e

2 / s2(z)   (5) 
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POUMM is defined similarly to PMM after replacing the BM assumption with an 
assumption of OU process acting on !G  along the phylogeny and parameterized by a single 
global optimum value θ , selection strength !α >0  and unit-time variance !!σ OU

2 . Moreover, 
POUMM can be seen as a generalization of PMM as in the limit !α →0  the OU process is 
equivalent to a BM process with the same unit-time variance. Similarly to PMM, the 
conditional likelihood is a multivariate normal probability density function 

!!! N [z;µOU(T ,α ,θ ,g0),ΣOU(T ,σ OU
2 ,σ e

2)]. Based on equations 1 and 6 in (28), we derive the 

expressions for the mean vector !µOU  and for the variance covariance matrix !ΣOU . The 
elements of the mean vector are defined by substituting the corresponding root-tip 
distance for !t  in eq. 6 below: 

 !!µOU(t ;α ,θ ,g0)= exp(−αt)g0 + 1−exp(−αt)⎡⎣ ⎤⎦θ   (6) 

The matrix !ΣOU  is defined by  

 !!ΣOU ,(ii ) = 1−exp(−2αti )⎡⎣ ⎤⎦σ OU
2 (2α )+σ e

2   (7) 

for the diagonal elements !!(ii)  and by  

 !!ΣOU ,(ij ) = exp(−ατ ij ) 1−exp(−2αtij )⎡⎣ ⎤⎦σ OU
2 (2α )  (8) 

for the off-diagonal elements !!(ij) , !ti  and !
tij  defined as above and !

τ ij  denoting the 
phylogenetic distance between tips !i  and !j . 

The key difference between OU and BM processes is the fact that in the limit 
!t→∞  OU converges to a stationary (equilibrium) normal distribution with mean θ  and 
finite variance !!σ OU

2 /(2α ) , aka the “dispersion parameter” of the OU process (28).  

For a given combination of parameters, the phylogenetic heritability estimated by 
the POUMM method is defined by eq. 9 as a function of time or distance from the root of 
the phylogeny. 

 
!!
HOU
2 (t)=

σ OU
2 1−exp(−2αt)⎡⎣ ⎤⎦

σ OU
2 1−exp(−2αt)⎡⎣ ⎤⎦+2ασ e

2   (9) 

At equilibrium, that is when !t→∞ , !!HOU
2 (t)  converges to a value, which we call 

equilibrium heritability and denote as !!Heq
2  (eq. 10). 

 !!Heq
2 =σ OU

2 /(σ OU
2 +2ασ e

2)   (10) 

Like in PMM, we defined a tree-independent version of the phylogenetic 
heritability and denoted it as !!HOUe

2  (see eq. 5). 

Likelihood calculation 

To calculate the conditional likelihood of an observed vector of trait-values !!z0  at 

the tips of a given transmission tree !T  and POUMM parameters !!Θ = (α ,θ ,σ OU ,σ e ), we 
implemented a variant of the Felsenstein’s “pruning” algorithm (31), which relies on the 
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recursive factorization of the likelihood along !T . In comparison with the standard 
approach to calculate multivariate normal densities based on equations 6, 7 and 8, our 
approach is considerably faster and more memory efficient, calculation time and memory 
consumption scaling linearly with the number of tips in the tree.  

Now, we describe the technical details using Fig. 1 as illustration. We denote by !zi
, !gi , !ti  the trait-value, heritable component and the length of the branch ending at node !i . 

We denote by !!zi  the ensemble of trait-values of the tips descendant from node !i  in the 

tree, e.g. !!!z4 = {z2 ,z3}  on Fig. 1. Assuming for a moment that !!g0  is known, the conditional 
likelihood is expressed as a product of two definite integrals:  

 

!!! 

ℓ(Θ ,g0)= f (z0 |Θ ,g0) = f (g1 |Θ ,t1 ,g0) f (z1 |Θ ,g1
−∞

∞

∫ )dg1 ×

f (g4 |Θ ,t4 ,g0) f (z4 |Θ ,g4 )
−∞

∞

∫ dg4
  (11) 

The term !!f (g1 |Θ ,t1 ,g0)  is a univariate normal density with mean and variance 
expressed as in equations 6, 7. This density can be written as an exponential of a 
polynomial of degree two of !!g1  (eq. 12):  

 

!!

f (g1 |Θ ,t1 ,g0)= exp(p1g12 +q1g1 + r1) ,! where

p1 = −
α exp(2αt1)

σ OU
2 exp(2αt1)−1⎡⎣ ⎤⎦

=
exp(2αt1)a(α ,2t1)

σ OU
2 ,!substituting! α

1−exp(2αt1)
!by!a(α ,2t1)

q1 =
2α exp(αt1) g0 +θ exp(αt1)−1⎡⎣ ⎤⎦{ }

σ OU
2 exp(2αt1)−1⎡⎣ ⎤⎦

= −
2a(α ,2t1) g0 +θ exp(αt1)−1⎡⎣ ⎤⎦{ }

σ OU
2

r1 = −
α g0 +θ exp(αt1)−1⎡⎣ ⎤⎦{ }2

σ OU
2 exp(2αt1)−1⎡⎣ ⎤⎦

− 12ln
πσ OU

2 1−exp(−2αt1)⎡⎣ ⎤⎦
α

⎛

⎝
⎜

⎞

⎠
⎟

=
a(α ,2t1) g0 +θ exp(αt1)−1⎡⎣ ⎤⎦{ }2

σ OU
2 − 12ln −

πσ OU
2

a(α ,2t1)exp(2αt1)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

 

 (12) 
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Noticing that eq. 12 is not defined for !α =0  (the case of Brownian Motion), we 
take the limit at !α →0 , by defining the function !!a(α ,t)  as follows: 

 

!!

a(α , t)=
α

1−exp(αt) , forα >0

−1/t , forα =0

⎧

⎨
⎪

⎩
⎪

  (13) 

The term !!f (z1 |Θ ,t1 ,g1)  in eq. 11, which is a univariate normal density with mean 

!!g1  and variance !!σ e
2 , can also be expressed as an exponential of a polynomial of degree 

two of !!g1 :  

 

 

!!

f (z1 |Θ ,g1)=u1g12 + v1g1 +w1 !,! where

u1 = −
1
2σ e

2

v1 =
z1
σ e

2

w1 = −
z1

2

2σ e
2 −
1
2ln 2πσ e

2( )

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

  (14) 

If !!p1  (eq. 12) and !!u1  (eq. 14) satisfy!!!(p1 +u1)<0 , the first integral in eq. 11 can be 

solved in closed form, which, again, is an exponential of a polynomial of degree two of !!g0: 
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!!

exp (p1 +u1)g12 +(q1 + v1)g1 +(r1 +w1)⎡⎣ ⎤⎦dg1
−∞

∞

∫

= exp −(q1 + v1)2
4(p1 +u1)

+(r1 +w1)+ ln
π

−(p1 +u1)
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= exp(u01g02 + v01g0 +w01) ,! where

u01 =
u1a(α ,2t1)

a(α ,2t1)−α +σ OU
2 u1

v01 =
a(α ,2t1)(exp(αt1)(2θu1 + v1)−2θu1)

a(α ,2t1)−α +σ OU
2 u1

w01 =w1 +t1α −
0.25v12σ OU

2

−α +u1σ OU
2 +a(α ,2t1)

−
ln −α +u1σ

2 +a(α ,2t1)⎡⎣ ⎤⎦
2a(α ,2t1)

+
αθ u1θ −(v1 +u1θ )exp(αt1)⎡⎣ ⎤⎦

a(α ,t1)+(−α +u1σ
2) 1+exp(αt1)⎡⎣ ⎤⎦

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

 

 (15) 

By applying the same factorization and integration technique to the sub-tree from 
node 4, we find: 

 

!!!

f (z4 |Θ ,g4 ) = f (g2 |Θ ,τ2 ,g4 ) f (z2 |Θ ,g2
−∞

∞

∫ )dg2 ×

f (g3 |Θ ,τ3 ,g0) f (z3 |Θ ,g3)
−∞

∞

∫ dg3

= exp u42g42 + v42g4 +w42( )×
exp u43g42 + v43g4 +w43( )

= exp u4g42 + v4g4 +w4( ) ,!!!where
u4 =u42 +u43 , v4 = v42 + v43 , w4 =w42 +w43

  (16) 

Then, we express the term !!f (g4 |Θ ,t4 ,g0)  in the same way as in eq. 12: 

 !!f (g4 |Θ ,t4 ,g0)= exp(p4g4
2 +q4g4 + r4 )   (17) 

Multiplying the exponentials from eq. 16 and eq. 17 and repeating the integration 
(eq. 15), we obtain the second integral in eq. 11 in the form of an exponential of a 
polynomial of degree two of !!g0 . Thus, the likelihood is:  
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!!! 

ℓ(Θ ,g0)= f (z0 |Θ ,g0)= exp(u0g02 + v0g0 +w0) ,!where
u0 =u01 +u04 ,v0 = v01 + v04 ,w0 =w01 +w04

  (18) 

Recall that !!g0  is an unknown parameter. Thus, we maximize !! ℓ(Θ ,g0)  over !!g0  by 

setting !!g0 = −0.5v0 /u0 .  

This recursive algorithm was implemented using dynamic programming 
maximizing the use of vector over scalar operations. The implementation can be found in 
the function lik.poumm of the accompanying R-package “patherit”. The accuracy was 
validated against the multivariate normal density implementation using equations 6-8, as 
well as an alternative implementation based on the function “make.ou” in the R-package 
diversitree(32) (see also file CompareOUPackages.Rmd, Supporting programs). This 
validation procedure showed that the patherit package is numerically stable in cases when 
the other implementations returned infinite or NA values and is also about 30 times faster 
than the diversitree-based implementation using the C-backend (more than 100 times 
faster if using the R-backend). 

Maximum likelihood (ML) inference 
In the POUMM ML-fits, the conditional likelihood of the data was maximized 

over the parameters α , θ , !σ OU , !σ e  and !!g0  (function ml.poumm of the patherit package).  

In the PMM ML fits the conditional likelihood of the data was redefined as its 
corresponding limit for !α →0  and was maximized over the parameters !σ OU

, !σ e  and !!g0  
(ignoring θ , which cancels out in the case !α →0 ).  

The values for !!HBM
2  and !!HOU

2  were calculated from eq. 4 and eq. 9 after setting !t  to 

the maximum root-tip distance in the tree. The values for !!HBMe
2  and !!HOUe

2  were calculated 
using eq. 5. 

Bayesian inference 
For HIV-1 data, we performed a Markov Chain Monte Carlo (MCMC) fit 

(function mcmc.poumm  of the patherit package) using an adaptive Metropolis algorithm 
with coerced acceptance rate (33) written in R (34).  

The MCMC sampling was performed on the POUMM parameters α , θ , !!σ OU
2  and 

!!σ e
2 . The prior was specified as a joint distribution of four independent variables: 

!!  (α ,θ ,σ OU
2 ,σ e

2)∼Exp(0.01)×U(0,100)×Exp(0,10−4 )×Exp(0.01) . The exponential rates 
above and the interval of the uniform distribution have been chosen such to ensure that the 
prior is uninformed, both, for the sampled parameters α , θ , !!σ OU

2 , !!σ e
2  and for the inferred 

heritability estimates !!HOU
2 , !!HOUe

2  (prior densities denoted as blue curves on Fig. S3B). The 

initial values for the parameters were set to !!(α ,θ ,σ OU
2 ,σ e

2)0 = (0,0,1,1) . 
The adaptive Metropolis MCMC was run for 4.2E+06 iterations, of which the first 

2E+05 were used for warm-up and adaptation of the jump distribution variance-
covariance matrix. The target acceptance rate was set to 0.01 and the thinning interval was 
set to 1,000. The convergence and mixing of the MCMC was validated by visual analysis 
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(Fig. S3A). The presence of signal in the data was confirmed by the observed significant 
difference between prior (blue) and posterior (black) densities (see Fig. S3B). Calculation 
of 95% CI has been done using the function “HPDinterval” from the coda package. 

Direct	  measurement	  of	  H2	  in	  simulated	  data	  

To measure !!H2 , we used the direct estimate !!Radj
2  (eq. S3) after grouping the 

patients in the data by their (currently carried) pathogen genotype and estimating the 
genotypic values as the group means (implemented as function R2adj in the patherit 
package).  

Calculating	  b[0],	  b[τ≤D1]	  and	  b[τ]	  
The value of the donor-recipient regression slope was calculated using eq. S5, 

implemented as a function called “b” in the patherit package. 

Calculating	  rA	  

To estimate !rA  we implemented one-way ANOVA as a function “rA” in the 
package patherit. As a reference we used the description in chapter 18 of (1). To calculate 
confidence intervals, we used the R-package “boot” to perform 1,000-replicate bootstraps, 
upon which we called the package function boot.ci() with type=”basic”. These confidence 
intervals were fully contained in the standard ANOVA confidence intervals based on the 
F-distribution (see (1)), which were slightly wider (not reported). 

Identifying	  outlier	  CPPs	  
Outlier CPPs were identified as CPPs having absolute phenotypic difference below 

!!Q1 −1.5× IQR  or above !!Q3 +1.5× IQR , !!Q1  and !!Q3  denoting the 25th and 75th quantile of 

!|Δ lg(spVL)| in CPPs and IQR denoting the interquartile range Q3-Q1. 

Computer	  simulations	  of	  the	  toy	  epidemiological	  model	  
We simulated six possible genotypes (pathogen strains) defined as combinations of 

!!M1 =3  and !!M2 =2  possible alleles at each locus and denoted 1:11, 2:12, 3:21, 4:22, 5:31, 
6:32 (Fig. 2A). We assumed absence of strain coexistence within a host, so that at any 
moment one strain represented the pathogen quasispecies in a host. At a time !t , the value 

!!zi(t)  of an infected individual !i  was modeled as a function of its immune system type 

!!!yi ∈{1,2} , the currently carried strain !!!x i(t)∈{1,...,6} , and the individual’s specific effect 

for this strain !!!  ei[x i(t)]∼N (0,0.36)  drawn at random for each strain (in each infected 
individual). We call a (type y-x) general effect the expected trait value of type-!y  carriers 
of strain !x  in an infected population: !!!GE[y ,x]=E[z |y ,x] . For a set of fixed general 
effects, !!zi(t)  was constructed according to the equation:  

 !!!zi(t)=GE[yi ,x i(t)]+ei[x i(t)]  (19) 

We used a fixed set of general effects drawn from the uniform distribution ! U(2,4)  
for the twelve y-x combinations (Fig. 2A).  
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We embedded this toy-model into a stochastic Susceptible-Infected-Recovered 
(SIR) model of an epidemic with demography and frequency dependent transmission as 
described in (29), ch. 1. Each infected individual, i, had a variable trait value !!zi(t)  
constructed as in eq. 19. Within-host phenomena (strain mutation and substitution) and 
between-host phenomena (natural birth, contact, transmission, diagnosis, recovery and 
death) occurred at random according to Poisson processes (Fig. 1). The rate parameters 
defining these processes are written in Table S1 and described shortly.  

For each group of parameters (within- and between-host), we considered the 
following two modes of dynamics: 

• neutral: rates were defined as global constants mimicking neutrality (i.e. lack of 
selection) w.r.t. !z  (black lines on Fig. 2B-D). For within-host phenomena, it was 
assumed that a mutation of the pathogen was followed by instantaneous 
substitution of the mutant for the current dominant strain, regardless of the induced 
change in !z  (black line on Fig. 2E); 

• select: borrowing the approach from (35), the rates of transmission and within-
host pathogen mutation were defined as increasing Hill functions of !!10z , while the 
infected death rate was defined as an inverse decreasing Hill function of !!10z , thus 
mimicking increasing per capita transmission- and pathogen-induced mortality for 
higher !z  (red lines on Fig. 2B-D). Within hosts, it was assumed that a mutation of 
the pathogen was followed by instantaneous substitution only if it resulted in a 
higher !z . Otherwise, the mutation was considered deleterious (red line on Fig. 
2E).  
At the between-host level, the phenomena of birth, contact, transmission, recovery 

and death define the dynamics between the compartments of susceptibles, infected and 
recovered individuals - X, Y and Z. The natural birth rate, !αnat , and the natural per capita 

death rate, !δnat , have been defined as constants satisfying !!αnat =δnatN0 , so that the average 

lifespan of an uninfected individual equals !1/δnat =850  (arbitrary) time units and in a 

disease-free population the total number of alive individuals equilibrates at !!N0 =105 . An 
epidemic starts with the migration of an individual with random immune system type 
carrying pathogen strain 1:11 to a fully susceptible population of !!N0  individuals. Each 
individual has contacts with other individuals occurring randomly at a constant rate, κ . A 
transmission can occur upon a contact involving an infected and a susceptible individual, 
here, called a “risky” contact. It is assumed that the probability of transmission per risky 
contact, γ , is either a constant (black on Fig. 2B) or a function of the value !z  (red on Fig. 
2B) of the infected host and does not depend on the uninfected individual. Once infected, 
a host starts transmitting its currently dominant pathogen strain at a rate defined as the 
product of γ , κ , and the current proportion of susceptible individuals in the population, 

!!S = X /N . Thus, for fixed κ , the transmission rate of an infected host is a function of the 
global variable !S  and the constant or variable γ . This transmission process continues 
until recovery or death of the host. Recovery has the meaning of a medical check 
occurring at a constant per capita rate, ρ , followed by immediate therapy and immunity. 
Due to the virulence of the pathogen, an infected host has an increased (per capita) death 
rate, δ , which is defined either as a constant or as a function of !z . Based on their scope 
of action, we call “between-host” the parameters !αnat , !δnat , κ , γ , ρ  and δ .  
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Within a host, mutants of the dominant strain can appear at any time as a result of 
random single-locus mutations, which occur at a constant or !z -dependent rate, ν . It is 
important to make a distinction between a mutation and a substitution of a mutant strain 
for a dominant strain within a host, because a mutation doesn’t necessarily lead to a 
substitution. For example, when !z  is (or correlates with) the within-host reproductive 
fitness of the pathogen, substitutions would result only from mutations causing an increase 
in !z . The rate of substitution of a mutant strain !!x j  for a dominant strain !!x i , differing by 

a single nucleotide at a locus !l , is denoted !!ξl ,i← j  and defined as a function of ν , the 

number of alleles at the locus, !Ml , and the presence or absence of within-host selection 
with respect to !z . No substitution can occur between strains differing at more than one 
locus, although, the same effect can result from two or more consecutive substitutions. 
Based on their scope of action, we call “within-host” the parameters ν  and ξ . 

The parameters !αnat , !δnat , κ  and ρ  were kept as global constants as written in 
Table S1. The simulations were run for four times the time until reaching 10,000 
recovered patients, hereafter denoted as !!t10k , but not longer than 2400 time units. The 
transmission history as well as the history of within-host strain substitutions was preserved 
during the simulations in order to reproduce exact transmission trees at different time-
points and to extract donor and recipient values at moments of transmission for the 
calculation of !!b[0] .  

By combining “neutral” and “select” dynamics for the strain mutation and 
substitution rates at the within-host level, and the virus-induced per capita death rate and 
per contact transmission probability at the between-host level, we created the following 
four scenarios (Fig. 3E): 

• Within: neutral / Between: neutral; 

• Within: select / Between: neutral; 

• Within: neutral / Between: select; 

• Within: select / Between: select; 

For each of these scenarios and mean contact interval !1/κ ∈{2,4,6,8,10,12}
(arbitrary time units), we performed ten simulations resulting in a total of !4×6×10=240  
simulations, of which 175 simulations resulted in outbreaks with more than 1,000 
diagnosed cases. In each of these 175 simulations we analyzed the population of the first 
up to 10,000 diagnosed individuals. We denote this set of individuals by !!Z10k  and the 

corresponding transmission tree – by !!T10k . The direct estimate of broad-sense heritability, 

!!Radj
2  (defined in Supporting Information) has been compared to the following: !!b[0]  in all 

transmission couples found in !!Z10k ; !!b[τ ]  in the same transmission couples; !!b[τ ≤D1] in 

transmission couples in !!Z10k  having τ  not exceeding the first decile (10th quantile) of τ ’s 

- !!D1 ; !!rA[id]  based on grouping by identity of carried strain in !!Z10k ; !!rA[PP:τ ]  based on 

phylogenetic pairs in !!T10k ; !!rA[PP:τ ≤D1]  based on closest phylogenetic pairs (CPP) 

defined as PPs in !!T10k  having τ  not exceeding the first decile of τ ’s among all PPs in 
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!!T10k ; !!HBMe
2  and !!HOUe

2  based on the maximum likelihood (ML) fit of the PMM and 

POUMM methods on !!T10k . To calculate !!b[0] , we used the immediate trait-values at 
moments of transmission (usually not available in practice). All other estimators were 
calculated using trait-values at diagnosis.  

The toy-model SIR simulation is implemented in the function “simulateEpidemic” 
of the patherit package; the extraction of diagnosed donor-recipient couples – in the 
function “extractDRCouples”; the extraction of a transmission tree from diagnosed 
individuals – in the function “extractTree”. 
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Figures	  in	  the	  main	  text	  
 

 
Fig. 1  
A schematic representation of an epidemic. Colored rectangles represent infectious periods of 

hosts, different colors corresponding to different host-types. Triangles inside hosts represent pathogen 
quasispecies, change of color indicating substitution of dominant strains. Capital letters denote host-events 
as follows: I: beginning of infection, M: phenotype measurement and recovery D: host death. Arrows show 
the time and direction of transmission events. The within-donor and within-recipient measurement delays, 

!τ d  and !τ r , are shown for one donor-recipient couple. The transmission tree connecting the measured hosts 
is drawn in black, numbered circles indicating the root 0, the internal node 4 and the tips 1, 2 and 3. 
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Fig. 2  
A toy model of an epidemic. A, schematic representation of a pathogen trait formed from a general 

<host-type× carried-strain> effect and a host-specific effect (eq. 19). The density of the trait-values in a 
population represents a mixture of normal densities corresponding to each one of twelve host-type× strain 
combinations, scaled by their frequencies (dashed-lines depict host-type 2); B-E, SIR dynamics, color 
indicating selection modes w.r.t. !z , black – neutral, magenta – select (as specified in Table S1): B, per 
risky contact transmission probability; C, expected infectious period if no mutation happens; D, per site 
mutation rate; E, example within-host evolution; 
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Fig. 3  

Toy model simulations. A-D, time-profile of one simulation: A, sizes of the Susceptible, Infectious 
and Recovered (diagnosed) compartments; B, strain frequencies in samples of up to 10,000 most recently 
diagnosed hosts w.r.t. time; C, estimators of !!H2  in samples of up to 10,000 most recently diagnosed 
patients w.r.t. 20 equidistant time points (for notation, see text); D, trait-distribution in samples as above; 
E, !!H2 -estimates in simulations of “neutral” and “select” within-/between-host dynamics. Each box-group 
summarizes simulations (first up to 10,000 diagnoses) at a fixed contact rate, κ  (Methods); white boxes 
(background) denote true heritability, colored ones denote estimates (foreground). 
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Fig. 4 

A graphical analysis of HIV-data from UK. A, a scatter plot of the phylogenetic distances between 
pairs of tips against their absolute phenotypic differences: grey – random pairs; green – PPs (!τ >10−4 ); 
magenta: CPPs (!τ ≤10−4 ); blue – outlier CPPs (CPPs, for which !!|Δ lg(spVL)|>Q3 +1.5×(Q3 −Q1) , !!Q1  and 

!!Q3  denoting the 25th and 75th quantile of !|Δ lg(spVL)| among CPPs); B, a box-plot representing the trait-
distribution along the transmission tree. Each box-whisker represents the !lg(spVL)-distribution of patients 
grouped by their distance from the root of the tree measured in substitutions per site. Wider boxes indicate 
groups bigger in size. Bullet-ending segments denote !lg(spVL)-values in CPPs. 
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Fig. 5 

Comparing our !!H2  estimates from the UK HIV-cohort with previous estimates on African and 
Dutch cohorts. A, estimates with minimized measurement delay (dark cadet-blue) and POUMM estimates 
(green); B, down-biased estimates due to higher measurement delays (light-blue) or violated BM-
assumption (brown). Confidence is depicted either as segments indicating estimated 95% CI or P-values in 
cases of missing 95% CIs. For clarity, the figure does not include estimates from the UK data including the 
five outlier CPPs (see Table S4) and estimates from previous studies, which are not directly comparable 
(e.g. previous results from Swiss MSM/strict datasets (14)). 
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Supporting	  Information:	  
Supporting	  Text	  

ST1.	  Definitions	  of	  heritability	  and	  its	  resemblance-‐based	  estimators	  
Here, we review the formal definitions of heritability in sexually reproducing 

populations based on the general linear model of quantitative traits (1) and the three concepts 
introduced in the main text: the genetic determination of a trait, the resemblance between 
relatives, and the efficiency of selection (19).  

The general linear model of a quantitative trait 

A principal goal of quantitative genetics is to partition the observed phenotypic 
variance in a population into components attributable to genetic and environmental factors. 
Fundamental for the study of the genetic and environmental sources of variance is the general 
linear model for the phenotype (see (1), ch. 6), in which, for a given trait of interest, the 
observed phenotypic value, !z , of an organism is represented as a sum of effects of the 
organism’s genes, !G , general (macro-) environmental effects, !E , gene by (macro-) 
environment interaction, !I , and special (micro-) environmental effects !e : 

 !z =G+ I +E +e   (S1) 

It is assumed that the trait is influenced by a number of genes whose locations in the 
species’ reference genetic sequence are called quantitative trait loci (QTL). In an individual, 
the configuration of alleles found at the trait’s QTLs is called genotype and, for a population, 
the genotypic value, !!Gx , of a genotype !x  is defined as the expected trait value of its carriers: 

!!!Gx =E(z |genotype= x) . The remaining terms in eq. S1 are “defined in a least-squares sense 

as deviations from lower order expectations” (1). It is worthy to note that !!Gx  depends on the 
distribution of !x  across environments in the population and that, by construction, the 
residuals !z −G = I +E +e  have zero mean and are uncorrelated with !G  (ch. 6 in (1)). Thus, 
the total phenotypic variance observed in the population can be partitioned into a component 
that is purely genetic and a component that is attributable to both, non-genetic (purely 
environmental) factors as well as gene-by-environment interactions: 

!!σ
2(z)=σ 2(G)+σ 2(z −G) .  

Measuring the genetic determination of a trait 

Heritability in the broad sense, aka degree of genetic determination (2), is defined 
as the ratio of the variance of genotypic values to total phenotypic variance in the population: 

 !!H
2 =σ 2(G)/σ 2(z)  (S2) 

A direct estimation of !!H2  would require that all QTLs were known and that for each 
genotype there was a sample of measurements from individuals who were: (i) genetically 
identical at the QTLs; (ii) raised in randomly and independently assigned environments; (iii) 
present in the final dataset according to the population-specific environment-genotype 
frequencies. Given such a dataset of !N  independent measurements from carriers of all !K  
distinct genotypes in the population (! K ≪N ), !!H2  can be estimated by the ratio of sample 
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variances !!s
2(Ĝ)/ s2(z) , where !!Ĝ  denotes the individuals’ genotypic values estimated by the 

mean value of their corresponding group and !!s
2(.)  denotes sample variance. Though, 

intuitive, this formula is slightly positively biased in the case of finite sample size. Thus, we 
prefer its correction for finite degrees of freedom, aka as adjusted coefficient of 
determination: 

 
!!
Radj
2 =1− N −1

N −K
s2(z − Ĝ)
s2(z)  (S3) 

In the absence of full QTL information and data from independently grown clones, 
direct estimation of !!H2  is rarely possible. Instead, quantitative geneticists focus on estimating 
its lower bound defined below.  

Heritability in the narrow sense is defined as the ratio of variance of additive 
genetic values to total phenotypic variance: 

 !!h
2 =σ 2(A)/σ 2(z)   (S4) 

The additive genetic value, !A , of an organism is defined as the sum of additive 
effects of its alleles at the trait’s QTLs. We provide the technical definition of additive effect 
later on and note here that !!h2  represents the largest proportion of phenotypic variance that 
can be explained by linear regression on the allele contents at single QTLs, ignoring epistatic 
(inter-locus) and dominance interactions (1). As discussed shortly, for sexually reproducing 
species, !!h2  has two main advantages to !!H2 : (i) it can be estimated from empirical data of 
genetically related (but not identical) organisms; (ii) it can be used to predict the response to 
selection for traits associated with reproductive fitness. 

Measuring the resemblance between relatives 

Relatives resemble each other not only for carrying similar sets of alleles but also for 
living in similar environments. Thus, it is necessary to disentangle the concept of 
resemblance from that of genetic determination.  

Considering an ordered relationship such as parent-offspring, the least squares 
regression slope of offspring values on mean parental values is defined as 

 !!b= s(zo ,zmp)/ s
2(zmp) , (S5) 

where !zo  and 
!
zmp  denote observed offspring and mean parent values, and !!s(.,.)  

denotes sample covariance among observed couples of values (1). Assuming no systematic 
dissimilarity between parents and offspring, !b  is a value between 0 and 1, higher values 
indicating closer resemblance between the expected phenotype of offspring and the mid-
phenotype of their parents. 

Considering members of unordered relationships, such as identical twins, sibs and 
cousins, the resemblance between members within groups is measured by the intraclass 
correlation (ICC) defined as the ratio of the “between group” variance over the total variance, 

!!r =σ
2(c) σ 2(z) , !c  denoting the observed within-group means (1, 36). Given a dataset of 

measurements grouped by a factor such as twinship, the standard estimation procedure for !r  
is the one-way analysis of variance - ANOVA (see, e.g. (37) or ch. 18 in (1)). ANOVA uses 
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mean squares to find estimators for the between- and within-group variances, !!σ̂
2(c)  and 

!!σ̂
2(z − c)  and reports ICC as the ratio: 

 
!!
rA =

σ̂ 2(c)
σ̂ 2(c)+σ̂ 2(z − c) .  (S6) 

We notice that both, !!Radj
2  (eq. S3) and !rA  (eq. S6), are estimators of ICC, but there is a 

key difference in their assumptions: !!Radj
2  assumes that all possible groups, i.e. genotypes, are 

present in the data but makes no explicit assumption about the distribution of group means 
(i.e. genotypic values); !rA  is aware that only a subset of all possible groups is present in the 
data but assumes that the observed group means, are an iid sample from a normal 
distribution. 

Measuring the efficiency of selection 

In breeding experiments the goal is to optimize a trait by repetitive artificial selection 
for reproduction of the “best” individuals in a generation. A textbook example is truncation 
selection in which only individuals with measurements above a given threshold are allowed 
to reproduce. For a generation, the difference !Δ s = µs − µ  between the mean value of 

individuals selected for reproduction, !µs , and the mean of the generation, µ , is called the 

selection differential. Denoting by !µo  the mean of the offspring generation, the difference 

!R = µo − µ , is called the response to selection. Then, the efficiency of the truncation selection 
is measured by the realized heritability (3), defined as the ratio: 

 !!hR
2 = R/Δ s   (S7) 

Definition of additive genetic effect and additive genetic value 

So far, we have skipped the more technical definition of additive genetic effect, which 
is the basis of the definitions of additive genetic value and narrow-sense heritability. Here we 
provide these definitions in the context of haploid organisms, noting that the definitions for 
diploid organisms found in textbooks (1, 2) are conceptually the same but somewhat more 
complicated for they treat dominance interactions separately from epistatic interactions.  

We will assume that a trait has a finite number of QTLs, L, with a finite number of 
alleles !!Ml ≥2  for each locus !!l =1,...,L . Denoting by !xlm  the content (0 or 1) of allele !m  at 

locus !l , !!l =1,...,L , !!m=1,...,Ml , we can describe an individual’s genotype by a binary vector 

!x  of length 
!!

Ml
1≤l≤L
∑ . The products of allele contents for different loci signify the presence or 

absence of allele combinations in a genotype. This representation results in the system of 
equations S8, in which the genotypic value of each genotype !x  is written as a sum of the 
population mean, µ , and the effects !ηlm , !!(ηη)l1m1l2m2 and so on, associated with each allele, 

couple of alleles at two loci and higher order- (up to order L) multi-locus configurations of 
alleles, present in the genotype. 
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!!!

Gx = µ + ηlmxlm
m≤Ml

∑
l≤L
∑ + (ηη)l1m1l2m2 xl1m1xl2m2

m1≤Ml1
m2≤Ml2

∑
l1≠l2

∑ + ...   (S8) 

If for a moment we imagine that in system S8 !!Gx , µ , and !x  are known while the 

!(η...)'s  are unknown, from an algebraic point of view, there exist infinitely many 
combinations of !(η...)'s  solving the system, because there are more unknowns than equations. 
From the point of view of genetics, however, useful solutions are only those that maximize 
the proportion of variance in the genotypic values explained by the effects of single alleles or 
low-order allele combinations. This reasoning finds a mathematical reflection in the ordinary 
least squares (OLS) solution for the linear regression of !!Gx  on single-locus allele contents !x  

(system S8 taken without the grey-shaded higher order terms on the right). Denoting by!!fx  
the frequency of genotype !x  among individuals in the population, the vector of OLS 
coefficients, !η

* , is found as a solution to the optimization task S9: 

 
!!!
η* = argmin

η
fx(Gx − µ − ηlmxlm

m≤Ml

∑
l≤L
∑ )2

x
∑   (S9) 

The elements !!ηlm
*  of any vector !η

*  solving this optimization task are called additive 

allele effects and the sum 
!!!
Ax = ηlm

* xlm
m≤Ml

∑
l≤L
∑  is called additive genetic value of the genotype 

!x . As a detail, we clarify that for multiple QTLs (!!L>1 ) the vector !η
*  solving S9 is not 

uniquely defined because for each locus one of the allele contents can be expressed as a 
function of the others, i.e. the design matrix of the linear model is not of full rank. However 
the additive genetic values are invariant to the exact choice of !η

* .  

 

ST2.	  Analysis	  of	  bias	  in	  broad-‐sense	  heritability	  estimates	  in	  the	  toy-‐model	  SIR	  
simulations	  

Here, we report an in-depth analysis of several groups of SIR simulations 
corresponding to fixed Within/Between scenarios and average between-contact interval, i.e. 
group of box-plots above a single a value of !1/κ on Fig. 3E in the main text. The purpose of 
this report is to provide details in support of the statements made in the main text pointing out 
various sources of bias in estimating the broad-sense heritability, !!H2 . In order to gain 
statistical power, some of the reported statistics have been taken on the union of recovered 
populations (!!∪Z10k ) of all simulated epidemics within a !1/κ -group. The total number of 
individuals in such a union is indicated in parentheses and denoted by “#all” and the total 
number of donor-recipient pairs is denoted by “#DR”. Cases in which, the total number (#all) 
is lower than !105  indicate that some of the epidemic simulations did not result in an 
outbreak.  

The analysis comprises the following items: 

• Broad-sense heritability !!H
2 = Radj

2  calculated on !!∪Z10k ; 
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• Sample variance of observed !z -values at moment of recovery (sampling) denoted 

!!s
2(z)  and calculated on !!∪Z10k ; 

• Sample variance of !z -values at moment of transmission in donors from donor-
recipient couples in !!∪Z10k , denoted !!s

2(zd ); 

• Sample variance of !z -values at moment of getting infected in recipients from 
sampled donor-recipient couples in !!∪Z10k , denoted !!s

2(zr ) ; 

• Decomposition of the variance in !z -values at the moment before recovery/sampling 
calculated on !!∪Z10k ;  

• Donor-recipient regression slope at moment of transmission !!b[0]= s(zd ,zr )/ s
2(zd )  

and donor-recipient covariance at moment of transmission, !!s(zd ,zr ) , from 

transmission couples in !!∪Z10k ; 

• ANOVA heritability estimate, !!rA[id] , based on individuals grouped by carried strain 

at moment of recovery in !!∪Z10k ; 

• Average phylogenetic Brownian Motion (PMM) heritability, !!HBMe
2 , and estimate of 

the environmental variance !!σ e
2 , from ML PMM fits on all !!Z10k  populations in a !1/κ

-group; 

• Average phylogenetic Ornstein-Uhlenbeck (POUMM) heritability, !!HOUe
2 , and estimate 

of the environmental variance !!σ e
2 , from ML PMM fits on all !!Z10k  populations in a 

!1/κ -group; 

In addition to the above statistics, we have generated a graphical report for each !1/κ -
group under each Within/Between scenario including the following items: 

• A scatter plot of donor and recipient !z -values at moment of transmission from donor-
recipient couples in !!∪Z10k . The points on that plot represent a random sample of 10% 

of the transmission couples in !!∪Z10k  and are colored corresponding to the transmitted 
strain as follows: red – 1:11, green - 2:12, blue - 3:21, cyan - 4:22, violet – 5:31, 
brown – 6:32. Black dash-dotted line represents the least-squares linear regression of 
recipient- on donor value. Red dash-dotted line represents the linear regression of 
recipient- on donor value if the true broad-sense heritability, !!H2 , replaces the least-
squares regression slope, !!b[0] . A mismatch between these two lines indicates a bias 
in !!b[0]  as an estimator of !!H2 . With black circles are shown the means of recipient !z -
values at moment of getting infected corresponding to donor-values, which group 
together upon the transformation “!!round(zd /4,1)*4” in R. When these circles are 
not aligned with the least-squares regression line, we say that there is a non-linear 
relationship between donor-values and expected recipient values.  
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• Density plots of the whole population !!∪Z10k  - black line, the donor values - black 
dashed line, the recipient values – black dotted line, and the corresponding normal 
approximations (grey lines with the same line-patterns). 
Within: neutral / Between: neutral 

In the neutral/neutral case (Fig. 3E) the true !!H2  (wide white boxes) has values 
between 0.3 and 0.5 consolidating around 0.45 as !1/κ  approaches 12. This convergence 
corresponds to an equilibrium state of the infected population, in which all pathogen 
genotypes are encountered at equal frequencies and are uncorrelated with the immune system 
types and the special environmental effects.  

With the exception of !1/κ ∈{2,4} , !!H2  is very well approximated by !!b[0] . For 

!1/κ ∈{2,4} , we observe some bias in these two estimators due to differing strain 
distributions in !!Z10k  and the sampled transmission couples (strain frequencies written on Fig. 
S1A).  

For each !1/κ , !!b[τ ] , are negatively biased with values below 0.3 and going further 
down as !1/κ  increases. This increasingly negative bias is due to the increasing expected 
evolutionary distances τ  (see also Fig. S2A).  

The ANOVA-id estimator is positively biased due to overestimating the genotypic 
variance !!σ̂

2(G) . This overestimation is due to the violation of normality assumption of the 
small set of six genotypic values. Thus, the positive bias is omnipresent in all cases and for 
all values of !1/κ . In real situations with numerous genotypes and approximately normally 
distributed genotypic values, this bias should not exist (validated in additional simulations at 
the end of this section). 

The PMM estimator, !!HBMe
2 , also has an increasingly negative bias. By comparing the 

values of !!σ
2(z)  for !1/κ =2 and !1/κ =10  on Fig. S1B and the PMM estimates of the 

environmental variance, !!σ e
2 , we noticed an increasingly positive bias of !!σ e

2  caused by a 
worsening fit of the BM model on longer transmission trees with very slow growth of 
phenotypic variance. This bias inflicts a strong negative bias of !!HBMe

2 , as an estimator of the 

broad-sense heritability !!H2 .  

The green boxplots of !!HOUe
2  center around the true values of !!H2  with apparently 

widening 95% whiskers as the average time between contacts, !1/κ , approaches 12. This can 
be explained by loss of phylogenetic signal, as the branches in the transmission tree get 
longer and accumulate more mutations due to less frequent transmission events. We note, 
however, that such an effect should be less pronounced in cases of within-host selection. At 
an average around -0.01, the deviation of !!HOUe

2  from !!H2  for all neutral/neutral simulations 
was statistically insignificant (p=0.13), contrasting with significant (p<10-22) negative biases 
for !β[τ ] , and !!HBMe

2  (Table S2).  

Within: select / Between: neutral 
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In the select/neutral case (Fig. 3E) !!H2  varies between 0.2 and 0.3 with a tendency to 
decrease as !1/κ  is increasing. This is due to fixation of the fittest strains as a result of longer 
within-host selection (compare frequencies of strain 3:21 on Fig. S1B).  

!!b[0]  shows a tendency to have a positive bias, more pronounced for bigger values of 

!1/κ , which can be explained by the non-linear relationship between donor-values and 
expected recipient value (Fig. S1B).  

Similarly to the neutral/neutral case, the estimators !!b[τ ] , have significant negative 
bias increasing with !1/κ , although this bias is compensated to some extent by the positive 
bias in the corresponding estimators at moment of transmission.  

Similarly to neutral/neutral case, the PMM estimator, !!HBMe
2 , has an increasing 

negative bias due to the worsening fit of the BM process.  

A small positive bias (mean 0.01 at significant p-value of 3.3E-03, Table S2) is 
noticeable for the phylogeny-based estimator !!HOUe

2 . This bias is due to a departure from 
normality of the distribution of trait values in the population (see density plots on Fig. S1B).  

Within: neutral / Between: select 

The neutral/select case (Fig. 3E) looks similar to the neutral/neutral case except for 
the noticeable negative bias of !!HOUe

2  at !1/κ ≥8 . The negative bias of the POUMM estimator 
for longer waiting times between transmission events is due to the loss of signal in 
phylogenies with very long branches. No epidemic outbreak could be simulated at !1/κ =12 , 
due to very low rate of risky contacts. 

Within: select / Between: select 

In the select/select case (Fig. 3E), !!H2  stabilizes around 0.27 for !1/κ =8 .  

The regression slope at transmission, !!b[0] , has a significant positive bias (means 0.04 
and 0.1, p<1.0E-12, Table S2). This bias results from two sources: smaller variance of donor-
values due to selection for transmission (values of !!σ

2(zd )  on Fig. S1D); non-linear 
dependence of recipient expected phenotype on donor phenotype (black circles on donor-
recipient scatter plot on Fig. S1D).  

Although less pronounced than the neutral/neutral and neutral/select cases, there is a 
significant negative bias of !!b[τ ]  due to the accumulating within-host evolution between 
moments of transmission and recovery. It appears, though, that this bias is weaker compared 
to the within-host neutral cases. The reason for that is two-fold: First, this bias is slightly 
compensated by the positive bias in the corresponding estimators at moment of transmission. 
Second, the within-host selection for higher !z -values tends to slow-down the strain-
substitution rate after a few beneficial mutations. 

Similarly to the neutral/neutral case, the PMM estimator, !!HBMe
2 , has an increasing 

negative bias due to the worsening fit of the BM process (see Fig. 3D).  

At an average of 0.02 (p=6.2E-05) (Table S2), the deviation of !!HOUe
2  from !!H2  for all 

select / select simulations was significant, yet very small compared to the bias of !!b[τ ]  and 

!!HBMe
2 . 
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Clarifying the observed positive bias in ANOVA-CPP (rA) 

Here we demonstrate a positive bias in !rA  with respect to !!Radj
2  for small number of 

groups (genotypes) !K . We show that this bias vanishes for bigger values of !K , i.e. !!K >24 , 
given that the genotypic values are sampled from a normal distribution. For each 
!!K ∈{3,6,12,24,48}  we simulate 100 datasets with !K  genotypes and varying number of 
carriers for each genotype. We draw genotypic values from a normal distribution and add 
random (white) noise to them to construct the phenotype. After estimating !!R2 , !!Radj

2  and !rA  
for each dataset, we report the average values for each !K . 
#	  grand	  mean	  and	  variance	  of	  group	  effects	  
mu	  <-‐	  3.5	  
sigma2a	  <-‐	  1.44	  
	  
#	  within-‐class	  variance	  
sigma2e	  <-‐	  0.36	  
	  
#number	  of	  simulated	  data-‐sets	  with	  K	  groups	  and	  ni	  individuals	  per	  group	  
nIter	  <-‐	  100	  

#	  make	  results	  reproducible	  
set.seed(20)	  

test	  <-‐	  list()	  
#	  number	  of	  classes/groups	  
for(K	  in	  c(3,	  6,	  12,	  24,	  48))	  {	  
	  	  test[[as.character(K)]]	  <-‐	  t(sapply(1:nIter,	  function(iter)	  {	  
	  	  	  	  #	  sample	  group	  means	  at	  each	  iteration	  
	  	  	  	  ai	  <-‐	  rnorm(K,	  mean=mu,	  sd=sqrt(sigma2a))	  
	  	  	  	  	  
	  	  	  	  #	  numbers	  of	  sampled	  individuals	  per	  group	  
	  	  	  	  ni	  <-‐	  sample(20:50,	  K,	  replace=TRUE)	  
	  	  	  	  	  	  	  
	  	  	  	  #	  generate	  data	  
	  	  	  	  data	  <-‐	  data.table(g=do.call(c,	  lapply(1:K,	  function(k)	  rep(k,	  ni[k]))),	  key='g')	  
	  	  	  	  data[,	  z:=rnorm(ni[g],	  mean=ai[g],	  sqrt(sigma2e)),	  by=g]	  
	  	  	  
	  	  	  	  data[,	  G:=mean(z),	  by=g]	  
	  	  	  	  data[,	  e:=z-‐G]	  
	  	  	  
	  	  	  	  anova	  <-‐	  estimH2aov(NULL,	  data,	  NULL,	  by='g',	  report=TRUE)	  
	  	  	  
	  	  	  	  with(anova,	  data[,	  c(K=K,	  H2true=sigma2a/(sigma2a+sigma2e),	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  R2=var(G)/var(z),	  R2adj=1-‐(N-‐1)/(N-‐K)*var(z-‐G)/var(z),	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  rA=H2aov)])	  	  	  
	  	  }))	  
}	  

 

The results show that !rA  dominates !!Radj
2  on average, in particular for small values of 

!K , i.e. !!K ≤12 . The reason is that ANOVA treats the observed !K  group means in the data as 
a small iid sample from a normal distribution and makes an estimate of its variance, !!σ̂

2(G) , 
while !!Radj

2  is free of normality assumption and uses the sample variance !!s
2(G)  with a 

correction for finite degrees of freedom (eq. S3). 
t(sapply(names(test),	  function(K)	  {	  
	  	  colMeans(test[[K]])	  
}))	  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 12, 2016. ; https://doi.org/10.1101/058503doi: bioRxiv preprint 

https://doi.org/10.1101/058503


 38 

##	  	  K	  H2true	  	  	  	  	  	  	  R2	  	  	  	  R2adj	  	  	  	  	  	  	  rA	  
##	  	  3	  	  	  	  0.8	  0.553072	  0.543951	  0.614931	  
##	  	  6	  	  	  	  0.8	  0.712762	  0.705719	  0.740026	  
##	  12	  	  	  	  0.8	  0.775991	  0.769897	  0.785147	  
##	  24	  	  	  	  0.8	  0.789886	  0.783941	  0.791199	  
##	  48	  	  	  	  0.8	  0.796711	  0.790880	  0.794446	  
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Supporting	  programs	  
This study relies on the accompanying R-package “patherit”. The used version of 

these package, together with all program-code used for the toy-model simulations and the 
analysis of HIV-data, are provided in the attached file SP.zip. Inside it, a file named 
ReadMe.txt contains further instructions on how to run the code.  

In addition the following third-party R-packages were used: ape v3.4 (38), data.table 
v1.9.6 (39), adaptMCMC v1.1 (34), Rmpfr v0.6-0 (40), and coda v0.18-1 (41). All 
programs have been run on R v3.2.4. 
 

Figures	  S1-‐S3	  

 
Fig. S1 Analysis of bias of broad-sense heritability estimates in the toy-model 

simulations. Notation: f: probability density function; zd/r: donor/recipient values at the 
moments of transmission; N[mean, variance]: normal distribution; !!ẑr ,OLS(zd ) : ordinary least 

Within: neutral / Between: neutral 

f

1 κ = 10, #all: 70007, #DR: 40039
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zd

z r

● ●
● ● ● ● ●

●
●

●
●

● ● ● ● ●

●

●

zd
zr
ẑr,OLS(zd)
ẑr,H2(zd)
zr | zd

 H2 = Radj
2 = 0.44

 s2(z) = 0.71, s2(zd) = 0.71, s2(zr) = 0.7
 s2(G) = 0.31, s2(I) = 0.04, s2(E) = 0.002, s2(e) = 0.36, 
 −2s(G, E) = 0

 b[0] = 0.44, s(zd, zr) = 0.31 : s(Gd, Gr) = 0.31, 
    s(Gd, Ir + Er + er) = (0.0001) + (0.0001) + (0)
    s(Id + Ed + ed, Gr) = (0) + (0) + (0)
 b[τ] = 0.13, s(zd, zr) = 0.09 : s(Gd, Gr) = 0.31, 
    s(Gd, Ir + Er + er) = (0) + (0.0001) + (−0.22)
    s(Id + Ed + ed, Gr) = (0) + (0) + (0)
 ANOVA: rA[id]=0.48, σ̂

2(G) = 0.37, σ̂
2(e) = 0.4

 PMM: HBMe
2 = 0.05, σe

2 = 0.67

 POUMM: HOUe
2 = 0.42, σe

2 = 0.41

f
0.0 0.2 0.4 0.6 0.8

f(z)
f(zr)
N[ z, s2(z)]
N[ zr, s2(zr)]

Within: select / Between: neutral 

f

1 κ = 10, #all: 40000, #DR: 23037
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H2

B

f(z)
f(zd)
N[ z, s2(z)]
N[ zd, s2(zd)]
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zd

z r ●

●

●
● ●

●

●
●

● ● ● ● ● ● ● ●

●

zd
zr
ẑr,OLS(zd)
ẑr,H2(zd)
zr | zd

 H2 = Radj
2 = 0.22

 s2(z) = 0.52, s2(zd) = 0.53, s2(zr) = 0.58
 s2(G) = 0.11, s2(I) = 0.03, s2(E) = 0, s2(e) = 0.38, 
 −2s(G, E) = 0

 b[0] = 0.29, s(zd, zr) = 0.15 : s(Gd, Gr) = 0.11, 
    s(Gd, Ir + Er + er) = (0.01) + (0.0002) + (0.02)
    s(Id + Ed + ed, Gr) = (0.001) + (0) + (0)
 b[τ] = 0.16, s(zd, zr) = 0.08 : s(Gd, Gr) = 0.1, 
    s(Gd, Ir + Er + er) = (0.01) + (0.0001) + (−0.04)
    s(Id + Ed + ed, Gr) = (0) + (0) + (−0.01)
 ANOVA: rA[id]=0.29, σ̂

2(G) = 0.17, σ̂
2(e) = 0.41

 PMM: HBMe
2 = 0.09, σe

2 = 0.48

 POUMM: HOUe
2 = 0.23, σe

2 = 0.4

f
0.0 0.2 0.4 0.6 0.8

f(z)
f(zr)
N[ z, s2(z)]
N[ zr, s2(zr)]

Within: neutral / Between: select 

f

1 κ = 10, #all: 100003, #DR: 58209
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zd

z r

●

● ● ● ● ● ●
●

●
●

● ● ●

●

●

zd
zr
ẑr,OLS(zd)
ẑr,H2(zd)
zr | zd

 H2 = Radj
2 = 0.34

 s2(z) = 0.51, s2(zd) = 0.42, s2(zr) = 0.49
 s2(G) = 0.17, s2(I) = 0.03, s2(E) = 0.002, s2(e) = 0.3, 
 −2s(G, E) = −0.0001

 b[0] = 0.33, s(zd, zr) = 0.14 : s(Gd, Gr) = 0.16, 
    s(Gd, Ir + Er + er) = (0.0001) + (0) + (0)
    s(Id + Ed + ed, Gr) = (0) + (0) + (−0.02)
 b[τ] = 0.09, s(zd, zr) = 0.04 : s(Gd, Gr) = 0.17, 
    s(Gd, Ir + Er + er) = (0) + (0) + (−0.12)
    s(Id + Ed + ed, Gr) = (0) + (0) + (−0.02)
 ANOVA: rA[id]=0.38, σ̂

2(G) = 0.21, σ̂
2(e) = 0.34

 PMM: HBMe
2 = 0.01, σe

2 = 0.5

 POUMM: HOUe
2 = 0.31, σe

2 = 0.35

f
0.0 0.2 0.4 0.6 0.8

f(z)
f(zr)
N[ z, s2(z)]
N[ zr, s2(zr)]

Within: select / Between: select 

f

1 κ = 8, #all: 90001, #DR: 38692
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2 = 0.27

 s2(z) = 0.51, s2(zd) = 0.45, s2(zr) = 0.48
 s2(G) = 0.14, s2(I) = 0.04, s2(E) = 0.001, s2(e) = 0.33, 
 −2s(G, E) = −0.0001

 b[0] = 0.31, s(zd, zr) = 0.14 : s(Gd, Gr) = 0.14, 
    s(Gd, Ir + Er + er) = (0) + (0) + (0)
    s(Id + Ed + ed, Gr) = (0.001) + (0) + (−0.01)
 b[τ] = 0.21, s(zd, zr) = 0.09 : s(Gd, Gr) = 0.14, 
    s(Gd, Ir + Er + er) = (0) + (0) + (−0.05)
    s(Id + Ed + ed, Gr) = (0) + (0) + (−0.01)
 ANOVA: rA[id]=0.32, σ̂

2(G) = 0.18, σ̂
2(e) = 0.37

 PMM: HBMe
2 = 0.06, σe

2 = 0.48

 POUMM: HOUe
2 = 0.28, σe

2 = 0.36

f
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f(z)
f(zr)
N[ z, s2(z)]
N[ zr, s2(zr)]
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squares regression of recipient- on donor-values at the moments of transmission (using !!b[0]  
as the slope of regression); !!ẑr ,H2(zd ) : regression of recipient- on donor-values upon replacing 

the OLS-slope with the true heritability. A mismatch between black and red dash-dotted lines 
indicates bias in !!b[0]  w.r.t !!H2  due to nonlinear relationship between !zd  and !zr . For a further 
description, see section “Analysis of bias in broad-sense heritability estimates” in Supporting 
Information. 
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Fig. S2 Mean donor- (!τ d ) and recipient (!τ r ) measurement delays in the toy 
model simulations. Each box-whisker represents the average time-period between 
transmission and measurement events in diagnosed donor-recipient couples from up to ten 
simulated epidemic outbreaks under the same contact-rate κ  and between-/within-host 
scenario. Red (donor) and blue (recipient) measurement delays are very similar because both, 
donors and recipients get diagnosed at the same rate. Comparing this figure with Fig 3e in the 
main text confirms that longer measurement delays cause stronger negative bias in 
resemblance-based estimators of heritability. 
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Fig. S3 | Trace-plots and posterior densities from the POUMM MCMC-fits to 

HIV-1 from the UK cohort (8473 patients) 

The parameters α , θ , !!σ OU
2  and !!σ e

2  were sampled via MCMC (as described in 

Methods), while the parameters !!HOU
2  and !!HOUe

2  were calculated from the latter by eq. 9 
(setting !t  to the maximum root-tip distance) and eq. 5. A, trace-plots - the randomness and 
the lack of time-correlation in the traces show the correct mixing of the MCMC chain; B, 
Inferred posterior densities, black: MCMC sample density functions; blue: prior density 
functions. The clear distinction between prior and posterior densities proves the presence of 
informative signal in the data. 
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Tables	  S1-‐S4	  
 
Table S1 Within- and between-host SIR dynamics 
 

Scope Parameter neutral select 

Be
tw

ee
n-

ho
st

 

Natural birth rate !αnat =117.6  

Natural per capita death rate !δnat =1/850  

Per capita recovery rate !ρ =1/48  

Per capita contact rate !κ ∈{12 , 14 , 16 , 18 , 110 , 112}  

Per capita risky contact rate (S: 
current proportion of susceptible 
in the pop.) 

!S ×κ
  

Per risky contact transmission 
probability  !γ neutral = .45  !!

γ (z)= γ min +
(γ max−γ min )(γ 50 )

γ k

10zγ k +(γ 50 )
γ k , where 

!γ min = .3,γ max = .6,γ 50 =103,γ k =1.4  

Per capita death rate for infected 
individuals !δneutral = .01  !!

δ(z)=δnat +
10zDk +(D50 )

Dk

Dmin10
zDk +Dmax(D50 )

Dk , where 

!!Dmin =2,Dmax =300,D50 =10
3,Dk =1.4  

W
ith

in
-h

os
t 

Per locus pathogen mutation rate !νneutral = .01  !!
ν(z)= νmax(ν50 )10

zνk

10zνk +(ν50 )
νk , where 

!νmax = .2,ν50 =10
3,νk =1.4  

Rate of substitution of strain 
!!
x j  

for 
!!
xi , where 

!!
xi ≠ x j  at a single 

locus, !l , 
!
Ml  is the number of 

alleles at locus !l , and the 
corresponding values are 

!
zi  and 

!
z j  

!!
ξl =

νneutral
Ml −1

 ξl ,i← j (zi ,z j ) =
ν(zi )
Ml −1

if ν(zi ) <ν(z j )

0 , otherwise       

⎧

⎨
⎪

⎩
⎪

 

 

For description of each parameter, see Methods.  
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Table S2 Mean difference !! H2! −H2  from the SIR simulations grouped by scenario 

 
Within / Between !!b[0]  !!b[τ ≤D1]  !!b[τ ]  !!rA[id]  !!rA[PP:τ ≤D1]   !!

rA[PP :τ ]   !!HBMe
2

 !!HOUe
2

 
neutral/neutral -0.01** -0.07*** -0.25*** 0.05*** -0.05*** -0.18*** -0.28*** -0.01 

select/neutral 0.05*** 0 -0.07*** 0.08*** 0 -0.06*** -0.12*** 0.01** 

neutral/select -0.02*** -0.05*** -0.2*** 0.05*** -0.06*** -0.15*** -0.24*** -0.02*** 

select/select 0.04*** -0.01 -0.06*** 0.06*** -0.03** -0.08*** -0.16*** 0.03*** 

Statistical significance was estimated by Student’s t-tests, p-values denoted by an 
asterisk as follows: * p<0.05; ** p<0.01; *** p<10-3. Values in grey indicate that these 
estimates are typically unavailable in practice. 
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Table S3 Sources of bias in estimators of !!H2  

 
                                             Estimator of !!H2  
 
Source of Bias 

!!b[0]  !!b[τ ≤D1]  !!b[τ ]  !!rA[id]  !!rA[PP:τ ≤D1]   !!rA[PP:τ ]  !!HBMe
2

 !!HOUe
2

 

Gradual within-host pathogen evolution 0 - --- 0 - -- 0 0 
Finite range of trait value (violated BM 
assumption) 0 0 0 0 0 0 --- 0 

Nonlinear dependence of expected recipient 
value on donor value ++/-- ++/-- ++/-- 0 0 0 0 0 

Non-normality of !z  and !G  +/- +/- +/- +/- +/- +/- +/- +/- 

Loss of phylogenetic signal due to scarcity of 
the transmission tree 0 0 0 0 0 0 -/+ -/+ 

Presence of outliers in the data, such as close 
PPs with high phenotypic difference +/- +/- +/- -- -- -- - - 

Non-homogeneity of the evolutionary process 
over the tree (i.e. demographic changes, 

migrations, etc)(5) 
0 - --- 0 - --- +/- +/- 

Random error in the inferred transmission tree 0 0 0 0 - - - - 
Bias in transmission tree due to QTLs under 
selection in the region used for phylogenetic 
inference 

0 0 0 0 ? ? ? ? 

Partial quasi-species transmission  -- -- -- 0 -- -- -- -- 

The direction of the bias is indicated by a “+” or a “-“, separated by a “/” when both 
directions are possible. The number of signs indicates the relative intensity of the bias that 
was observed in the simulations or in the analysis of the HIV-1 data. A zero indicates no bias 
observed. A “?” indicates unknown (and probably context-specific) direction. Lines separate 
sources that were identified in the SIR simulations (top) from sources identified in the 
analysis of the HIV-1 data (middle) and sources suggested by this or previous works that 
were not tested (bottom). Written in grey are estimators, which are not available in practice. 
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Table S4 ANOVA-CPP and POUMM estimates of !lg(spVL)-heritability in HIV-1 
data from UK 

 

Method 
All tips in the phylogeny Without outlier CPPs 

!N  !!Ĥ2  95% CI !N  !!Ĥ2  95% CI 

ANOVA-CPP (!!rA[PP:τ ≤10
−4 ] ) 232c 0.16c [0.01, 0.30]c 222 0.31 [0.19, 0.43] 

ANOVA-PP (!!rA[PP:τ ] )a 3834c 0.11c [0.07, 0.14]c 3824 0.11 [0.08, 0.14] 

POUMM (!!HOUe
2 ) 8483c 0.20c [0.13, 0.29]c 8473 0.25 [0.16, 0.36] 

POUMM, no CPP (!!HOUe
2 :τ >10−4 ) 8251 0.22 [0.13, 0.35]  =  

PMM (!!HBMe
2 )b 8483c 0.06c [0.02, 0.09]c 8473 0.06 [0.02, 0.10] 

PMM, ReML (15)b 8483c 0.06c [0.03, 0.09]c  -  

Also written are the results from a previous analysis on the same dataset (15). ‘=’: the 
input data (and MCMC prior) is not altered by filtering out outlier CPPs; ‘-‘: the analysis not 
done by the cited study. Grey: !!H2 -estimates that are considered unreliable due to: a: negative 
bias due to measurement delays; b: negative bias due to BM violation; c: presence of outlier 
CPPs;  
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