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Abstract. In many genomic applications, hypotheses tests are performed by aggregating test-statistics

across units within naturally defined classes for powerful identification of signals. Following class-level

testing, it is naturally of interest to identify the lower level units which contain true signals. Testing

the individual units within a class without taking into account the fact that the class was selected

using an aggregate-level test-statistic, will produce biased inference. We develop a hypothesis testing

framework that guarantees control for false positive rates conditional on the fact that the class was

selected. Specifically, we develop procedures for calculating unit level p-values that allows rejection of

null hypotheses controlling for two types of conditional error rates, one relating to family wise rate and

the other relating to false discovery rate. We use simulation studies to illustrate validity and power of the

proposed procedure in comparison to several possible alternatives. We illustrate the power of the method

in a natural application involving whole-genome expression quantitative trait loci (eQTL) analysis across

17 tissue types using data from The Cancer Genome Atlas (TCGA) Project.
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1 Introduction

In large scale analysis of genomic and genetic data, it is common to perform tests for hypotheses

at an aggregate level over ”classes” of multiple related units. In analysis of genome-wide associa-

tion studies, for example, testing for genetic associations may be performed at a gene-, region- or

pathway- level by aggregating association statistics over multiple genetic markers (Yu et al., 2009;

Wu et al., 2010a,b). Similarly, for identification of susceptibility markers with pleiotropic effects,

association tests for each individual genetic marker may be performed by aggregating association

test-statistics over multiple related phenotypes (Bhattacharjee et al., 2012; Peterson et al., 2015).

Recently, in microbiome-profiling studies, association tests for identifying taxa were performed by

aggregating association test-statistics over multiple traits (Hua et al., 2016). When multiple signals

are expected within classes of related units, use of suitable aggregate-level test-statistics can improve

the power of discovery of the signal harboring classes, compared to one unit at a time analysis.

In using aggregate level test-statistics for large scale hypotheses testing, much research have focused

on development of test-statistics that can combine evidence of signals from multiple units in the

most powerful way. For any given test-statistics, standard multiple testing adjustment methods are

typically applied to adjust for the number of classes, which could be potentially large, over which

the analyses may be performed. An important area of research that has received less attention

involves how to perform proper post-selection inference following the aggregate level hypothesis

testing to isolate individual units that contain signal within the higher-level classes. For example, if a

genetic marker is identified to be statistically significant for aggregate-level association in pleiotropic

analysis across multiple phenotypes, it is then very natural to perform follow-up analysis to identify

which underlying phenotypes contain true signals for associations.

Clearly, a naive approach that ignores the effect of class selection on the second-stage of individual

units selection will produce biased inference even if multiple testing adjustment methods were used

to adjust for the number of units within each selected class.

1

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 27, 2017. ; https://doi.org/10.1101/058404doi: bioRxiv preprint 

https://doi.org/10.1101/058404
http://creativecommons.org/licenses/by/4.0/


In this manuscript, we study the problem of post-selection inference following aggregate level analy-

sis as a two-stage hypothesis testing problem. The data of interest, the unit-level test-statistics, can

be organized in an m×n matrix, where m is the number of classes for which inference is of interest,

and n is the number of units within each class. For example, in GWAS of different phenotypes the

data matrix for analysis has rows indexed by the SNPs, and columns indexed by the phenotypes.

The first goal is to select the rows (SNPs) that have signal in at least one column (phenotype), and

the post-selection goal can be to identify which columns have signal within each of the chosen rows.

Approaches to various error rate controls have been proposed in the past for multi-stage or hierar-

chical hypothesis testing. Possibly most relevant of them in the context of applications described

above is a procedure proposed by Benjamini and Bogomolov (2014) which control false positives

on the average over the selected rows. The method was recently applied to pleiotropic analysis of

GWAS and single tissue eQTL data (Peterson et al., 2015, 2016), a type of application that we also

use for illustration in this manuscript. Barber and Ramdas (2015) suggested controlling the FDR

at an aggregate level of rows or columns, in addition to controlling the FDR across all individual

hypotheses. Liu et al. (2016) suggested controlling a posterior measure of false discoveries within

each selected row, in addition to overall. Yekutieli (2008) suggested controlling different FDR-types

on trees of hypotheses, assuming independence between the stages of the hierarchy. Some other

strategies have been tailored to special application fields, such as gene expression analyses (Yekutieli

et al., , 2006; Li and Ghosh , 2014), electrencephalography research (Singh and Phillips, , 2010), and

functional magnetic resonance imaging (Schildknecht et al. , 2015). Conditioning on the selection

event has been suggested in novel works on post-model selection (Fithian et al. , 2015; Lee et al. ,

2016), as well as for spatial signals in Benjamini and Heller (2007).

For the selection of columns in the second-stage of above hypothesis testing framework, we propose

developing multiple testing procedures that guarantees control of false positive rates conditional

on the fact that the row is selected. As a researcher may often conduct different experiments for

each selected row for follow-up studies, control of false positive at the level of each row may be
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desirable rather than controlling average rates over all selected rows as has been considered for this

problem by Peterson et al. (2015). It has been noted earlier (Benjamini and Bogomolov , 2014) that

development of a general procedure for controlling such error rates could be difficult. In the setting

where the test-statistics can be assumed to be independent across columns, we propose general

procedures that are theoretically shown to control family-wise error rates and false discovery rate

at the level of each row conditional on selection. We then show through simulation studies that for a

commonly used aggregation test-statistic, the proposed procedure not only provides stronger type-I

error rate control but it also has a major power advantage when compared to the general procedure

proposed by Benjamini and Bogomolov (2014). An application of the methods for analysis of SNP

markers predictive of gene expression level across multiple tissues using data from the The Cancer

Genome Atlas (TCGA) project provided further empirical validation of substantially higher power

of the proposed method compared to alternatives. These results provide encouraging direction for

further research in developing more powerful procedures for two-stage hypothesis testing in more

general frameworks.

In section 2, we set up the proposed hypothesis testing framework more formally and define the

criterion of type-I error that we propose to control. In section 3, we present a procedure for

controlling the proposed type-I error criterion and provide theoretical results supporting its validity.

In section 4, we conduct simulation studies to evaluate type-I error rates and power for the proposed

method compared to a naive approach and to the procedure proposed by Benjamini and Bogomolov

(2014). In section 5, we describe results from analysis of TCGA study. In Section 6, we conclude

with a discussion about future directions.

2 Notation and Goal

Let Hij, j = 1, . . . , n be the family of n null hypotheses for the ith row, and let Pij, j = 1, . . . , n

be their corresponding p-values, for i = 1, . . . ,m. The global null hypothesis for row i, ∩nj=1Hij,
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is the hypothesis that all null hypotheses Hij, j = 1, . . . , n are true. Let PiG be the global null

p-value for row i, i.e., a valid p-value of the global null hypothesis ∩nj=1Hij. PiG is based on the

p-values pij, j = 1, . . . , n, or on the corresponding unit-level test-statistics. For example, it can be

computed as in equation (3.1), or equation (5.1), or as suggested in Remark 3.1. Denoting the

observed p-values by lower-case letters, our data matrix for analysis is:

p11 . . . p1n p1G

...
. . .

...
...

pm1 . . . pmn pmG

The first stage analysis selects rows based on the global null p-values p1G, . . . , pmG, to answer the

question of which rows are promising, i.e., show evidence that there is signal in at least one column.

Let S ⊆ {1, . . . ,m} be the set of selected rows. For example, when the rows are the SNPs and the

columns are different studies, the selected rows are often those that achieve genome-wide significance

with FWER control, so S = {i : piG ≤ α/m}.

The second stage analysis is based on the individual p-values {pij : j = 1, . . . , n, i ∈ S}, to answer

questions such as which columns within selected rows contain signal.

Let Vi and Ri be the number of false and total rejections for row i, respectively. Our first error mea-

sure, which henceforth is referred to as the conditional FWER for a selected row, is the probability

of at least one erroneous rejection within the row, conditional on it being selected,

E(I[Vi > 0]|i ∈ S).

Our second error measure, which henceforth is referred to as the conditional FDR for a selected row,

is the expected fraction of erroneous rejections among the rejections within the row, conditional on

it being selected,

E(Vi/max{Ri, 1}|i ∈ S).
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If n = 1, our error measures coincide with the selective type I error rate, i.e. the error rate of a test

given that it was performed, as suggested by Fithian et al. (2015).

Our goal is to suggest valid multiple testing procedures for controlling the conditional FWER/FDR

for the selected rows.

3 Valid inference within a selected row

In this section we provide procedures for controlling the conditional FWER/FDR for a selected

row. The valid inference we provide relies on the assumption that the the columns are independent,

as is typical in meta-analyses. However, across rows (i.e., within columns), the individual level

test-statistics (or p-values) may be dependent.

The case where a row is selected if the aggregate test passes a predefined threshold is addressed in

§ 3.1. We provide procedures that control the conditional FWER/FDR for any type of dependency

across rows. This type of selection is standard practice in GWAS meta-analysis, see § 5 for a rich

data application.

The case where a row is selected based on a data-dependent threshold is addressed in § 3.2. We

provide procedures that for independence across rows control the conditional FWER/FDR, as well

as the average error rate (Benjamini and Bogomolov , 2014). We discuss conditional and average

error rate control using our approach when there is dependency across rows.

3.1 Inference following selection of rows using a fixed cut-off on the

aggregate level test-statistics

Even in the simplest setting where the row selection is based on a fixed cut-off, adjusting for selection

is not obvious since the probability of the selection event depends on the unknown distribution of
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the non-null p-values within the row. In § 3.1.1 we suggest a way around this problem, which leads

to valid conditional p-values. Although the original p-values were independent, the conditional p-

values in the selected row are dependent due to the selection event. In § 3.1.2 we present multiple

testing procedures based on these conditional p-values that control the conditional error rate.

3.1.1 The conditional p-value computation

For each row i ∈ {1, . . . ,m}, the p-values corresponding to the different columns are assumed in-

dependent. The computation of piG can be based on different aggregates of the p-values pij, j =

1, . . . , n, see Loughin (2004) for common choices and a review. A popular choice is Fisher’s combin-

ing method, which has been shown to have excellent power properties (see, e.g., Owen (2009) and

the references within). Let f : <n → < be a combining function for testing the global null on each

row. For example, Fisher’s combining function is f(pi1, . . . , pin) = −2
∑n

j=1 log pij. Under the global

null of no signal in the row, if the p-values in the row are uniformly distribution, −2
∑n

j=1 logPij

has a chi-squared distribution with 2n degrees of freedom, −2
∑n

j=1 logPij ∼ χ2
2n, so

piG = Pr(χ2
2n ≥ −2

n∑
j=1

log pij). (3.1)

See Remark 3.1 and Section 5 for other combining functions.

Let t be the fixed row selection cut-off, so that row i is selected if f(pi1, . . . , pin) ≥ t. We require

that the combining method be non-increasing in each of its arguments, when the other n − 1

values are held fixed. This is a reasonable requirement since if the individual p-values decrease, the

selection of the row should become easier, so if f(pi1, . . . , pin) ≥ t and p′ij ≤ pij, j = 1, . . . , n, then

f(p′i1, . . . , p
′
in) ≥ t. For simplicity, we shall assume that the p-values are continuous, with a uniform

null distribution, and therefore that f is continuous.

Since we assume we are dealing with a selected row based on the global test, we will omit the index

i for row from hereon to simplify the notation. The n independent p-values for a selected row are
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therefore denoted by P1, . . . , Pn, and their observed values are p1, . . . , pn. We observed that we

rejected the global null which means that the p-values satisfy f(p1, . . . , pn) ≥ t.

We let bj satisfy

f(p1, . . . , pj−1, bj, pj+1, . . . , pn) = t. (3.2)

Clearly, bj ≥ pj . If no such bj exists, that is f(p1, . . . , pj−1, 1, pj+1, . . . , pn) ≥ t, let bj = 1.

The aim is to provide a test for each of the n hypotheses having observed that the global null was

rejected. To this end, we adjust the p-values to

p′j = pj/bj, j = 1, . . . , n. (3.3)

These are valid conditional p-values. To see this, note that Pj conditional on the row being selected

and on the remaining p-values is truncated at bj ∈ (0, 1]. So if unconditionally Pj is uniformly

distributed, Pj ∼ U(0, 1), then conditionally on being selected and on the remaining p-values it has

a uniform distribution between zero and bj,

Pj | f(p1, . . . , pj−1, Pj, pj+1, . . . , pn) ≥ t, P1 = p1, . . . , Pj−1 = pj−1, Pj+1 = pj+1, . . . , Pn = pn ∼ U(0, bj).

For Fisher’s combining function, f(p1, . . . , pn) ≥ t is equivalent to Πn
j=1pj ≤ e−t/2. Therefore,

bj = min
(
e−t/2/(Πn

l=1,l 6=jpl), 1
)
, and the conditional p-values are:

p′j =

 pj if Πn
l=1,l 6=jpl ≤ e−

1
2
t,

Πn
l=1pl

e−
1
2 t

otherwise.
j = 1, . . . , n (3.4)

The magnitude of the inflation in the post-selection p-values, p′j − pj, depends on how the signal is

distributed in the row. Using Fisher’s combining method, there can be no inflation (i.e., no cost for

selection!) if the signal is strong in at least two columns. This is a direct result of the conditional
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p-value computation (3.4), where p′j = pj if Πn
l=1,l 6=jpl ≤ e−

1
2
t. Note that even though it is enough

to have one strong signal for the selection of the row, at least two columns need to contain strong

signals for all n conditional p-values to coincide with the original p-values. Therefore, computing

the conditional p-values as suggested in (3.3) will typically lead to smaller conditional p-values

whenever signals are present in more than one column, than the use of the following probabilities,

which are computed under the global null:

Pr∩nj=1Hj
(Pj ≤ pj | f(P1, . . . , Pn) ≥ t), j = 1, . . . , n. (3.5)

The computation in (3.5) uses conservatively the uniform distribution for the p-values, Pk ∼ U(0, 1)

for k = 1, . . . , n, and the resulting probabilities can be substantially larger than the original p-values:

for Fisher’s combining method, if t = χ1−α/m,2n and pj ≤ e−
1
2
t, the value will be m

α
pj.

Remark 3.1 (Other p-values combining methods). Conceptually, our approach for computing the

conditional p-values can be applied to many different tests of the global null. The complexity of

the conditional p-value computation in (3.3) can vary greatly between combining methods. For one-

sided tests, the computation is straightforward using Stouffer’s combining method, f(p1, . . . , pn) =∑n
j=1 zj/

√
n, where zj = Φ−1(1 − pj), which has a standard normal distribution under the global

null. So the global p-value is 1−Φ(
∑n

j=1 zj/
√
n). If the row is selected when

∑n
j=1 zj/

√
n > t, then

the conditional p-values are:

{
pj

1− Φ(
√
nt−

∑n
l=1,l 6=j zl)

, j = 1, . . . , n

}
. (3.6)

The computation of the conditional p-values is more complex using the test of Bhattacharjee et al.

(2012) for the global null, called ASSET. Their test is based on identifying the set Smax that has the

largest weighted Stouffer test statistic, and the significance at the aggregate row level is based on the

maximal test statistic,
∑

j∈Smax
wjZj/

√
|Smax|. Bhattacharjee et al. (2012) showed that their global

test can be more powerful than a test statistic that aggregates all the information in the row without

subset selection.
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Remark 3.2 (The ranking of the original and conditional p-values). Using Fisher’s or Stouffer’s

combining method, it is easy to show that the ranking of the p-values remains unchanged, i.e., if

p1 ≤ . . . ≤ pn then p′1 ≤ . . . ≤ p′n. Other combining methods may lack this desired property.

For example, if the global null p-value is based on Bonferroni, i.e., pG = n × min{p1, . . . , pn},

the ranking is changed following selection. To see this, suppose that the row is selected if pG ≤

α/m, with p1 = α/(m × n) but pj ∈ (α/m, 1), j = 2, . . . , n. Then b1 is the value that satisfies

n×min{b1, p2, . . . , pn} = α/m, i.e., b1 = α/(m× n), so p′1 = 1, but p′j = pj < 1.

3.1.2 Valid procedures for conditional FWER/FDR control

Applying a valid FWER/FDR controlling procedure on {p′j : j = 1, . . . , n} will guarantee control of

the conditional FWER/FDR for a selected row. The choice of FWER/FDR controlling procedure

should be guided by the observation that the n conditional p-values in the row are dependent, despite

the fact that the original p-values were independent across columns. The conditional FWER for a

selected row will be controlled if we use Bonferroni-Holm on the conditional p-values within each

selected row, since the Bonferroni-Holm procedure guarantees FWER control for any dependency

between the p-values. For conditional FDR control, we would like to use the Benjamini-Hochberg

(BH) procedure (Benjamini and Hochberg , 1995) within each selected row at level α. The next

theorem shows that for the dependency among the p-values induced by the conditioning step, the

BH procedure is indeed valid.

Theorem 3.1. Let P1, . . . , Pn be independent p-values, each with a uniform null distribution. If

f(p1, . . . , pn) ≥ t, then the BH procedure at level α on p′1, . . . , p
′
n controls the conditional FDR at

level ≤ n0

n
α, where n0 is the number of true null hypotheses.

Proof. Without loss of generality, relabel the columns so that the first n0 columns have a true null

hypothesis. We make use of the representation of FDR from Benjamini and Yekutieli (2001), so
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the conditional FDR is

n0

n∑
k=1

1

k
Pr (I = 1 and R = k | f(P1, . . . , Pn) ≥ t) ,

where I = 1 if H1 (the first hypothesis), which we assume to be null, is rejected, and R is the

number of rejected hypotheses. We condition on p2, . . . , pn so that it is sufficient to show that

Q(p2, . . . , pn) =
n∑
k=1

1

k
Pr (I = 1 and R = k | f(P1, p2, . . . , pn) ≥ t, P2 = p2, . . . , Pn = pn) ≤ α

n
.

(3.7)

The only random quantity in Q is P ′1 = P1/b1, and it is uniformly distributed between 0 and 1 given

the selection event. As p′1 increases b2, . . . , bn will be non-increasing so there must be 0 = a0 < a1 <

. . . < aL = 1 so that R(p′1) = kl for al−1 ≤ p′1 ≤ al, l = 1, . . . , L, where k1 > k2 > . . . > kL. Since

we need I = 1, or p′1 ≤ R(p′1)α/n, there exists t such that

Q(p2, . . . , pn) =
t−1∑
k=1

1

k l
(al − al−1) +

1

k t
(ktα/n− at−1) ≤ 1

kt

ktα

n
≤ α

n
.

Interestingly, for Fisher’s selection rule the conditional FDR is exactly n0α/n.

Corollary 3.1. Let P1, . . . , Pn be independent p-values, each with a uniform null distribution. If

f(p1, . . . , pn) = −2
∑n

j=1 log pj ≥ t, then the conditional FDR of the BH procedure at level α on

p′1, . . . , p
′
n is equal to n0

n
α.

See Appendix A for the proof.

Remark 3.3 (Estimation of the fraction of nulls in selected rows). Theorem 3.1 shows that the FDR

of the level-α BH procedure applied on the conditional p-values is bounded by π0α in a selected row,

where π0 = n0/n. When n is large enough (say 30 or more), it may be useful to estimate π0 and
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incorporate the estimate in the multiple testing procedure to gain power. The gain in power can be

substantial if π0 is far less than one, as appears to be the case in the application considered in Section

5. Schweder and Spjotvoll (1982) proposed estimating π0 by #{p−values>λ}
n(1−λ)

, where λ ∈ (0, 1). The

slightly inflated plug-in estimator π̂0 = #{p−values>λ}+1
n(1−λ)

has been incorporated into multiple testing

procedures in recent years. For independent p-values, Storey (2003) showed that the BH procedure

at level α/(π̂0) controls the FDR at level α. Benjamini et al. (2006) suggested another estimator,

and noted that the BH procedure which incorporates the plug-in estimator with λ = 0.5 is sensitive

to deviations from the assumption of independence, and its FDR level may be inflated above the

nominal level under dependency. Blanchard and Roquain (2009) provided extensive simulations

that show that the BH procedure which incorporates the plug-in estimator with λ = α is robust to

deviations from the assumption of independence, at the price of being slightly more conservative.

We need to investigate which estimator will result in an adaptive BH procedure that controls the

conditional FDR. Also, a confidence statement about π0 within selected rows may be of interest in

itself, in providing an upper bound on the fraction of nulls (or a lower bound on the fraction of

columns with signal) within each selected row.

3.2 Inference following data adaptive row-selection rules

In § 3.2.1 we show that our theoretical results carry over to more general row selection rules when

the test statistics within each column are independent. In § 3.2.2 we show the connection with the

average error rate (Benjamini and Bogomolov , 2014). In § 3.2.3 we discuss conditional and average

error rate control using our approach when the test statistics within each column are dependent.

3.2.1 Valid inference under row independence

The results in § 3.1.2 hold if ti does not depend on Pi1, . . . , Pin. The independence between the

threshold and the ith row p-values is clearly satisfied in the setting of § 3.1, where the thresholds is
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fixed given m and n (or more generally, given the number of non-missing observations in row i, say

ni). For example, for GWAS, the threshold is often chosen so that the FWER on the m global tests

is controlled at the desired nominal level α. If rows are selected by Bonferroni, then the selection

threshold for Fisher’s combining method is t = χ1−α/m,2n, i.e., the (1− α/m) quantile of χ2
2n.

If the p-values across rows are independent, more general data-adaptive thresholds can also lead

to valid inference within selected rows. This is clearly so if the threshold for selection depends on

all p-values except the p-values in the selected row, i.e., row i is selected if f(pi1, . . . , pin) ≥ t(p−i),

where p−i = {pkl : k = 1, . . . , i−1, i+1, . . . ,m, l = 1, . . . , n}. If we compute the conditional p-values

for selected row i as in (3.3) with t = t(p−i), the post-selection inference using Bonferroni-Holm

or BH on the conditional p-values at level α will control, respectively, the conditional FWER or

conditional FDR at level α.

For example, if the selected rows are the discoveries form a BH procedure at level q on the global

null p-values, as suggested by Peterson et al. (2015), the conditional post-selection inference will

control the conditional error. Specifics follow. Relabelling a selected row as row number one,

and the remaining rows in order of their global null p-values, i.e., p2G ≤ . . . ≤ pmG, let J =

arg maxr=2,...,m{prG ≤ r
m
α}. If no such r exists then J = 1. Row 1 is selected if p1G ≤ Jq/m.

Clearly, the threshold for selection Jq/m is independent of P11, . . . , P1n if the p-values across rows

are independent. Therefore, the conditional p-values for each selected row are computed by treating

the selection threshold as fixed. For Fisher’s combining function, the selection threshold for a

selected row is t(J) = χ2
1−Jq/m,2n, and the conditional p-values for each selected row are computed

by the formulas in (3.4) with t = t(J).

The class of simple selection rules, which includes row-selection by the BH procedure or by Bonferroni-

Holm on the global null p-values, leads to valid conditional inference within selected rows.

Definition 3.1 (Definition 1 in Benjamini and Bogomolov (2014)). A selection rule is called simple

if for each selected row, when the p-values not belonging to that row are fixed and the p-values in

that row can change as long as the row is selected, the number of selected rows remains unchanged.
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For each i ∈ S, let P (i) = (P1G, . . . , P(i−1)G, P(i+1)G, . . . , PmG) be the vector of p-values excluding

PiG.

Theorem 3.2. Assume that rows are selected by a simple selection rule such that row i is selected

if f(pi1, . . . , pin) ≥ t(|S|). If the p-values across rows are independent, then if we compute the

conditional p-values for selected row i as in (3.3) with t = t(|S|):

1. E(I[Vi > 0]|i ∈ S, P (i)) ≤ α if we use the Bonferroni-Holm procedure on the conditional

p-values.

2. E(Vi/max{Ri, 1}|i ∈ S, P (i)) ≤ α if we use the BH procedure on the conditional p-values.

See Appendix B for a proof. Let Ci be the (unobserved) random variable whose conditional expec-

tation is the desired error rate, so Ci = I[Vi > 0] for FWER control, and Ci = Vi/max(Ri, 1)

for FDR control. It follows from Theorem 3.2 that the conditional error is controlled, since

E(Ci|i ∈ S) = E{[E(Ci|i ∈ S, P (i))]|i ∈ S}.

3.2.2 Relation to the approach of Benjamini and Bogomolov (2014)

Benjamini and Bogomolov (2014) considered selective inference on families of hypotheses, which are

defined by rows in our paper. They showed that applying a Bonferroni procedure in each selected

row may result in a highly inflated conditional FWER when the selection is based on within-row

p-values. Moreover, they noted that the goal of conditional control for any combination of selection

rule and testing procedure and for any configuration of true null hypotheses is difficult to achieve.

Indeed, our procedures for conditional control rely on the ability to compute the conditional p-

values, which requires well-defined selection rules and independence across the p-values within the

rows. Benjamini and Bogomolov (2014) considered a different error measure addressing selective

inference, which can be controlled under more general conditions. Specifically, they suggested to

control an expected average error measure over the selected rows. While they considered a general
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class of error rates, we focus on two special cases. The control of the FWER on the average,

E
(∑

i∈S I[Vi>0]

max{|S|,1}

)
, and the control of the FDR on the average, E

(∑
i∈S Vi/max{Ri,1}

max{|S|,1}

)
.

Controlling the FWER/FDR on the average is useful when we require control over false positives

on the combined set of discoveries across selected rows. When we require control over false positives

within each selected row separately, the conditional FWER/FDR is more appropriate.

Conditional error control can guarantee average error control, as stated in the next theorem.

Theorem 3.3. Assume row i is selected if f(pi1, . . . , pin) ≥ t(|S|). If E(Ci|i ∈ S, P (i)) ≤ α, then

E
( ∑

i∈S Ci

max(|S|,1)

)
≤ α[1− Pr(|S| = 0)].

See Appendix C for the proof which is straightforward. We know the condition is satisfied if the

global null p-values are independent and the selection rule is simple from Theorem 3.2.

Benjamini and Bogomolov (2014) showed that by applying an FWER/FDR controlling procedure

within each row at level |S|α/m, if the set S is selected by a simple selection rule, then the

FWER/FDR on the average is controlled at level α. However, the conditional FWER/FDR for a

selected row may exceed α in some of the rows as our simulations show. Comparing the conditional

approach to the approach of Benjamini and Bogomolov (2014), we can generally say that the

conditional approach is most sensitive to the number of non-null columns in the row, and the

approach of Benjamini and Bogomolov (2014) is most sensitive to the fraction of selected rows,

|S|/m. Our simulations and real data example demonstrate that for a small fraction of selected

rows, |S|/m, the conditional approach is expected to make more discoveries than the approach of

Benjamini and Bogomolov (2014). However, for sparse signal within selected rows (signal presence

in only two columns or less), the approach of Benjamini and Bogomolov (2014) may make more

discoveries.
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3.2.3 Error control following selection under row dependence

So far, we assumed that within each study, the test statistics are independent and hence the global

null p-values are independent. We now consider the case that the studies (columns) are indepen-

dent, but within each study (column), the set of all p-values may be dependent. This setting was

considered in Benjamini and Bogomolov (2014), and although their procedures do not guarantee

the control of the error rate on the average for general dependency, they prove that the error rate

on the average is controlled if the p-values are positive regression dependent on the subset (PRDS)

of true null hypotheses (Benjamini and Yekutieli , 2001).

With dependence, the global null p-values are no longer independent. Clearly, dependence has no

effect on the conditional error guarantees of Bonferroni-Holm or the BH procedure on the conditional

p-values, as long as the selection threshold does not depend on the global null p-values. In genomic

applications that aim to select only rows with signal, e.g., GWAS, no false positives at the row-

level are typically tolerated and a fixed selection threshold is used for FWER control on the family

of global null hypotheses. For such applications, the conditional approach provides the desired

theoretical guarantee over false positives within selected rows. On the other hand, the theoretical

guarantee over false positives provided by the approach of Benjamini and Bogomolov (2014) is only

valid if the dependency within columns is PRDS.

With a simple selection rule such as BH on the global null p-values, the conditional error may not

be maintained. In § 4 we show empirically that for dependent column p-values, the conditional

error is controlled, as expected, when the selection rule is fixed, but it may be inflated when the

BH procedure is used for selection. However, the average error rate remained below the nominal

level even with BH row selection, and it was highest when the signal was strongest.

In the Supplementary Material (SM) we provide theoretical results when the p-values are indepen-

dent within rows, but PRDS in each column across the rows. We show that if all m rows are null

rows with only true null hypotheses, the conditional approach when BH is used both for the global
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hypotheses at level q and within each row at level α, controls the average FDR at level ≤ α×q � α.

We also show that if some rows are non-null with at least one false null hypothesis, then if the p-

values for the global null hypotheses of non-null rows is ostensibly 0, using the conditional approach

when BH is used both at the global level and within each row also controls the average error at a

level close to α.

4 Simulations

In order to assess the performance of different post-selection approaches, we carry out simulation

studies. We have three specific aims in this simulation: (1) to examine the possible inflation

in the number of false positives when failing to account for the selection (i.e., when using the

original p-values in selected rows); (2) to compare the power of methods that properly account for

selection, i.e., our novel approach that uses conditional p-values, and the approach of Benjamini

and Bogomolov (2014); and (3) to study the effect of dependency within the columns.

We have two data generation settings. First, the row independence setting, for which all test

statistics are independent. We sample the unit-level test statistics, Zij, i = 1, . . . ,m, j = 1, . . . , n,

independently from the normal distribution as follows. If the null hypothesis Hij is true, the test

statistic has a standard normal distribution; if the null hypothesis Hij is false, the test statistic has a

normal distribution with mean µ ∈ {0.5, . . . , 7} and variance of one. The p-value is pij = 1−Φ(zij),

where Φ(·) is the standard normal cumulative distribution function. In each of n columns, m = 1000

rows are examined, and m1 = 10 rows contain signal in n1 of the n columns. So we generated n1×m1

entries in the n×m matrix of p-values that contained signal we aim to discover.

Second, the row-dependence setting, for which within each column of m hypotheses, we generate

m/B independent blocks with within block dependency. The covariance matrix of the B z-scores
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within a block was

Σ =



1 ρ ρ2 . . . ρB−1

ρ 1 ρ . . . ρB−2

...
...

...
. . .

...

ρB−1 ρB−2 ρB−3 . . . 1


.

The vector of B z-scores within the block is multivariate normal with covariance Σ. If the block

does not contain signal the mean is zero, and if it contains signal the mean is

(ρ(B−1)/2µ, ρ(B−1)/2−1µ, . . . , ρµ, µ, ρµ, . . . , ρ(B−1)/2−1µ, ρ(B−1)/2µ).

This data generation is an idealized setting for GWAS, where the SNPs are dependent due to linkage-

disequilibrium, and the shape of the signal µ reflects the fact that the central SNP is the causal

SNP and all other SNPs have signal only because of their linkage-disequilibrium with the causal

SNP. In each of (m/B) = 100 blocks of size B = 11, one block is non-null with µ ∈ {0.5, . . . , 7} in

n1 of the n columns. So n1 ×B entries in the n×m matrix of p-values contained signal we aim to

discover. We varied the dependence strength ρ ∈ {0.7, 0.9, 0.99}.

The selection of rows was done by applying the Bonferroni procedure at level α = 0.05 or the BH

procedure at level q ∈ {0.05, 0.2} on the global null p-values, computed using equation (3.1). So

row i is selected if the hypothesis corresponding to piG is rejected by the multiple testing procedure

on {piG : i = 1, . . . ,m}.

We consider the following post-selection analyses using the BH procedure. The BH procedure on

each selected row i ∈ S: at level α on the original p-values (BH-naive); at level |S|
m
α on the original

p-values, as suggested by Benjamini and Bogomolov (2014) (BH-BB); at level α on the conditional

p-values in (3.4) (BH-cond). We also considered using the Bonferroni-Holm procedure, and these

results turned out to be qualitatively the same as the results using the BH procedure, see details

in the SM.
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To evaluate the power of the different procedures, we computed the average power, i.e., the average

number of true rejections divided by the number of entries with true signal, as well as the average

power for a specific row, i.e., the average number of true rejections in the row divided by n1.

4.1 Results for the independence setting

The results on the average and conditional FDR control show that the control of false positives

was tightest using the conditional approach, since it controlled all the error measures (as expected)

at the nominal 0.05 level. The approach of Benjamini and Bogomolov (2014) controlled at the

nominal 0.05 level the average FDR/FWER (as expected), as well as the conditional FDR/FWER

for a correctly selected row (i.e., a row that contains signal), but did not control the conditional

FDR/FWER for an incorrectly selected row (i.e., a row that contains no signal). The naive approach

exceeded the nominal 0.05 level in all error measures considered (as expected, since this procedure

does not account for selection). Figure 1 shows the actual level of each error measures for the

three post selection analyses procedures. We see that BH-naive can have a high inflation of false

positives. The inflation for an incorrectly selected row was so high that it was not plotted in row 3.

The fact that the inflation can be substantial clearly demonstrates that accounting for selection is

necessary even when the selection criterion is very stringent. The fourth row of Table S1 in the SM

shows the exact levels of the error measures for BH-naive for the setting in the last row of Figure 1

when µ = 4: on a correctly selected row (i.e., a row that contains signal), the conditional FDR was

0.065; on an incorrectly selected row the conditional FDR level was 0.996; and the average FDR

was 0.074.

The results on the power show that the conditional approach is best when (1) many correctly

selected rows are expected to contain signal in more than two columns; and (2) the number of rows

selected out of the large number of rows examined is expected to be small (Figure 1). Note that in

this simulation the average power is the same as the average power within a non-null row, and they

are equal to the probability of discovering a true signal (i.e., rejecting a single non-null hypothesis),
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since we generated the signal (i.e., non-null test statistics) from the same distribution, and the same

number of signals (i.e., non-nulls) in each of the m1 rows. Although the naive procedure should

not be used due to its unacceptable inflation of false positives, we plot its power so it can serve

as a benchmark for the power loss due to the necessary adjustment for selection. Examining the

power of BH-BB and BH-cond, we see that the conditional approach is more powerful than the

approach of Benjamini and Bogomolov (2014) when (n, n1) ∈ {(21, 7), (15, 5), (10, 4)}. The gain

in power can be very large. For example, when µ = 3 the power difference between our approach

and that of Benjamini and Bogomolov (2014) was greater than 40% for (n1, n) = (7, 21) and

(n1, n) = (5, 15) and about 30% for (n1, n) = (4, 10). Our approach was slightly less powerful than

the approach of Benjamini and Bogomolov (2014) for (n, n1) = (10, 2). Additional results are

provided in Supplemental Table S1.

4.2 Results for the dependence setting

The results on the average and conditional FDR control show that the control of false positives was

tightest using the conditional approach. The conditional approach controlled all the error measures

(as expected) at the nominal 0.05 level when the row selection was by Bonferroni (i.e., the threshold

for selection was independent of the global null p-values). When the row selection was by BH at

level q = 0.2 on the global null p-values, the average FDR and the conditional FDR for a non-null

row were below the nominal 0.05 level. However, the conditional FDR for a null row was slightly

above the nominal 0.05. When the row selection was by BH at level q = 0.05 instead of q = 0.2, no

inflation was observed (results not shown).

The approach of Benjamini and Bogomolov (2014) controlled at the nominal 0.05 level the average

FDR/FWER (as expected), as well as the conditional FDR/FWER for a correctly selected row

(i.e., a row that contains signal), but did not control the conditional FDR/FWER for an incorrectly

selected row (i.e., a row that contains no signal). The naive approach exceeded the nominal 0.05

level in all error measures considered. Figure 2 shows the actual level of each error measures for
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Figure 1: From left to right, variations in the total number of studies (n), and the number of studies
with signal (n1) within the m1 = 10 rows that contained signal, out of a total of m = 1000 rows. From
top to bottom: (1) average power, i.e., the expected fraction of discoveries among the true signals; (2)
conditional FDR for a null row, i.e., a row that was selected despite the fact that all columns are null (the
naive procedure does not appear because its value was above 0.80); (3) conditional FDR for a non-null
row, i.e., a row that was correctly selected since it has signal in at least one column; and (4) average FDR.
The power and error rates as a function of µ (the signal strength in the non-null studies) of the three post
selection analyses using the BH procedure: at level 0.05 on the original p-values (dotted line); at level
|S|0.05/m on the original p-values (dashed line); at level 0.05 on the conditional p-values in (3.4) (solid
line). Estimated using 100000 datasets. 20
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the three post selection analyses procedures.

As in the independence setting, the results on the power show that the conditional approach is best

when (n, n1) = (21, 7), but the approach of Benjamini and Bogomolov (2014) has slightly better

power when (n, n1) = (10, 2) (Figure 2). Note that in this simulation the average power is different

from the average power within a specific row, since the generated signal varied across rows.

5 Cross-tissue eQTL analysis in The Cancer Genome Atlas

(TCGA) Project

Expression quantitative trait loci (eQTLs) are genomic regions with genetic variants that influence

the expression level of genes. Identifying eQTLs is important for understanding biological mecha-

nisms that controls various normal physiological processes and their aberrations that can lead to

complex diseases. Because gene regulation is tissue specific, eQTL analysis is most informative

using relevant tissue samples, which suffers frequently from the lack of statistical power because of

the small sample size for the tissue. It is, however, observed that some eQTL SNPs are predictive

of gene expression levels across multiple tissues and identification of such eQTLs could be facili-

tated by aggregated analysis across tissue types. A number of studies (Rivas et al., (2015) and

Li et al., (2016), among others) have reported results based on such cross-tissue eQTL analysis

using the data from the Genotype-Tissue Expression (GTEx) project. In this section, we illustrate

the post-selection procedure in an eQTL analysis using 17 tumor tissues in The Cancer Genome

Atlas (TCGA) project (http://cancergenome.nih.gov/). We first performed an aggregated eQTL

analysis across 17 tissue types to identify eQTL SNPs influencing the gene expression in at least

one tissue type. For significant eQTLs, we performed post-selection inference to identify tissue

types with the eQTL effect. We downloaded genotype and total gene expression data based on

RNA sequencing from the TCGA website. The data quality control (QC) for genetic data and the

normalization for the RNA-seq data are described in Supplementary Materials. After QC, 4,476
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(n, n1) = (21, 7), Row Selection by: (n, n1) = (10, 2), Row Selection by:
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Figure 2: From left to right, (n, n1) = (21, 7) with row selection rule piG ≤ 0.05/1100; (n, n1) = (21, 7)
with row selection by BH at level q = 0.2 on {piG, i = 1, . . . , 1100}; (n, n1) = (10, 2) with row selection rule
piG ≤ 0.05/1100; and (n, n1) = (10, 2) with row selection by BH at level q = 0.2 on {piG, i = 1, . . . , 1100}.
Each study had 100 blocks of size 11 rows, and in n1 of the studies the first block contained signal. The
dependence parameter was ρ = 0.7. From top to bottom: (1) average power (in black) and average power
within the sixth row, which has the strongest signal in the block (in blue); (2) conditional FDR for a null
row, i.e., a row that was selected despite the fact that all columns are null (the naive procedure does not
appear because its value was above 0.80); (3) conditional FDR for the sixth row; and (4) average FDR.
The power and error rates as a function of µ (the signal strength in the non-null studies) of the three post
selection analyses using the BH procedure: at level 0.05 on the original p-values (dotted line); at level
|S|0.05/m on the original p-values (dashed line); at level 0.05 on the conditional p-values in (3.4) (solid
line). Estimated using 100000 datasets.
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subjects with European ancestry and 19,285 genes were included for analysis. The sample size for

each tissue type is reported in Supplementary Table S2. For the purpose of illustration, we per-

formed cis-eQTL analysis (i.e., analyzing SNPs less than 1,000,000 base pairs from the target gene)

using matrixeQTL (Shabalin, 2012), adjusting for sex, age and the top five principal component

scores to eliminate the potential confounding due to population stratification. In total, we analyzed

m = 7, 732, 750 SNP-gene pairs to identify cis-eQTLs. Because samples are independent across

tissue types in TCGA, the p-values are independent across tissues.

For selection of eQTL SNPs (i.e., the rows), we combined p-values across the different tissue types

(columns) by a Fisher style test suggested by Pearson, as described in Owen (2009): it runs the

Fisher combining method for left-sided alternatives, and separately for right-sided alternatives, and

takes the maximum of the two resulting statistics. The global null p-value is therefore

piG = 2Pr

[
χ2

2n ≥ max

{
−2

n∑
j=1

log pLij,−2
n∑
j=1

log(1− pLij)

}]
, (5.1)

where pLij is the p-value when testing the left sided alternative for feature i in study j. This test

has a strong preference for common directionality (i.e., it will have greater power than a test based

on Fisher’s combining method on two-sided p-values when the direction of the signal is consistent

across tissues), while not requiring us to know the common direction. We identified 19,690 significant

SNP-gene pairs using the global null p-value threshold 0.05/7, 732, 750 = 6.47× 10−9 based on the

Bonferroni correction for FWER control at the 0.05 level. For each of the 19,690 SNP-gene pair, we

proceeded to post-selection inference to identify relevant tissue types using our conditional approach.

Table 1 demonstrates the post-selection analysis for three SNP-gene pairs, which differ in the

number of identified tissue with signal in the post-selection inference. For the pair rs13066873-

LARS2, the conditional p-values are identical to the original p-values, i.e., there is no cost for

selection, since this pair would have been selected regardless of the realized p-value in a single

tissue, when conditioning on all the other tissue p-values for this pair. From the BH adjusted p-
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values provided in column 10, we see that with the conditional approach 15 tissues are discovered

which have adjusted p-values at most 0.05, but with the approach of Benjamini and Bogomolov

(2014) only the tissue LUAD is discovered, i.e., the single tissue with BH-adjusted p-value at most

0.05 × 19, 690/7, 732, 750 = 0.00013. For the pair rs1437891-ASNSD1 in columns 5-7, with the

conditional approach six tissues are discovered, and these tissues have conditional p-values larger

than the original p-values. With the approach of Benjamini and Bogomolov (2014) no discoveries

are made. For the pair rs7977641-GALNT9 in columns 2-4, no discoveries are made in either

method.

Using the BH procedure on selected rows, the median number of tissue discoveries was 6, with an

inter-quartile range (IQR) of [4,8]. For comparison, we also applied the approach of Benjamini

and Bogomolov (2014), which made far fewer discoveries: the median number of discoveries was

1, with IQR [0,2]. The conditional approach results in many more discoveries than the approach

of Benjamini and Bogomolov (2014) for two reasons. First, because the number of selected SNP-

expression pairs is far smaller than the number originally examined, 19,690/7,732,750=0.0025, and

the approach of Benjamini and Bogomolov (2014) is more conservative the smaller this ratio

is. Second, because for many SNP-expression pairs there are at least two tissues which are highly

significant, thus the conditional p-values coincide with the original p-values, and there was essentially

no cost for selection within these pairs.

An R implementation of the conditional p-value computation after selection by thresholding the

global null p-values computed using (5.1) or (3.1) is available upon request from the first author

(and will soon become available as a Bioconductor package).
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Table 1: The original two-sided p-values, conditional two-sided p-values, and BH-adjusted condi-
tional two-sided p-values for each tissue, for three eQTL SNPs that differ in the number of post-
selection discoveries: rs10896016-CTSW identified no tissues (columns 2–4); rs1437891-ASNSD1
identified 6 tissues (columns 5–7); rs13066873-LARS2 identified 15 tissues (columns 8-10). Signifi-
cant discoveries at the 0.05 FDR nominal level are in bold for the BH-adjusted conditional p-values.
The global null p-value for each SNP-gene pair are provided in the last row.

rs10896016-CTSW p-values rs1437891-ASNSD1 p-values rs13066873-LARS2 p-values
original conditional BH-adjusted original conditional BH-adjusted original conditional BH-adjusted

BLCA 1.26e-02 2.95e-01 3.86e-01 4.55e-01 4.55e-01 6.45e-01 1.99e-03 1.99e-03 4.84e-03
BRCA 7.33e-01 7.33e-01 8.30e-01 2.98e-04 8.04e-03 2.28e-02 2.60e-04 2.60e-04 1.47e-03
COAD 2.66e-01 2.95e-01 3.86e-01 2.31e-03 2.31e-03 2.28e-02 9.93e-04 9.93e-04 3.62e-03

GBM 3.61e-01 2.95e-01 3.86e-01 9.02e-01 9.02e-01 9.02e-01 7.16e-03 7.16e-03 1.35e-02
HNSC 9.22e-01 9.22e-01 9.80e-01 5.47e-01 5.47e-01 6.64e-01 5.44e-01 5.44e-01 5.44e-01
KIRC 7.43e-03 2.95e-01 3.86e-01 2.56e-07 8.04e-03 2.28e-02 1.36e-02 1.36e-02 1.78e-02
KIRP 9.96e-01 9.96e-01 9.96e-01 5.20e-01 5.20e-01 6.64e-01 8.34e-03 8.34e-03 1.42e-02

LAML 2.35e-02 2.95e-01 3.86e-01 7.78e-01 7.78e-01 8.27e-01 3.45e-03 3.45e-03 7.33e-03
LGG 1.40e-01 2.95e-01 3.86e-01 4.54e-05 8.04e-03 2.28e-02 1.07e-03 1.07e-03 3.62e-03
LIHC 1.57e-02 2.95e-01 3.86e-01 3.44e-01 3.44e-01 6.45e-01 1.01e-02 1.01e-02 1.43e-02

LUAD 3.58e-05 2.95e-01 3.86e-01 7.79e-04 8.04e-03 2.28e-02 1.24e-07 1.24e-07 2.11e-06
LUSC 1.29e-01 2.95e-01 3.86e-01 3.03e-01 3.03e-01 6.45e-01 4.07e-02 4.07e-02 4.83e-02

OV 6.66e-02 2.95e-01 3.86e-01 1.63e-01 1.63e-01 3.95e-01 9.61e-03 9.61e-03 1.43e-02
PAAD 2.57e-01 2.57e-01 3.86e-01 6.42e-01 6.42e-01 7.27e-01 4.26e-02 4.26e-02 4.83e-02
PRAD 1.41e-01 2.95e-01 3.86e-01 4.95e-03 8.04e-03 2.28e-02 6.41e-02 6.41e-02 6.81e-02
SKCM 1.58e-02 2.95e-01 3.86e-01 4.15e-01 4.15e-01 6.45e-01 1.83e-04 1.83e-04 1.47e-03
UCEC 5.92e-01 5.92e-01 7.19e-01 4.29e-01 4.29e-01 6.45e-01 1.67e-03 1.67e-03 4.73e-03

Global null
p-value 3× 10−9 2× 10−10 < 10−20

5.1 Valid inference within the selected most significant SNP-expression

pair in a gene

For a target gene, there might be multiple SNPs in the cis region that achieve the genome-wide

significance. Most likely, these SNPs are in strong linkage disequilibrium (LD) and represent one

eQTL. To avoid reporting redundant eQTLs, one natural step is to choose the SNP with the smallest

global null p-value and perform post-selection inference to identify relevant tissue types. However,

the post-selection inference may suffer from high false positive rate if this second selection is not

appropriately accounted for. Related simulation results are provided in Supplemental Figure S2.

Thus, we propose a simple modification to our post-selection inference method to account for the

second selection. We denote the recommended procedure for FDR control by BH-cond-MT, where

MT stands for the additional Multiple Tests (of the SNPs that passed the first selection threshold

at the aggregate level in the gene) that we need to correct for, after computing the conditional

p-values.

25

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 27, 2017. ; https://doi.org/10.1101/058404doi: bioRxiv preprint 

https://doi.org/10.1101/058404
http://creativecommons.org/licenses/by/4.0/


Procedure 5.1. BH-cond-MT post-selection procedure for conditional FDR control at level α:

1. Select all SNP-expression pairs that reach the genome-wide significance threshold h(q,m) (e.g.,

h(q,m) = q/m if the Bonferroni correction is used for FWER control at level q on the global

null hypotheses), S = {i : piG ≤ h(q,m)}.

2. For each gene k with at least one selected SNP, select the most significant SNP in gene k,

ik = arg min{i:i∈S,i in gene k} piG. Let Rk = |{i : i ∈ S, i in gene k}| be the number of SNPs

selected in gene k.

3. Compute the conditional p-values as in (3.3) for row ik.

4. At level α/Rk on the conditional p-values in row ik, apply the BH procedure.

For conditional FWER control, apply Bonferroni-Holm instead of BH in step 4 of Procedure 5.1.

In Supplemental Figure S3 we show that the procedure controls the FDR for dependencies across

SNPs similar to those that arise in GWAS datasets within each study due to LD, and in Appendix

D we formally prove that the conditional FDR is controlled when the rows are independent.

The impact of the second selection is illustrated in Table 2 for gene KIAA0141. Four SNPs (rs351260,

rs164515, rs164084, rs164075) were identified for KIAA0141. Out of the four SNPs, rs351260 had

the strongest overall association and was selected for post-selection inference to identify relevant

tissues. Without accounting for the second selection, 14 tissue types were determined as significant

based on the BH-adjusted conditional p-value < 0.05. After accounting for the second selection,

9 tissue types were counted as significant based on the new threshold BH-adjusted conditional

p-value< 0.05/4 = 0.0125.

Finally, we compared the performance of four methods based on the whole eQTL analysis: BH-

naive, BH-cond and BH-cond-MT and BH-BB (Table 3). Note that BH-naive and BH-cond do

not account for second selection and thus their error rates are likely to be inflated. Consistent

with simulation studies, BH-BB detected the smallest number of signals because of lower power.
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Table 2: The original p-values for the four SNPs for gene KIAA0141 that passed the genome-wide
selection threshold (columns 3 to 6), as well as the BH adjusted conditional p-values for the most
significant SNP (column 6). In bold the adjusted p-values ≤ 0.05

4
, i.e., the significant discoveres using

Procedure 5.1 with α = 0.05. Underlined are the adjusted p-values in (0.05/4, 0.05], i.e., discoveries
using BH-cond that are not discoveries using Procedure 5.1 with α = 0.05. The conditional p-values
were identical to the unconditional p-values in all four SNPs (since for each tissue j, the SNP would
have been selected regardless of the value of the jth p-value). The global null test-statistic for each
SNP is provided in the last row (the corresponding p-value was effectively zero).

tissue p-value p-value p-value p-value BH adjusted p-value
type rs164515 rs164084 rs164075 rs351260 rs351260

BLCA 1.94e-02 1.32e-01 1.51e-01 2.79e-03 5.93e-03
BRCA 1.10e-02 2.11e-02 1.85e-02 2.79e-04 7.92e-04
COAD 3.48e-01 3.01e-01 3.01e-01 3.67e-02 4.45e-02

GBM 8.69e-02 5.61e-01 5.91e-01 7.92e-02 8.97e-02
HNSC 3.93e-01 2.16e-01 2.03e-01 5.69e-01 5.69e-01
KIRC 5.13e-07 1.87e-05 7.75e-06 1.56e-07 1.33e-06
KIRP 1.25e-02 3.37e-02 3.05e-02 3.00e-02 4.03e-02

LAML 1.33e-01 6.54e-02 9.01e-02 5.66e-03 1.07e-02
LGG 1.14e-04 7.68e-02 8.90e-02 6.39e-07 3.62e-06
LIHC 4.01e-02 1.21e-01 7.87e-02 3.08e-02 4.03e-02

LUAD 3.31e-03 1.42e-02 1.02e-02 3.72e-04 9.04e-04
LUSC 1.71e-07 1.49e-05 3.32e-05 1.18e-07 1.33e-06

OV 5.45e-04 1.11e-01 7.88e-02 2.68e-04 7.92e-04
PAAD 1.79e-01 9.42e-02 1.40e-01 4.32e-01 4.59e-01
PRAD 2.58e-03 2.86e-03 2.11e-03 7.32e-05 3.11e-04
SKCM 5.95e-02 8.55e-01 6.76e-01 8.33e-03 1.42e-02
UCEC 3.14e-02 3.58e-02 2.25e-02 2.16e-02 3.34e-02

global null test-statistic 343.7 361.6 346.0 396.8

For example, among the 2235 selected SNPs, at least two tissue discoveries were made in 1857 of

the genes by BH-cond-MT and only in 678 of the genes by BH-BB. For the BH procedure based

on conditional p-values, accounting for second selection noticeably reduced the significant findings.

This was expected, since the number of SNPs discovered per gene is typically greater than one: out

of the 19690 pairs that reached genome-wide significance, there were 2235 unique genes, and the

number of SNPs per gene varied between 1 and 76, with a median number of 5.

6 Discussion

Results from both simulation studies and data analysis highlight the potential of the proposed

method for valid and powerful hypothesis testing for detection of signals at the level of the finer

units following selection of broader units using aggregate level test-statistics. Although the method

is not as general as its existing competitor (Benjamini and Bogomolov , 2014), it can handle an
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Table 3: By each post-selection method, the number of genes with at least x discoveries of tissues,
for x = 0, 1, . . . , 14. The first row represents the genes with at least 0 discoveries, i.e., the number
of selected genes. The theoretically valid methods, which control their respective error rates, are
BH-BB (column 5), as well as the methods that adjust for the selection of a single row per gene
but use the conditional p-values, BH-cond-MT (column 4), described in Procedure 5.1.

minimum #
of discoveries BH-naive BH-cond BH-cond-MT BH-BB

0 2235 2235 2235 2235
1 2235 2003 1936 1309
2 2200 1980 1857 678
3 2105 1938 1653 352
4 1891 1808 1352 160
5 1642 1615 983 59
6 1348 1333 677 7
7 1081 1081 447 2
8 832 832 266 0
9 604 604 132 0

10 375 375 50 0
11 195 195 15 0
12 84 84 8 0
13 21 21 0 0
14 1 1 0 0

important class of scenarios that involve independence of the primary test-statistics across columns,

a practical context of which is demonstrated through the application involving cross-tissue eQTL

analysis in the rich TCGA dataset. The superior power of the proposed procedure over that of

Benjamini and Bogomolov (2014) in this particular setting implies that a general error-controlling

method may not be very powerful for specific applications. Thus, substantial scope for future

research exist for development of other powerful procedures tailored towards specific important

application settings following the general principles we lay out.

If the columns are dependent, it is an open question how to compute valid conditional p-values. In

this work we relied on the fact that the null distribution for a unit-level test statistic is known when

we condition on the selection event and on all the other p-values in its row. When the columns are

dependent, the null distribution after conditioning on the selection event and on all other p-values

in the row may still depend on unknown parameters. The approach of Benjamini and Bogomolov
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(2014) remains valid in this case, since it is not sensitive to dependence across columns, as long as

the within row multiple testing procedure controls the desired error rate for the dependence. In

applications where the dependency across columns is approximately known, it may be possible to

compute the conditional p-values and carry on the post-selection inference as we suggest in this

paper. We plan to investigate the usefulness of this approach for specific applications in future

work.

Other post-selection analyses may be of interest. For example, estimation of the fraction of columns

containing signal within each selected row. Such estimates can be useful in separating the selected

rows where there is signal in most columns, from the rows driven by very few (one or two) columns

only that contain signal. Another example is the estimation of a linear combination of the effect

sizes. A conditional approach can be useful for these post-selection estimation problems.

A Proof of Corollary 3.1

Proof. We let the first hypothesis be a true null, and reorder and relabel the columns so p2 ≤ . . . ≤

pn. Let J = arg max2≤k≤n{pk ≤ αk/n}. If no such k exists then J = 1. Note that R ≤ J , since the

number of p2, . . . , pn that does not exceed αk/n is at most k− 2 for k > J . Since p′j ≥ pj there are

at most k − 2 of the p′js that do not exceed αk/n. Even if p′1 ≤ αk/n, the kth largest from among

p′1, . . . , p
′
n exceeds αk/n. It follows that if p′1 > αJ/n then I = 0.

If p′1 ≤ αJ/n and b1 = 1, for r ≤ J : p′r is either equal to pr and therefore p′r ≤ αJ/n, or p′r =

Πn
l=1pl

e−
1
2 t

= p1

(
Πn

l=2pl

e−
1
2 t

)
≤ p1 ≤ αJ/n. If p′1 ≤ αJ/n and b1 < 1, for r ≤ J : since p′1 =

Πn
l=1pl

e−
1
2 t
≤ αJ/n,

then p′r ≤ αJ/n. Therefore, if p′1 ≤ αJ/n then p′r ≤ αJ/n for r ≤ J , i.e., R = J .

29

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 27, 2017. ; https://doi.org/10.1101/058404doi: bioRxiv preprint 

https://doi.org/10.1101/058404
http://creativecommons.org/licenses/by/4.0/


Therefore,

n∑
k=1

1

k
Pr (I = 1 and R = k | f(P1, p2, . . . , pn) ≥ t, P2 = p2, . . . , Pn = pn)

=
1

J
Pr (P ′1 ≤ αJ/n | f(P1, p2, . . . , pn) ≥ t, P2 = p2, . . . , Pn = pn) =

α

n
.

B Proof of Theorem 3.2

Since the selection rule is simple and we are conditioning on P (i), there will be a unique number

of rows that are rejected, k along with i, which depends on P (i). Let C+ be the possible values of

Ci ∈ {I[Vi > 0], Vi/max{Ri, 1}}.

E
(
Ci | i ∈ S, P (i)

)
=

∑
c∈C+ cPr

(
Ci = c, f(Pi1, . . . , Pin) ≥ t(k) | P (i)

)
Pr (f(Pi1, . . . , Pin) ≥ t(k) | P (i))

=

∑
c∈C+ cPr (Ci = c | f(Pi1, . . . , Pin) ≥ t(k)) Pr

(
f(Pi1, . . . , Pin) ≥ t(k) | P (i)

)
Pr (f(Pi1, . . . , Pin) ≥ t(k) | P (i))

(B.1)

≤ α
Pr
(
f(Pi1, . . . , Pin) ≥ t(k) | P (i)

)
Pr (f(Pi1, . . . , Pin) ≥ t(k) | P (i))

= α, (B.2)

where equality (B.1) follows since the rows are independent. Inequality (B.2) follows since level-α

conditional inference controls level-α conditional error for selection thresholds that do not depend

on Pi1, . . . , Pin, as proved in Section 3.1.2.
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C Proof of Theorem 3.3

Proof. Since E(Ci | i ∈ S, P (i)) ≤ α, it follows that

E(Ci | S) = E(E(Ci | i ∈ S, P (i)) | S)I[i ∈ S] ≤ αI[i ∈ S]

The result is immediate:

E

( ∑
i∈S Ci

max(|S|, 1)

)
= EE

( ∑
i∈S Ci

max(|S|, 1)
| S
)

= E

(∑
i∈S

1

max(|S|, 1)
E(Ci | S)

)
≤ αPr(|S| > 0)

D Proof of conditional FDR control for Procedure 5.1

Procedure 5.1 controls the conditional FDR when the rows are independent, as formally stated in

the following theorem.

Theorem D.1. Assume the global null p-values in gene k are independent. If Rk of the SNPs in

gene k have global null p-values at most h(q,m), then the Bonferroni-Holm/BH procedure at level

α/Rk on P ′ik1, . . . , P
′
ikn

, where ik = arg min{i:i∈S,i in gene k} piG, controls the conditional FWER/FDR

at level ≤ α.

Proof. Relabel the rows so that the first mk rows are the SNPs for gene k.Let Sk be the selection

status for the SNPs in gene k, i.e., Sk = {I[PiG ≤ h(q,m)], i in gene k}.

Let Ci ∈ {I[Vi > 0], Vi
max(Ri,1)

}. The procedure guarantees conditional error control for each SNP i
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in gene k at level α/Rk if the rows are independent:

E(Ci | i ∈ S,Sk) ≤ α/Rk.

It therefore follows that the conditional error is controlled also for the row with the smallest global

null p-value:

E (Cik | ik ∈ S,Sk) ≤
mk∑
l=1

E (Cl | l ∈ S,Sk) I[l ∈ S] ≤ α

Rk

mk∑
l=1

I[l ∈ S] = α.
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