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The idea of driving genetically modified alleles to fixation in a population has fascinated 

scientists for over 40 years1,2. Potential applications are broad and ambitious, including the 

eradication of disease vectors, the control of pest species, and the preservation of 

endangered species from extinction3. Until recently, these possibilities have remained 

largely abstract due to the lack of an effective drive mechanism. CRISPR/Cas9 gene drive 

(CGD) now promise a highly adaptable approach for driving even deleterious alleles to 

high population frequency, and this approach was recently shown to be effective in small 

laboratory populations of insects4-7. However, it remains unclear whether CGD will also 

work in large natural populations in the face of potential resistance mechanisms. Here we 

show that resistance against CGD will inevitably evolve unless populations are small and 

repair of CGD-induced cleavage via nonhomologous end joining (NHEJ) can be effectively 

suppressed, or resistance costs are on par with those of the driver. We specifically calculate 

the probability that resistance evolves from variants at the target site that are not 

recognized by the driver's guide RNA, either because they are already present when the 

driver allele is introduced, arise by de novo mutation, or are created by the driver itself 

when NHEJ introduces mutations at the target site. Our results shed light on strategies that 
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could facilitate the engineering of a successful drive by lowering resistance potential, as 

well as strategies that could promote resistance as a possible mechanism for controlling a 

drive. This study highlights the need for careful modeling of CGD prior to the actual 

release of a driver construct into the wild. 

 

CGD involves the design of an autonomous genetic construct that contains Cas9, a guide 

RNA (gRNA) targeting a specific site in the genome, and flanking homology arms to facilitate 

incorporation into that genome3,4. In heterozygotes, the driver can cleave the sister chromosome 

at the target site and insert itself via homology-directed repair, converting heterozygotes for the 

driver construct into homozygotes (Fig. 1a). In addition, arbitrary genetic segments can be 

included in the construct that will be transmitted alongside the driver.  

As a proof of concept, Gantz and Bier4 showed that CGD was highly effective at spreading a 

mutant allele in a laboratory cross of D. melanogaster. A similar construct conferring resistance 

to Plasmodium falciparum was successfully introduced into a laboratory population of 

Anopheles mosquitoes5,7. Theoretical analyses in a Wright-Fisher framework with conversion, 

selection, and drift also showed that CGD can in principle lead to rapid fixation of a driver allele 

even when it carries a substantial fitness cost8,9. 

The key to determining whether CGD can actually transform natural populations is in 

understanding the likelihood that resistance will evolve against the driver construct. Such 

resistance may arise from alleles at the target locus that do not drive themselves but also cannot 

be converted by the driver, because they are not recognized by the gRNA. Cas9 tolerates only a 

few mismatches between the 20 bp-long target sequence and gRNA, and none in the upstream 

PAM sequence10. It stands to reason that most indels inside the target sequence will prevent 
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binding as well. Despite experimental evidence suggesting that such resistance can evolve 

quickly11,12, this problem has not been addressed in theoretical models of CGD.  

To study the probability that resistance evolves against CGD we devised a population genetic 

model of a single locus with three classes of alleles: wildtype (0), driver (d), and resistance (r). 

The driver cleaves the wildtype allele in a driver/wildtype heterozygote at rate c. In a fraction δ 

of cases, repair of such breaks creates a resistance allele when NHEJ introduces an indel at the 

target site. Resistance alleles can also arise by de novo mutation in wildtype alleles at rate μ, 

specifying an effective rate including all possible mutations that create a resistance allele. For 

simplicity, we consider resistance a binary trait – alleles are completely resistant or completely 

susceptible. We set the fitness of wildtype homozygotes to ω00 = 1, whereas all other genotypes 

can carry arbitrary fitness cost, ωij = 1-sij ≤ 1.   

In this model, we can express the expected values of allele frequencies xd(t), xr(t), and x0(t) as 

functions of their frequencies in the previous generation, the fitness costs of the different 

genotypes, and the rates c, μ and δ (SI section 1.2). These equations then fully describe the 

dynamics of allele frequencies from a given set of starting frequencies in a deterministic 

scenario, which will be appropriate once allele frequencies are large enough such that genetic 

drift can be ignored. Alternatively, these equations can be incorporated into a Wright-Fisher 

framework that explicitly takes drift into account.  

We distinguish three mechanisms by which resistance alleles can originate: (i) standing 

genetic variation (SGV); (ii) de novo mutation after the driver is introduced (specified by μ); and 

(iii) double strand break-repair by NHEJ (specified by δ). Let PSGV, Pμ and Pδ denote the 

probabilities that resistance evolves by each particular mechanism, assuming that it does not 

evolve by any of the other mechanisms. Each probability depends on the supply of resistance 
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alleles by its mechanism and the probability π(t) that a resistance allele successfully establishes 

in the population (i.e., is not lost by drift) when it is initially present in a single copy in 

generation t. 

Calculation of π(t) is complicated by the fact that the effective fitness advantage of a 

resistance allele over the population mean, se(t), is a function of the driver frequency and thus is 

time-dependent. When the driver is at low frequency, se(t) will be small or could even be 

negative if resistance alleles carry costs themselves. Only as the mean population fitness 

decreases when a deleterious driver spreads will se(t) increase. We calculated π(t) in our model 

by adapting results from Uecker and Hermisson13 (SI section 2.1). 

To quantify the expected supply of resistance alleles from SGV, we assumed mutation-

selection-drift balance prior to the introduction of the driver, which is determined by the fitness 

costs of resistance alleles in the absence of a driver and the population-level mutation rate toward 

resistance alleles, θ = 4Neμ where Ne is the variance effective population size14. De novo mutation 

creates resistance alleles at rate uμ(t) ≈ 2Nμ[(1-xd)2+xd(1-xd)(1-c)], where N is the census 

population size. This rate is proportional to the number of wildtype alleles and thus decreases as 

the driver spreads. NHEJ creates resistance alleles at rate uδ(t) ≈ 2Nδcxd(1-xd), which is 

proportional to the number of wildtype/driver heterozygotes and thus is highest when the driver 

is at intermediate frequency. Combining these rates with our analytic result for π(t) enabled us to 

calculate the individual resistance probabilities PSGV, Pμ and Pδ, provided in Equations (16), (19), 

and (22) in SI. Note that once a driver has fixed in the population, resistance can no longer 

evolve by any of the above mechanisms. 

To dissect how resistance probabilities depend on the different parameters, we first defined a 

“standard” model and then varied its parameters independently. This model assumes efficient 
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conversion, c = 0.9, and cost-free resistance, sr0 = srr = 0. Driver alleles, by contrast, carry a 

substantial cost that is codominant, sd0 = sdd/2 = 0.1. We set δ = 10-6, μ = 10-8, and assume N = Ne 

= 106. Driver alleles are introduced at frequency xd(0) = 10-5. Figure 1b shows how xd(t), se(t), 

π(t), uμ(t), and uδ(t) change over time in this model when no resistance alleles are yet present. 

Whether resistance evolves from SGV is primarily a function of the number of resistance 

alleles present when the driver is introduced (Fig. 1c), which is determined by θ in our standard 

model with cost-free resistance. If resistance alleles carry fitness costs themselves, this can lower 

PSGV by reducing their expected frequency in the SGV (Fig. 1d). However, this effect becomes 

significant only when resistance costs are codominant, not when they are recessive (SI Fig. 2c,d). 

Lower cleavage rates only slightly decrease establishment probabilities (Fig. 1c). This is because 

for a slower driver it will take longer until resistance alleles from the SGV experience their 

fitness advantage, increasing their chances of being lost to drift and/or selection in the meantime. 

Similarly, lower driver costs decrease π(t) and thus PSGV, as resistance alleles will have a smaller 

fitness advantage (SI Fig. 2b). Generally, as long as resistance alleles do not carry large costs 

themselves and provide any fitness advantage over the driver, evolution of resistance from the 

SGV is practically assured whenever θ > 0.1, whereas it remains unlikely for θ << 0.1 (Fig. 1d, 

SI Fig. 2), consistent with general results for the probability of adaptation from SGV after an 

environmental shift14-17. 

The likelihood that resistance evolves from de novo mutation also depends strongly on θ, 

with resistance becoming likely once θ > 1. Lower cleavage rates increase Pμ (the opposite effect 

they have on PSGV) because a slower driver provides more time for resistance alleles to emerge 

before the driver can fix (Fig. 1e). Lower driver costs again reduce Pμ by lowering π(t) (SI Fig. 

3b). We find that in most scenarios PSGV is higher than Pμ. Thus, resistance is more likely to 
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evolve from alleles in the SGV than from de novo mutation after introduction of the driver, 

unless the drive is very slow.   

The key parameter determining the likelihood of resistance from NHEJ is the product Neδ, 

similar to the role played by θ = 4Neμ for de novo mutation. Whenever Neδ > 1, resistance 

becomes likely (Fig. 1f). In contrast to de novo mutation, the cleavage rate here has very little 

impact on Pδ (SI Fig. 4b). This is because the overall number of resistance alleles that arise by 

NHEJ depends only weakly on c (SI section 2.4). Lower fitness costs of the driver again decrease 

Pδ by reducing π(t) (Fig. 1f). 

So far, we have assumed that driver costs are codominant. Recessive driver costs will 

facilitate faster initial spread of the driver, whereas dominant costs will slow it down. However, 

these differences are only marginal for the selection coefficients and cleavage rate in our 

standard model (Fig. 2a), as frequency changes of the driver allele between generations are still 

dominated by conversion, rather than selection.  

Dominance of the driver can nevertheless have strong impact on the probability that 

resistance arises, due to its effects on the fitness of driver/resistance heterozygotes. If driver costs 

are recessive, se(t) will be larger than in the codominant case once the driver becomes more 

frequent, increasing π(t) (Fig. 2a). By contrast, if driver costs are completely dominant, 

driver/resistance heterozygotes will have no fitness advantage over driver homozygotes. Whether 

resistance can still evolve in this case is analogous to the question of whether a recessive 

beneficial mutation can establish, which requires a high initial frequency of that mutation so that 

homozygotes will be present in the population (Fig. 2b, SI section 3.2). For example, when the 

driver has a dominant fitness cost of sdd = 0.1, resistance alleles would have to be present at 
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~0.1% frequency in order to have a 50% chance of successfully establishing. Note that we would 

expect this to be the case in scenarios with δ > 10-3 (SI section 3.1). 

Given PSGV, Pμ and Pδ, we can calculate the total probability that resistance evolves by any of 

the mechanisms: Ptot = 1-(1-PSGV)(1-Pμ)(1- Pδ). Figure 4 shows Ptot over a wide parameter space. 

Consistent with the above results, Ptot depends primarily on three factors: Ne, μ, and δ. Resistance 

is generally likely to evolve whenever either θ > 0.1, or Neδ > 1, as long as resistance alleles 

provide any fitness advantage over the driver and driver costs are not completely dominant. 

We expect that in many intended target systems for CGD, such as mosquitoes, these 

conditions are typically exceeded. Estimates of single nucleotide mutation rates tend to be on the 

order of 10-9 - 10-8 in such species18-20 and a single mutation in the PAM motif suffices to create a 

resistance allele10. In addition, indels should occur within the 20 bp-long target sequence at rates 

comparable to the single nucleotide mutation rate21. We have shown that for values of μ in this 

range, resistance is already likely when Ne = 106, which is compatible with estimates from levels 

of neutral diversity in insect populations22. In many systems, the short-term values of Ne relevant 

for a process as rapid as CGD may even be much larger than these values obtained from neutral 

diversity17,23, which will often be dominated by seasonal population crashes (e.g., caused by the 

winters in a temperate region) and historical bottlenecks24,25. Census population sizes in insects 

can easily reach billions and more at certain times of the year and resistance alleles will 

inevitably arise during these times when mutations are not limiting. If several generations occur 

between collapses, these alleles could reach sufficiently high frequencies prior to the next crash 

to persist26. Resistance probabilities may then actually depend on whether a driver is released in 

the spring or the fall. Note that our theoretical model can be easily extended to study such 

scenarios (SI section 3.4). Finally, even when assuming a comparatively small population, say Ne 
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= 105, this still puts a strong bound on NHEJ rates (δ < 1/Ne) to prevent resistance from this 

mechanism. Experimental studies suggest that NHEJ rates are much higher even when steps have 

been taken to suppress it5. Of course, resistance from NHEJ may not be relevant in some 

scenarios3.    

Our modeling framework allows us to evaluate and compare specific CGD strategies. One 

proposed strategy is to break an existing gene (e.g., a gene involved in insecticide resistance)3. In 

this case, NHEJ-repair could achieve the intended result – a broken copy of the gene. Since these 

alleles should carry similar costs as the driver, they are not likely to rise in frequency. However, 

resistance may still evolve if some mutations change the target sequence without actually 

breaking the gene, or if the ability to drive itself is already associated with some fitness costs, as 

will likely be the case if off-target effects of the driver have not been completely suppressed27-29. 

Another proposed strategy is the insertion of a new gene (e.g., a gene that prevents 

mosquitoes from transmitting malaria5). If the target site is a non-functional region, NHEJ could 

then create cost-free resistance alleles, making resistance highly probable. To avoid this, Esvelt 

et al.3 suggested targeting an essential gene for cleavage, where incorporation of the driver would 

rescue gene function, whereas NHEJ would likely knock out the gene. Note that in this case 

resistance may still evolve if NHEJ does not always completely knock out the gene. One strategy 

that could substantially reduce resistance potential would be engineering a driver with fitness 

costs that are completely dominant (SI section 3.2). 

Though we have shown that resistance is almost a foregone conclusion in many standard 

scenarios of CGD, the lag time before resistance alleles actually become frequent may still allow 

for effective intervention strategies in the short term. Figure 4a shows that it takes over 100 

generations until resistance alleles reach 50% frequency in our standard model, whereas the 
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driver reaches >99% frequency in less than 30 generations. This lag time depends on the 

selective advantage of the resistance allele compared to the driver and can be yet much longer if 

driver costs are lower (Fig. 4b). For some applications, this may be good enough, as subsequent 

CGD constructs could be designed and released that specifically target resistance alleles, based 

on regular surveys of genetic variation in the target gene – a process that may be more effective 

than the use of multiple gRNAs from the outset3. Note that our theory also allows the assessment 

of strategies involving the purposeful release of resistance alleles for controlling a drive. 

It is clear that there is a need for more detailed modeling of CGD on several fronts. For 

example, we assumed that resistance is a binary trait, yet resistance levels could depend on 

number, type, and location of mutations in the target site10. Furthermore, resistance alleles may 

be created if homology-directed repair inserts the driver construct, but introduces errors that 

prevent it from driving. We also limited our study to resistance at the target site, even though 

trans resistance might be common. CGD hosts may harbor natural variation for Cas9 expression 

levels or may produce peptides or RNA that silences the CRISPR machinery30. The possibility of 

all these other resistance mechanisms suggests that our estimates for the probability that 

resistance evolves are likely conservative. Our assumptions of a panmictic population of constant 

size could also be overly simplistic, especially since drivers might be specifically designed to 

reduce population sizes. In such cases, the lag time between the loss of the wildtype and the 

spread of resistance could be crucial. For example, a deleterious driver that quickly reaches 99% 

frequency in the population may be sufficient to cause extinction, even though resistance would 

ultimately evolve in a model with constant population size. In structured populations, CGD 

might even result in local extinction when a deleterious driver allele becomes fixed in a local 

subpopulation before it manages to spread into other parts of the population.  
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Throughout this analysis we remained purposefully agnostic to the potential benefits and 

risks of the release of this type of potent biological technology. We do, however, acknowledge 

the need for extensive discussion among scientists, policy makers, and the public before release 

takes place3,31,32.  It is our hope that this work facilitates such discussion.  
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Figure 1 | CGD dynamics and resistance probabilities. a, In heterozygotes, the driver cleaves 

the wildtype chromosome at the target site. Cleavage-repair by NHEJ can create a resistance 

allele, e.g., by introducing an indel (green) at the target site, whereas homology-directed repair 

will create a driver homozygote. b, The driver initially grows exponentially and fixes after ~30 

generations in our standard model; uμ(t) is proportional to the frequency of wildtypes and thus 

decreases as the driver becomes more frequent; uδ(t) is proportional to the frequency of 

driver/wildtype heterozygotes and is thus maximal for intermediate driver frequencies; π(t) 

increases with driver frequency, but is already quite high in generation zero, because resistance 

alleles from the SGV only have to survive a few generations of drift before their relative 

selective advantage becomes noticeable. c, Probability that resistance establishes from the SGV 

as a function of the initial copy number (n0) in which resistance alleles are present when the 

driver is introduced. Shown are the standard model, a scenario in which the driver cleaves at only 
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50% efficiency, and a scenario where driver cost is ten times smaller. d, PSGV as a function of θ 

under codominant resistance cost. Higher resistance costs reduce PSGV. e, Pμ as a function of θ 

and cleavage rate c. Higher c slightly increases Pμ. f, Pδ as a function of θ and driver cost. Higher 

driver cost decreases Pδ. In d,e, we varied Ne while keeping μ = 10-8 constant. In f, we varied Ne 

while keeping δ = 10-6 constant.  

 

 

 

Figure 2 | Recessive and dominant driver costs. a, Driver allele frequency trajectories, 

effective fitness advantage of resistance allele, and establishment probabilities under recessive, 

codominant, and completely dominant driver fitness costs in our standard model. π(t) is not 

visible in the dominant scenario as it is very close to zero. b, Threshold frequencies x0 at which a 

resistance allele needs to be present to have the given establishment probability in the case of a 

completely dominant driver with cost sdd. 
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Figure 3 | Overall probability that resistance evolves. a,b, Ptot as a function of μ and δ in our 

standard model for two different effective population sizes Ne = 106,107. c, Scenario with low 

driver cost: sd0 = sdd/2 = 0.01. This allows for somewhat larger values of δ before resistance 

evolves. The dependence on μ, however, does not change much, since PSGV does not depend 

strongly on driver cost. d, Scenario in which resistance alleles carry a (codominant) fitness cost 

that is 90% that of the driver: sr0 = 0.9sd0 = srr/2 = 0.09. In this case, resistance is unlikely to 

evolve from SGV or de novo mutation. However, it will still evolve by NHEJ whenever δ > 10-5. 
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Figure 4 | Replacement of driver by resistance allele. a, Deterministic frequency trajectory of 

driver allele in our standard model and its replacement by a resistance allele from the SGV that 

was initially present as a single copy (solid line) or one hundred copies (dashed line) when the 

driver was introduced. b, Time until resistance allele and driver allele reach 50% population-

frequency in a when varying driver cost sd0. Once driver cost reaches sd0 ≈ 0.25 in our model, the 

driver will be outpaced by the resistance allele before it can reach 50%. 
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Supplementary Information

1 Population genetic model of CGD

1.1 Definition

Consider a locus with three types of alleles: wildtype (0), driver (d), and resistance (r). In our
model, we define a resistance allele to be any allele that cannot drive and also cannot be con-
verted into a functioning driver by the CGD machinery (i.e., complete resistance). Let x

0

(t),
x

d

(t), and x

r

(t) denote the frequencies of these alleles in generation t. We assume that the
driver is initially introduced into the population in generation t = 0 at frequency x

d

(0). Let c spec-
ify the rate at which the driver successfully creates a double-strand break in a driver/wildtype
heterozygote (the cleavage rate). Let � specify the fraction of cases in which the repair of such
breaks creates a resistance allele that can no longer be targeted by the gRNA – the typical out-
come when repair occurs by NHEJ rather than HR. Let µ specify the rate at which resistance
alleles arise by de novo mutation in wildtype alleles in the germline. This specifies an effective
rate that includes all possible mutations that can create a resistance allele at the locus, such as
single nucleotide mutations in the PAM motif or frameshifting indels within the target sequence.
We normalize fitness such that wildtype homozygotes have a fitness !

00

= 1, whereas all other
genotypes can carry arbitrary fitness cost, !

ij

= 1 � s

ij

 1. We model a large, panmictic
population of variance effective population size N

e

and census population size N .

parameter description
x

d

(0) introduction frequency of driver allele
c cleavage rate in driver/wildtype heterozygotes
� fraction of cases in which repair generates resistance allele by NHEJ
µ rate at which wildtype allele mutates into resistance allele
s

d0

fitness cost of driver/wildtype heterozygotes
s

dr

fitness cost of driver/resistance heterozygotes
s

r0

fitness cost of resistance/wildtype heterozygotes
s

dd

fitness cost of driver homozygotes
s

rr

fitness cost of resistance homozygotes
N

e

variance effective population size
N census population size

Note that generally there could also exist other alleles at the locus. For example, one may
want to distinguish resistance alleles that arise by de novo mutation from those that arise by
NHEJ, or resistance alleles that were already present as natural variation in the population.
Depending on the specific drive scenario, these different resistance alleles could carry different
costs. However, in our model we effectively combine all resistance alleles into a single class
with the same fitness costs.

1
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1.2 Deterministic frequency dynamics

We initially assume that both � and µ are small, such that the generation of new resistance
alleles through de novo mutation or NHEJ does not noticeably affect wildtype and driver allele
frequencies. Otherwise resistance will generally evolve quickly, as we will show below. Given
allele frequencies x

d

, x
r

, and x

0

in generation t, the expected values of these frequencies in
generation t+ 1 are:

E[x

0
d

] =

x

d

x

0

[(1� c)!

d0

+ 2c!

dd

] + x

d

x

r

!

dr

+ x

2

d

!

dd

!(t)

, (1)

E[x

0
r

] =

x

r

x

0

!

r0

+ x

r

x

d

!

dr

+ x

2

r

!

rr

!(t)

, (2)

E[x

0
0

] = 1� E[x

0
d

]� E[x

0
r

]. (3)

The contributions to the numerator in Equation (1) are as follows: The first term specifies
the contributions of driver/wildtype heterozygotes that either successfully converted into driver
homozygotes and thus now have fitness !

dd

, which is expected to occur for a fraction c(1��) ⇡
c of driver/wildtype heterozygotes, or failed to convert and thus remain heterozygotes with
fitness !

d0

, which is expected to occur for a fraction 1 � c(1 � �) ⇡ 1 � c of driver/wildtype
heterozygotes. The second and third terms specify the contributions from driver/resistance
heterozygotes (fitness !

dr

) and driver homozygotes (fitness !

dd

), respectively. In Equation (2),
the first term in the numerator specifies the contribution from resistance/wildtype heterozygotes,
the second term specifies the contributions from resistance/driver heterozygotes, and the third
term specifies the contribution from resistance homozygotes. Equation (3) directly follows from
the fact that all three allele frequencies have to sum up to one.

The mean population fitness in generation t is given by:

!(t) = 2x

d

x

0

[(1� c)!

d0

+ c!

dd

] + 2x

r

x

0

!

r0

+ 2x

r

x

d

!

dr

+

X

i

x

2

i

!

ii

. (4)

For any particular set of starting frequencies, these equations fully describe the population
dynamics of the three alleles when assuming a deterministic scenario in which the alleles follow
their expected allele frequencies exactly. This assumption will be appropriate when the alleles
are segregating at high enough frequencies in a sufficiently large population, such that selective
forces outweigh drift. However, we can also use these equations to specify expected values in
Wright-Fisher-type simulations that explicitly incorporate random genetic drift.

1.3 Driver dynamics in the absence of resistance

We and others have previously shown that these dynamics can already produce rich behavior in
the absence of resistance (UNCKLESS et al. 2015; BURT 2003). Possible outcomes can include
the fixation of the driver, loss of the driver, and both stable or unstable equilibria, depending on
the cleavage rate, c, the fitness costs of the driver allele, s

dd

and s

d0

, and the initial frequency
x

d

(t = 0) at which the driver is introduced into the population. Briefly, in scenarios with high
cleavage rate and small fitness costs, the driver will usually fix even when introduced at low

2
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frequency, whereas for low c and high fitness costs the driver may not be able to invade at all.
Intermediate scenarios can give rise to equilibria that are usually unstable, but can be stable if
c is small and fitness costs are low and recessive. For the remainder of this study, we will focus
only on cases where, in the absence of resistance, the driver allele can go to fixation.

2 Resistance evolution

Resistance alleles can originate by three different mechanisms in our model: (i) they can al-
ready be segregating as standing genetic variation (SGV) in the population when the driver
is introduced; (ii) they can arise by de novo mutation in wildtype genomes while the driver is
spreading; and (iii) they can be created by the drive itself when cleavage repair via NHEJ results
in mutated target sites that can no longer be recognized by the gRNA.

The overall likelihood that resistance evolves will depend on the supply of resistance alle-
les through the individual mechanisms, and the so-called establishment probability ⇡(t) that a
resistance allele successfully establishes in the population (i.e., is not lost by drift) when it is
initially present in a single copy in generation t. Before we discuss the individual contributions
of resistance from SGV, de novo mutation, and NHEJ, we will first show how establishment
probabilities ⇡(t) can be calculated in our model.

2.1 Establishment probability of a single resistance allele

As long as resistance alleles are still rare, most of them should only be present in heterozygotes
and we can therefore neglect resistance homozygotes. If a resistance allele is present at a very
small frequency x

r

(t) in generation t, its expected frequency in the next generation will be:

E[x

0
r

] ⇡ x

r

(1� x

d

)!

r0

+ x

r

x

d

!

dr

!(t)

, (5)

which can be rearranged into:

E[x

0
r

] ⇡ x

r

[1 + s

e

(t)] with s

e

(t) =

(1� x

d

)!

r0

+ x

d

!

dr

!(t)

� 1. (6)

This ‘effective’ selection coefficient s

e

(t) specifies the expected change in frequency of the
resistance allele in generation t under a model of exponential growth. Note that s

e

(t) is time-
dependent, as it is a function of the driver frequency. If resistance alleles carry a cost them-
selves, then s

e

(t) could initially be negative and turn positive only after the driver has reached
a certain frequency in the population.

To calculate s

e

(t) in a given generation t, we need to know the frequency x

d

(t) of the driver
allele in that generation. Since we assume that resistance alleles are still at very low frequency,
such that x

d

(t) ⇡ 1� x

0

(t), our dynamics from Equations (1)-(4) simplifies into:

x

0
d

=

x

d

(1� x

d

)[(1� c)!

d0

+ 2c!

dd

] + x

2

d

!

dd

!(t)

with

!(t) = 2x

d

(1� x

d

)[(1� c)!

d0

+ c!

dd

] + x

2

d

!

dd

+ (1� x

d

)

2

.

(7)
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Assuming a deterministic model for the driver frequency, we can then calculate x

d

(t) recursively
from its given starting frequency x

d

(t = 0).
UECKER and HERMISSON (2011) recently derived the establishment probability of a new

mutation for the general case that its selection-coefficient is time-dependent. Their theory can
be directly adopted to our scenario if we assume that the new mutation is a resistance allele and
its selection is given by s

e

(t). According to Equation 16 in (UECKER and HERMISSON 2011),
the establishment probability of a resistance allele initially present in a single copy at time t is
then given by:

⇡(t) =

2

1 + (N/N

e

)

R1
t

e

�
R
x

t

s

e

(y)dy

dx

. (8)

Note that the results from UECKER and HERMISSON (2011) can also be used to model scenar-
ios where census and effective population sizes are time-dependent (see section 3.4). Here
we restrict ourselves to scenarios in which N and N

e

are constant.
In order to calculate the improper integral in the denominator of Equation (8) for t < t

fix

, we
can split it into two components, prior to and after fixation:

Z 1

t

e

�
R
x

t

s

e

(y)dy

dx =

Z
t

fix

t

e

�
R
x

t

s

e

(y)dy

dx+

Z 1

t

fix

e

�
R
x

t

s

e

(y)dy

dx. (9)

The integral in the exponent of the second summand still extends back to time t, but we can
partition it as well into a component prior to t

fix

and one afterwards, and then make use of the
fact that s

e

(t � t

fix

) = s

e

(t

fix

) will no longer depend on t. This yields:
Z 1

t

fix

e

�
R
x

t

s

e

(y)dy

dx =

Z 1

t

fix

e

�
hR

t

fix

t

s

e

(y)dy+

R
x

t

fix

s

e

(y)dy

i

dx

= e

�
R
t

fix

t

s

e

(y)dy ⇥
Z 1

t

fix

e

�s

e

(t

fix

)(x�t

fix

)

dx

=

e

�
R
t

fix

t

s

e

(y)dy

s

e

(t

fix

)

.

(10)

For t � t

fix

, we simply obtain:
Z 1

t

e

�
R
x

t

s

e

(y)dy

dx =

1

s

e

(t

fix

)

. (11)

Both of these integrals diverge when s

e

(t

fix

) = 0, which could be the case if the fitness cost of
the driver is completely dominant and resistance alleles would therefore not provide any fitness
advantage in driver/resistance heterozygotes. We will discuss this particular scenario below in
section 3.2. For now, we will assume that s

e

(t

fix

) > 0.
Importantly, all of the above integrals are defined over continuous time, whereas in our

model generations are discrete and values for s
e

(t) are only defined for t 2 N
0

. Before we can
estimate establishment probabilities in our discrete model, we first have to map these integrals
onto sums over discrete generations. In the following, we will always use i, t, t

0 2 N
0

to denote
discrete variables (generations), whereas x, y 2 R will denote continuous variables.
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For mapping s

e

(t) onto continuous time, we will extend it to a piece-wise constant function
with s

e

(t+ x) = s(t) for 0 < x < 1. We can then associate the integrals inside the exponents in
Equation (9), estimated between two discrete generations t < t

0, with sums of the form:

g(t, t

0
) =

Z
t

0

t

s

e

(y)dy ⇡
t

0�1X

i=t

s

e

(i). (12)

Discretization of the outer integral in Equation (9) can be achieved by partitioning it into the
individual integrals between subsequent generations, yielding:

f(t, t

0
) =

Z
t

0

t

e

�
R
x

t

s

e

(y)dy

dx =

t

0�1X

i=t

Z
i+1

i

e

�
R
x

t

s

e

(y)dy

dx

=

t

0�1X

i=t

Z
i+1

i

e

�
[

R
i

t

s

e

(y)dy+

R
x

i

s

e

(y)dy

]

dx

=

t

0�1X

i=t

e

�g(t,i)

Z
i+1

i

e

�s

e

(i)(x�i)

dx

=

t

0�1X

i=t

e

�g(t,i)

1� e

�s

e

(i)

s

e

(i)

.

(13)

This way, both g(t, t

0
) and f(t, t

0
) are now successfully expressed in terms of only the values of

s

e

(i) estimated in discrete generations i 2 N
0

. Combining all of the above results, we obtain for
the establishment probability of a resistance allele arising in generation t in a single copy in our
discrete model:

⇡(t) =

8
>><

>>:

2

1 + (N/N

e

)

⇥
f(t, t

fix

) + e

�g(t,t

fix

)

/s

e

(t

fix

)

⇤
, t < t

fix

2

1 + (N/N

e

)⇥ 1/s

e

(t

fix

)

, t � t

fix

.

(14)

We can use this result to calculate the probability that a resistance allele will successfully
establish in the population when it is initially present in n

0

copies at time t:

Pr(establish|n
0

, t) ⇡ 1� [1� ⇡(t)]

n

0

. (15)

2.2 Numerical analysis and standard model

Given that the number of parameters in our model is already quite large, we will typically perform
our analyses using a ‘standard’ model, for which we then vary individual parameters (or pairs
thereof) independently, while keeping the other parameters constant. This will allow us to
dissect the particular role each individual parameter plays in the general behavior of the model,
and the evolution of resistance specifically.

For this standard model, we assume a scenario in which cleavage is efficient, c = 0.9, as
one would likely aim to design a driver this way. We further assume that resistance alleles carry
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no cost, s
r0

= s

rr

= 0, which we will vary later. Driver alleles, by contrast, carry a substantial
cost that is codominant, s

d0

= 0.1 = s

dd

/2. In those analyses where both the driver and
the resistance allele carry a cost, we assume that these costs are codominant to each other,
s

dr

= s

d0

+s

r0

. We further set � = 10

�6 and µ = 10

�8. Both are likely conservative choices with
respect to the actual rate at which resistance alleles arise in many systems of interest, such as
insects (see discussion in main manuscript). For simplicity, we assume N = N

e

= 10

6. Driver
alleles are introduced into the population at frequency x

d

(t = 0) = 10

�5.

standard model parameters:
x

d

(0) = 10

�5

c = 0.9

� = 10

�6

µ = 10

�8

s

d0

= s

dr

= 0.1

s

dd

= 0.2

s

r0

= s

rr

= 0.0

N

e

= N = 10

6

2.3 Probability that resistance evolves from the SGV

Whether resistance against CGD can evolve from alleles that are already present in the SGV
when the driver is introduced is a special case of the well-studied problem of evolutionary res-
cue from SGV (ORR and UNCKLESS 2014). In particular, HERMISSON and PENNINGS (2005)
have previously developed a framework for calculating the probability that a population adapts
to an environmental shift by utilizing alleles from the SGV that were previously neutral or dele-
terious, but became advantageous after the environmental shift. We can directly map this
framework onto the evolution of resistance against a driver from the SGV. In this case, the
environmental shift is the introduction of the driver, which can render a previously neutral or
deleterious resistance allele beneficial as mean population fitness declines when the driver
spreads in the population.

We assume that prior to introduction of the driver resistance alleles arise at rate µ per gen-
eration per haploid wildtype genome, and that they are evolving under mutation-selection-drift
balance, specified by fitness costs s

r0

and s

rr

in heterozygotes and homozygotes, respectively.
We define ✓ = 4N

e

µ to be twice the effective population-level mutation rate towards resistance
alleles. After introduction of the driver, the fitness effects of resistance alleles are then given by
s

e

(t) defined in Equation (6).
Let P

SGV

denote the probability that resistance evolves from any allele present in the SGV
at the time the driver is introduced, assuming that SGV is the only possible source of resistance
alleles, which we can assure in our model by setting µ and � to zero once the driver has been
introduced. In this case, we obtain:

P

SGV

= 1� exp

✓
�✓ ln


1 +

2N

e

⇡(0)

� + 1

�◆
with � =

(
4N

e

s

r0

0 < s

r0

< s

rrp
2N

e

s

rr

0 = s

r0

< s

rr

. (16)
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The codominant result (0 < s

r0

< s

rr

) follows directly from HERMISSON and PENNINGS (2005).
Specifically, h0s

d

in their Equation (8) specifies the heterozygous fitness cost of resistance alle-
les, which correspond to s

r0

in our model. The factor 2hs
b

in their equation is the establishment
probability of a mutation present in a single copy in generation zero, which corresponds to ⇡(0)

in our model. The result for recessive resistance costs (0 = s

r0

< s

rr

) follows from the discus-
sion provided after Equation (A11) in HERMISSON and PENNINGS (2005), where they show that
the factor 2h0↵

d

! p
↵

d

in their Equation (8) needs to be replaced by
p
2N

e

s in the recessive
case. The factor s in this expression specifies the homozygous fitness cost of the mutation,
which corresponds to s

rr

in our model.

standard model
weak conversion: c = 0.5
low driver cost: sd0 = 0.01
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Figure 1: Probability that resistance establishes from the SGV in our standard model as a function of
the initial number of copies (n

0

) in which the resistance allele is present when the driver is introduced.
The black curve shows the prediction of Equation (15) for our standard model. The blue curve shows
a scenario in which the driver cleaves at only 50% efficiency. The red curves shows a scenario where
driver costs are ten times smaller than in our standard scenario.

Whether resistance evolves from SGV is primarily a function of the number of resistance
alleles present when the driver is introduced (Figure 1). Lower cleavage rates slightly decrease
establishment probabilities. This is because for a slower driver it will take longer until resistance
alleles from the SGV experience their effective fitness advantage, increasing their chances of
being lost to drift in the meantime. Similarly, lower driver costs will also decrease P

SGV

, as
resistance alleles will have a smaller fitness advantage throughout.

Figure 2 shows P

SGV

as a function of ✓ in our standard model, while simultaneously varying
the cleavage rate (Figure 2a), the fitness cost of the driver allele (Figure 2b), or the fitness
cost of resistance (Figure 2c,d). Generally, as long as resistance alleles provide a net fitness
advantage over the driver, evolution of resistance from the SGV is practically assured whenever
✓ � 0.1, whereas it remains unlikely for ✓ ⌧ 0.1. This is consistent with the more general result
from HERMISSON and PENNINGS (2005), who showed that the probability of adaptation to an
environmental shift using alleles from the SGV should depend only weakly on the selective
advantage of these alleles in the new environment. Instead, it should be mostly determined by
how many such alleles were present when the environment changed, which depends on ✓ and
the selective disadvantage of these alleles prior to the change.

If resistance alleles carry a fitness cost themselves, this lowers the probability that resis-
tances evolves from the SGV. However, this effect is much more pronounced when fitness
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Figure 2: Probability that resistance evolves from SGV in our standard model. (a) P
SGV

as a function
of ✓ and cleavage rate. Higher c increases P

SGV

by increasing ⇡(0), because resistance alleles can
experience their net fitness advantage faster when the driver spreads faster (panel to right). Dots show
that our analytics agree well with numerical simulations under a Wright-Fisher model with conversion,
selection, and drift. (b) P

SGV

as a function of ✓ and driver cost. Higher driver costs also increases P

SGV

by increasing ⇡(0) (panel to right). Dots again show numerical simulations under a Wright-Fisher model.
To vary ✓, we always varied Ne while keeping µ = 10

�8 constant. Once ✓ becomes on the order of 0.1
or larger, establishment of resistance alleles from the SGV becomes generally likely. Higher cleavage
rates, as well as higher fitness costs of the driver, both increase P

SGV

by increasing the establishment
probability ⇡(0) of resistance alleles present at the time the driver is introduced (right panels). (c) P

SGV

when resistance alleles carry a recessive fitness cost (srr > sr0 = 0). (d) Same as c, but assuming
codominant fitness costs (sr0 = srr/2 > 0). Higher fitness cost of resistance alleles lead to lower P

SGV

only if fitness costs are codominant, whereas recessive costs have almost no noticeable effect.

costs are codominant than when they are recessive, consistent with the fact that even a dele-
terious allele can still reach a noticeable frequency in the SGV as long as its costs are only
recessive. In our model, even for substantial recessive costs (s

rr

= 0.1), we still find P

SGV

to
be practically indistinguishable from the cost-free scenario.
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2.4 Probability that resistance evolves from de novo mutation

In our model, resistance alleles can also be arise by de novo mutation after the driver has been
introduced. We expect such alleles to be created in the population at rate:

u

µ

(t) = 2Nµ[(1� x

d

)

2

+ x

d

(1� x

d

)(1� c)]. (17)

Any given resistance allele that arises as a single copy in generation t will successfully establish
with probability ⇡(t), assuming that resistance does not arise from any other mechanism. Thus,
the overall probability that at least one allele that arose prior to generation t establishes in the
population is given by:

Pr(t

µ

< t) = 1�
tY

i=1

e

�u

µ

(i)⇡(i)

. (18)

The factor e�u

µ

(i)⇡(i) here specifies the probability that no resistance allele from generation i

successfully establishes in the population.
Note that u

µ

(t) is defined in terms of the census population size N , describing the actual
number of individuals in the population. If the effective population size differs from the census
size, this will not affect Equation (17), but will change the establishment probability of a new
allele specified by Equation (8). However, this change is typically well-approximated by ⇡ !
(N

e

/N)⇡, and N thus simply cancels out in the products u

µ

(i)⇡(i). Note that in our numerical
analyses we always set N = N

e

for simplicity.
Resistance alleles from de novo mutations can only arise as long as the driver has not yet

fixed in the population. Afterwards, there will no longer be wildtype alleles present that could
mutate into resistance alleles: therefore u

µ

(t � t

fix

) = 0. The overall probability that resistance
establishes from any de novo mutation arising during the drive is then:

P

µ

= Pr(t

µ

< t

fix

). (19)

Figure 3 shows how P

µ

depends on the parameters in our standard model. Again, we
find that the key parameter determining the likelihood of resistance is ✓ = 4N

e

µ. However,
in contrast to resistance from SGV, both the cleavage rate of the drive (c) and the cost of the
driver allele (s

d0

) now noticeably affect P
µ

as well. Specifically, lower cleavage rates increase
P

µ

(the opposite effect they had on P

SGV

). This is because lower cleavage rates slow down the
spread of the driver, providing more time for resistance alleles to emerge by de novo mutation
before the driver becomes fixed. Lower fitness costs of the driver, on the other hand, decrease
P

µ

by reducing the establishment probability of resistance alleles throughout the process, as
resistance alleles will have a smaller net fitness advantage compared with the population mean.

If resistance alleles carry (codominant) fitness costs themselves, this has only a marginal
effect on P

µ

, as long as they still provide a net fitness advantage over the driver. Since we
assume that resistance homozygotes are irrelevant for the establishment probability of a new
resistance allele (see section 3.2 for a relaxation of this assumption), recessive costs have no
noticeably affect on P

µ

in our model.
When comparing P

SGV

with P

µ

for the the same set of model parameters, we find that P
SGV

is generally higher than P

µ

. Thus, resistance is more likely to evolve from resistance alleles
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Figure 3: Probability that resistance evolves from de novo mutation in our standard model. (a) Pµ as a
function of ✓ and cleavage rate. The right panel shows how the waiting time until the driver reaches 50%

frequency (t
0.5) increases as cleavage rate decreases, which increases Pµ by providing more time for

resistance alleles to arise during the spread. (b) Pµ as a function of ✓ and driver cost. Lower driver costs
reduce Pµ by lowering ⇡(t) throughout the drive. (c) Pµ as a function of ✓ and (codominant) resistance
costs, which turn out to have only very little effect on Pµ. To vary ✓ in a-c, we always varied Ne while
keeping µ = 10

�8 constant. (d) Dependence between driver allele frequency xd(t), overall rate uµ(t) at
which resistance alleles arise by de novo mutation, their effective selective advantage se(t) compared
with the population mean, and the establishment probability ⇡(t) of a resistance allele arising in a single
copy in generation t. The driver allele fixes in approximately 35 generations in our standard model
(unless resistance evolves). As the driver increases in frequency, so does se(t). The de novo mutation
rate uµ(t) monotonically decreases as the driver displaces wildtype individuals from the population. The
establishment probability ⇡(t) also increases as se(t) increases. Note, however, that ⇡(t = 0) is already
quite high in generation zero because even early resistance alleles have to survive drift for only a few
generations before their relative selective advantage becomes noticeable in our model.

already present when the driver is introduced, than those that arise from de novo mutation after
its introduction. The only exception would be a scenario of a very inefficient drive (small c),
in which case it would take a long time until the driver becomes prevalent in the population,
reducing ⇡(0) while at the same time providing more time for de novo alleles to emerge.
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2.5 Probability that resistance evolves from NHEJ

Lastly, even when both SGV and de novo fail at producing a resistance allele that successfully
establishes in the population, resistance can still evolve from alleles created by the drive itself,
when cleavage-repair by NHEJ results in a mutated target site. In our model, resistance alleles
are created by this mechanism at rate:

u

�

(t) = 2N�cx

d

(1� x

d

). (20)

This rate is proportional to the number of driver/wildtype heterozygotes in the population and
will thus be maximal when the driver is at intermediate frequency (Figure 4a). By comparison,
the rate at which de novo resistance alleles arise is proportional to the overall number of wild-
type alleles in the population, which is highest when the driver is introduced and decreases
monotonically afterwards (Figure 3d).

As with de novo mutation, any given resistance allele that arises as a single copy in gener-
ation t by this mechanism will successfully establish with probability ⇡(t), assuming that resis-
tance does not arise from any other mechanism. The overall probability that at least one allele
that arose prior to generation t establishes in the population is given by:

Pr(t

r

< t) = 1�
tY

i=1

e

�u

�

(i)⇡(i)

. (21)

This equation is analogous to Equation (18) for the de novo mutation scenario, except for u
µ

(t)

being exchanged by u

�

(t). Given that u
�

(t) will be zero once the the driver has fixed, we can
again use this result to calculate the overall probability that at least one resistance allele from
this mechanism establishes in the population:

P

�

= Pr(t

�

< t

fix

). (22)

Figure 4 shows how P

�

depends on the parameters in our standard model. To ensure that
there is no resistance from the SGV or de novo mutation, we set µ = 0. We then varied N

e

�

by varying N

e

while keeping � = 10

�6 constant. As we discuss in the main text, this is likely
to be a very low estimate for the rate at which cleavage repair generates resistance alleles
through NHEJ in many systems, which may be rather difficult to achieve in practice. Higher
rates will always increase P

�

, making this estimate conservative with regard to the probability
that resistance evolves by this mechanism.

Given the similarity between the NHEJ and de novo mutation scenarios, it is not too sur-
prising that the key parameter determining the likelihood of resistance in the NHEJ scenario is
the product N

e

�, similar to the parameter ✓ = 4N

e

µ in the de novo scenario (the factor 4 is not
essential and primarily reflects a historical convention). Whenever N

e

� becomes on the order
of one or larger in our model, evolution of resistance from NHEJ becomes likely.

In contrast to the de novo mutation scenario, the cleavage rate has very little impact on P

�

.
This can be understood from the fact that the overall number of resistance alleles that arise by
NHEJ is proportional to the overall number of cleavage events that occur throughout the spread
of the driver, which does not depend strongly on c (as long as the spread of the driver is still
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Figure 4: Probability that resistance evolves from NHEJ in our standard model. (a) Similar to Figure 3d
but showing u�(t) instead of uµ(t). The overall rate at which resistance alleles are created by NHEJ is
proportional to the overall number of driver/wildtype heterozygotes in the population, and thus maximal
when the driver is at intermediate frequencies. (b) P� as a function of Ne� and cleavage rate, which
has very little effect on P�. (c) P� as a function of Ne� and driver cost, which lower P� by reducing ⇡(t),
similar to their impact on Pµ. (d) P� as a function of Ne� and (codominant) resistance costs, which have
only very little effect on P�. In b-d we varied Ne� by varying Ne while keeping � = 10

�6 constant.

dominated by conversion, rather than selection). For example, if drivers would not carry any
fitness costs, fixation would, on average, require 2N conversion events throughout the process,
regardless of whether the drive is fast or slow. Fitness costs of the driver, in contrast, do have
a strong impact on P

�

, with higher fitness costs leading to lower P
�

by reducing ⇡(t) throughout
the process – the same effect they had in the de novo mutation scenario.

2.6 Total probability of resistance

In the previous sections, we calculated the individual probabilities P

SGV

, P
µ

, and P

�

, that resis-
tance evolves from each of the three mechanisms (SGV, de novo mutation, NHEJ, respectively),
assuming that is has not evolved by any of the other mechanisms. We can directly combine
these individual probabilities to calculate the total probability that resistance evolves by any of
the three mechanisms:

P

tot

= 1� (1� P

SGV

)(1� P

µ

)(1� P

�

). (23)

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2016. ; https://doi.org/10.1101/058438doi: bioRxiv preprint 

https://doi.org/10.1101/058438
http://creativecommons.org/licenses/by/4.0/


In our findings for the individual mechanisms, this total probability will depend primarily on three
factors: N

e

, µ, and �. Specifically, we have shown that whenever ✓ = 4N

e

µ becomes on the
order of 0.1 or larger, resistance is likely to evolve from the SGV, as long as resistance alleles
provide a net fitness advantage over the driver. This result was largely independent of the
conversion rate of the driver, as well as the absolute fitness cost of the driver. Resistance
alleles that arise from de novo mutation after introduction of the driver are generally less likely
to contribute to resistance than alleles from the SGV. We further found that NHEJ is expected to
produce resistance in the population whenever N

e

� becomes on the order of 1 or larger, unless
fitness costs of the driver are very small. Figure 5 summarizes these results by showing P

tot

for a wide range of parameters and limiting cases in our standard model.

3 Special cases

3.1 Frequent NHEJ regime

Our dynamical model for the allele frequencies described by Equations (1)-(4) assumed that
the rates at which resistance alleles are created by mutation and NHEJ are small enough that
we can neglect their actual contribution to changes in allele frequencies between generations.
This may no longer be the case if NHEJ becomes more frequent, say � = 0.01.

Extending our dynamical model such that we no longer neglect the contribution of NHEJ to
changes in allele frequencies between generations is straightforward. In this case, the dynam-
ics described by Equations (1)-(4) becomes:

E[x

0
d

] =

x

d

x

0

[(1� c)!

d0

+ 2c(1� �)!

dd

� c�!

dr

] + x

d

x

r

!

dr

+ x

2

d

!

dd

!(t)

, (24)

E[x

0
r

] =

x

r

x

0

!

r0

+ x

r

x

d

!

dr

+ x

2

r

!

rr

+ x

d

x

0

c�!

dr

!(t)

, (25)

E[x

0
0

] = 1� E[x

0
d

]� E[x

0
r

], (26)

!(t) = 2x

d

x

0

[(1� c)!

d0

+ c(1� �)!

dd

� c�!

dr

] (27)

+ 2x

r

x

0

!

r0

+ 2x

r

x

d

!

dr

+

X

i

x

2

i

!

ii

.

Evolution of resistance is practically inevitable in this regime as long as resistance alleles
carry any fitness advantage relative to driver alleles, given that there will always be ample
supply of resistance alleles being generated by NHEJ. In fact, if � is sufficiently large, resistance
alleles could become common even when driver alleles carry no cost at all. In this case, if the
driver is initially introduced at very low frequency, the ratio of resistance allele frequency over
resistance allele frequency should simply be:

x

r

(t)

x

d

(t)

⇡ �

1� �

. (28)
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Figure 5: Total probability that resistance evolves in our standard model. (a) P

tot

as a function of µ
and � for three different effective population sizes Ne = 10

5

, 10

6

, 10

7. Larger values of Ne increase the
probability of resistance, yet even in the scenario with Ne = 10

5 low values of � < 10

�5 are still required
if resistance from NHEJ is to be prevented. (b) P

tot

as a function of µ and � for fixed Ne = 10

6 in three
limiting cases. Left: scenario of a very weak drive with cleavage rate: c = 0.2. Comparison with the
center panel in a shows that this has almost no effect on P

tot

. Center: scenario with low driver costs,
sd0 = sdd/2 = 0.01. While this allows for larger values of �, the dependence on µ does not change much,
since P

SGV

remains largely unaffected by the driver costs (compare with Figure 2b). Right: scenario in
which resistance alleles carry (codominant) fitness costs, sr0 = 0.9sd0 = srr/2 = 0.09, that are almost
as large as the costs of the driver. In this case, resistance is unlikely to evolve from SGV or de novo

mutation. However, it is still likely to evolve by NHEJ unless � < 10

�5.

This is because every time CGD-induced cleavage in a driver/wildtype heterozygote is repaired,
in a fraction � of cases a resistance allele will be added to the population, whereas in a faction
1� � of cases a diver allele will be added.

Fitness differences between driver and resistance alleles will change their relative frequen-
cies over time, but this can take quite some time unless these differences are very large. For
a fast drive in the large � regime, we would expect that at the time the wildtype allele is lost
from the population, the relative frequency of resistance alleles should still be close to the ratio
�/(1� �) at which these alleles were originally created in the population.
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3.2 Recessive and dominant driver costs

So far we have assumed that fitness costs of driver alleles are codominant. If those fitness costs
were recessive, the driver would be able to initially rise in frequency faster, as driver/wildtype
heterozyogtes would carry no cost. Conversely, if fitness costs were dominant, this would slow
down the initial rise of the driver.

However, in our standard model the expected differences in driver frequency trajectories
between scenarios with recessive, codominant, and dominant fitness costs are only marginal
(main manuscript Figure 2a). In our standard model, frequency changes of the driver allele
between generations are still dominated by conversion of heterozygotes into homozygotes,
whereas selection would only become important once driver fitness costs would actually be of
the same order as the cleavage rate, s

d0

⇡ c.
Dominance of the driver can nevertheless have strong impact on the probability that resis-

tance arises, due to its effects on the fitness of driver/resistance heterozygotes. Once a driver
is frequent, while resistance alleles are still rare, these alleles will predominantly be present in
such driver/resistance heterozygotes. If driver costs are recessive, s

e

(t) will then be larger than
in the codominant case, increasing ⇡(t) and thus P

µ

and P

�

(main manuscript Figure 2a).
By contrast, if driver costs are completely dominant, driver/resistance heteroygotes will have

no fitness advantage over driver homozygotes. Once wildtype alleles have been completely
displaced by the driver, only resistance homozygotes would then have a fitness advantage.
In this case, our approach for calculating establishment probabilities based on Equation (14)
breaks down, because it does not take resistance homozygotes into account.

However, resistance could still evolve in this scenario if enough resistance homozygotes
are present at some time in the population, as they still have a fitness advantage. The question
of how likely resistance is to evolve in this case is analogous to problem of whether a beneficial
mutation can establish in a population when its fitness effects are completely recessive. Such
a recessive mutation with fitness 1 + s

0 in homozygotes and fitness 1 in heterozygotes has
an establishment probability of approximately

p
2s

0
/(N

e

⇡) when initially present in a single
copy (KIMURA 1962), which we can extend to the probability that the mutation will successfully
establish when it is initially present at any given frequency x

0

:

Pr(establish|x
0

) ⇡ 1�
 
1�

r
2s

0

N

e

⇡

!
2N

e

x

0

⇡ 1� e

�1.6x

0

p
N

e

s

0
. (29)

In our standard scenario with cost-free resistance, the net fitness advantage of resistance
homozygotes in this case will be s

0 ⇡ s

dd

/(1 � s

dd

), assuming that the driver is completely
dominant and close to fixation. Equation (29) then allows us to calculate the establishment
probability of a resistance allele present at frequency x

0

when most individuals in the population
already carry a driver allele. In order for resistance evolution to become likely in this scenario,
the resistance allele has to be present at substantial initial frequency in the population. For
example, when the driver has a dominant fitness cost of s

dd

= 0.1, resistance alleles would have
to be present at ⇡ 0.1% frequency in order to have a 50% chance of successfully establishing
(main manuscript Figure 2b). Note that according to Equation (28) this is what we would in fact
expect in scenarios with � > 10

�3.
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3.3 High introduction frequency

In our standard model, the driver is introduced at frequency x

d

(0) = 10

�5 in generation zero
(corresponding to 20 copies in a diploid population of census size N = 10

6). We have not varied
this introduction frequency in our previous analyses, so one might wonder whether higher or
lower frequencies can affect the probability that resistance evolves.

Figure 6 shows that changing x

d

(0) has almost no noticeable effect on the total probability
that resistance evolves. This is the consequence of two competing effects: A higher introduction
frequency will increase ⇡(0) and thus P

SGV

, compared with a lower introduction frequency, as
resistance alleles present in the SGV will experience their fitness advantage faster. However,
a higher introduction frequency will also lead to faster fixation of the driver, thus leaving less
time for de novo resistance mutations to occur, which will decrease P

SGV

. The two effects
approximately cancel out. Furthermore, P

�

will generally not depend much on the introduction
frequency (at least as long as x

d

(0) is still much smaller than one), because almost all of the
resistance alleles produced by NHEJ arise when the driver is at intermediate frequency.

Note that changing x

d

(0) will nevertheless have a noticeable impact on the time it takes for
the driver to become frequent in the population. For example, while it takes the driver t

0.5

⇡ 26

generations to reach 50% frequency in our standard model with x

d

(0) = 10

�5, it will only take
t

0.5

⇡ 10 generations when the driver is introduced at frequency x(0) = 0.01.

3.4 Varying population size

We have so far assumed that population size remains constant over time. This assumption
is likely violated in many systems. Insect populations, for example, can often show dramatic
fluctuations in population size over time scales of just a few generations (BERRYMAN 2002). In
temperate areas, winters can result in population crashes, followed by rapid increase during
the growing season. Management practices for pests, such as pesticide application, can also
influence population dynamics substantially. Finally, CGD itself could affect population size if
the goal is to spread a harmful allele in the population.

Relaxing the assumption of constant population size can impact three aspects of our ana-
lytical framework for calculating resistance probabilities: (i) the supply of resistance alleles in
the SGV, (ii) the rates u

µ

(t) and u

�

(t) at which resistance alleles arise by de novo mutation
and NHEJ, and (iii) the establishment probability ⇡(t) of a resistance allele initially present in
generation t in a single copy.

Fortunately, the theoretical result by UECKER and HERMISSON (2011) we adopted for calcu-
lating ⇡(t) in our CGD model does allow for arbitrary changes in population size over time. We
just used a simplified version of the result for the special case of constant population size. In
the general case, given functions N(t) and N

e

(t) for census and variance effective population
sizes, Equation (8) becomes:

⇡(t) =

2

1 +

R1
t

(N(t)/N

e

(x))e

�
R
x

t

s

e

(y)dy

dx

. (30)

This equation can then be solved numerically for the given demography in the same way we
did for the constant population size scenario.
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Figure 6: Total probability that resistance evolves in our standard model when the driver is introduced
at frequency xd(0) = 0.01, instead of xd(0) = 10

�5. Otherwise the plot is analogous to Figure 5. There
are almost no noticeable differences between the two introduction frequencies.

Both u

µ

(t) and u

�

(t) are already functions of t in our model. Under varying population size,
we simply have to express these rates in terms of the census population size N(t):

u

µ

(t) = 2N(t)µ[(1� x

d

)

2

+ x

d

(1� x

d

)(1� c)] (31)

u

�

(t) = 2N(t)�cx

d

(1� x

d

). (32)

Given ⇡(t) and rates u

µ

(t) and u

�

(t), the resistance probabilities P

µ

and P

�

can then be cal-
culated according to Equations (19) and (22) the same way we did for the constant population
size scenario.

To our knowledge, there are no general analytical solutions for mutation-selection-drift bal-
ance that allow for calculation of allele frequency distributions under arbitrary demography sce-
narios. Calculation of P

SGV

will therefore typically rely on numerical simulations to infer the
frequency of resistance alleles in the SGV. However, such distributions could be easily ob-
tained from Wright-Fisher simulations under any given demographic model. In combination
with P

SGV

, this will then allow numerical estimation of P
SGV

.
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4 Software

Our numerical analyses are implemented in a C++ command line program. This program takes
as input all parameters of the given model: x

d

(t = 0), c, µ, �, s

d0

, s

dr

, s

r0

, s

rr

, N

e

, N . For these
parameters, it then calculates, the driver allele frequency trajectory x

d

(t) under a deterministic
model, specified by Equations (1)-(4) in the absence of resistance, the rate u

µ

(t) at which
resistance alleles are expected to arise by de novo mutation, the rate u

�

(t) at which resistance
alleles are expected to arise by NHEJ, the effective selective advantage s

e

(t) of a resistance
allele compared with the population mean, and the establishment probability ⇡(t) of a resistance
allele arising in a single copy in generation t. Results are provided for each generation 0 
t  t

fix

. The program also calculates the individual resistance probabilities P

tot

, P

SGV

, P

µ

,
and P

�

. Executables, source-code, and documentation for this program are available from the
corresponding author upon request and will be made publicly available after acceptance of the
manuscript.
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