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Abstract

In Escherichia coli, the housekeeping sigma factor σ70 directs RNA polymerase to transcribe 

growth-related genes, whereas the alternative sigma factor σ38 directs it to transcribe stress 

response genes during stationary phase. Two molecules hypothesized to regulate RNA 

polymerase activity are Rsd, which sequesters free σ70, and 6S RNA, which sequesters the RNA 

polymerase-σ70 holoenzyme. Despite multiple studies, their function remains controversial. Here 

we use genome-wide expression studies in five phases of growth, along with theoretical 

modeling, to investigate the functions of Rsd and 6S RNA. We show that 6S RNA and Rsd act as

global regulators of gene expression throughout bacterial growth, and that both increase 

transcription of σ38 dependent genes. We also find several instances of crosstalk between 6S RNA

and Rsd, and propose a model in which this crosstalk is important in regulating sigma factor 

competition.

Importance

Bacteria possess a single RNA polymerase which transcribes all genes. This RNA polymerase is 

a crucial point for regulation, as changes in its level, distribution or activity could have rapid and 

widespread effects on gene expression. In the model bacterium E. coli, Rsd and 6S RNA are two 

abundant molecules that regulate the activity of RNA polymerase. Here we identify genes 
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regulated by Rsd and 6S RNA in five phases of bacterial growth and suggest a model to explain 

their regulatory activity.

Introduction

In bacteria, all transcription is dependent on a single core RNA polymerase. This multisubunit 

enzyme (α2ββ'ω, referred to as E) cannot bind specifically to promoters. This ability is conferred 

by a sigma (σ) factor, which binds to E forming an Eσ holoenzyme, and directs it to transcribe 

RNA from specific promoters. 

Seven sigma factors – σ70 (RpoD), σ38 (RpoS), σ32, σ54, σ28, σ24 and σ19 - have been identified in the

model bacterium Escherichia coli (1). In vivo studies have shown that when one sigma factor is 

overproduced, underproduced, or mutated, not only is there a change in transcription of its target 

genes, but increased activity of one sigma factor decreases the activity of others and vice-versa 

(2–4). In vitro assays have demonstrated competition between sigma factors when E is limiting 

(3–6). Though it was previously reported that the cellular concentration of E exceeded that of 

sigma factors (6, 7), recent quantitation has shown that sigma factors exceed E under common 

culture conditions (8, 9), and therefore compete to bind to limited E. 

σ70 (RpoD) is the housekeeping sigma factor, directing transcription of genes essential for growth

and proliferation. The alternative sigma factors are produced under specific conditions, and 
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direct transcription of genes required under those conditions. The major alternative sigma factor 

is σ38 (RpoS). This is present at low concentration during exponential growth, but nevertheless 

regulates several hundred genes (10, 11). Upon entry into stationary phase, while the 

concentrations of E and σ70 show little change, σ38 accumulates (9, 12, 13; Table 1) and directs 

transcription of genes responsible for multiple stress tolerance (14–18). However, σ70 remains the

most abundant sigma factor even in stationary phase, and has higher affinity for E than any other 

sigma factor (6, 9, 19, 20), implying that additional regulators are needed for σ38 and other sigma 

factors to compete effectively with σ70. 

Such regulators are known. The Crl protein binds to σ38 and increases its affinity for E, and 

promotes transcription by the Eσ38 holoenzyme at some promoters (21–23). The nucleotide 

ppGpp increases the ability of alternative sigma factors to compete with σ70 (3). However, ppGpp

is produced transiently on entry into stationary phase (24), and Crl has also been shown to 

decrease during extended stationary phase (21). 

On the other hand, two regulators - the protein Rsd and the non-coding 6S RNA - act on σ70. Rsd 

binds to σ70, sequestering it from E, and inhibits Eσ70-dependent transcription at several 

promoters in vitro (25). An Rsd null strain showed increased transcription from a σ70 dependent 

promoter, and reduced transcription from a σ38 dependent promoter, in stationary phase, whereas 

Rsd overexpression had the opposite effect (26). It was hypothesized that in stationary phase, 

Rsd reduces Eσ70 formation, and, by freeing E to bind σ38, increases Eσ38 formation. However, a 
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microarray experiment found no significant difference in gene expression between an Rsd 

knockout and wild-type E. coli, and even comparison of the knockout with an Rsd 

overexpressing strain found changed expression of only a few σ38-dependent genes (27). All 

effects of Rsd in vivo were observed only during stationary phase. This was initially attributed to 

low Rsd levels during exponential phase. However, recent quantitation has shown that Rsd is 

present at ~50% of the level of σ70 in exponential phase and ~90% in stationary phase (9) – 

raising the question of why no change in expression is seen in its knockout.

6S RNA is a 184-nucleotide non-coding RNA expressed from the ssrS gene. 6S RNA binds to 

the Eσ70 holoenzyme (28). It has been shown to block Eσ70 binding to a target promoter (29), and 

inhibit transcription from several promoters in vitro and in vivo (24, 28, 30–32). A 6S RNA 

knockout showed increased expression from some Eσ70 promoters containing extended -10 

elements, and reduced expression from a few Eσ38 promoters, in stationary phase (32). It was 

suggested that 6S RNA blocks Eσ70 from binding to certain target promoters, reducing their 

transcription, and that sequestration of Eσ70 by 6S RNA allows σ38 to compete more effectively 

for E, increasing transcription by Eσ38. An alternative hypothesis was that 6S RNA regulates a 

trans-acting factor important for Eσ38 activity (32). A later study showed that 6S RNA regulates 

hundreds of genes in stationary phase, and, by mutating promoter sequences, showed that an 

extended −10 element and a weak -35 element could make a promoter sensitive to 6S RNA (30). 

But contrary to these, another  expression study found no correlation of 6S RNA sensitivity with 
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promoter sequence or sigma factor preference (33), and there was little overlap between the 

regulated genes found in the two experiments.  

Rsd and 6S RNA are present at high concentrations during growth, increase in stationary phase, 

and are thereafter at high levels (9, 25, 28). Yet their effects on gene expression, especially 

during growth, remain controversial. Both have been hypothesized to reduce Eσ70 and increase 

formation of Eσ38; however, they act at different levels, one sequestering free σ70 and the other 

sequestering the Eσ70 holoenzyme. We must therefore ask what impact this difference has on their

regulatory effects. Do Rsd and 6S RNA possess similar regulatory functions? 

Here, we present a genome-wide investigation of the functions of Rsd and 6S RNA in E. coli. We

used RNA-seq to identify genes regulated by Rsd and 6S RNA in five phases of growth, and 

demonstrated that both function as global regulators of transcription during exponential as well 

as stationary phase. We showed that both increase transcription of σ38 target genes, with 6S RNA 

also regulating hundreds of σ70 targets, including genes encoding subunits of RNA polymerase, 

ribosomes and other global regulators, and substantiated these findings by qRT-PCR and western

blotting. We found evidence of substantial crosstalk between Rsd and 6S RNA, with each 

regulating the other's expression and non-additive effects on over a thousand genes. Finally, we 

developed a mathematical model of sigma factor competition in E. coli, which suggested a 

theoretical basis for our experimental results. 
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Results

RNA-seq to identify genes regulated by Rsd and 6S RNA

Figure 1A shows a schematic of the binding activity of 6S RNA and Rsd. Rsd sequesters σ70 and 

prevents it from binding to core RNA polymerase (E), while 6S RNA binds to the Eσ70 

holoenzyme and prevents it from binding to promoters. To find their effects on gene expression, 

we carried out RNA-seq to identify genes regulated by Rsd and / or 6S RNA in five growth 

phases.

Table S1 lists strains and plasmids used in this study. Five strains: E. coli K-12 MG1655 (Wild-

type), Rsd knockout (Δrsd), 6S RNA knockout (ΔssrS), 6S RNA-Rsd double knockout 

(ΔrsdΔssrS), and σ38/RpoS knockout (ΔrpoS) were used for RNA-seq. These strains had similar 

growth rates in M9 glucose (Figure S1). RNA-seq was performed at five growth phases: early 

exponential (EE), mid-exponential (ME), transition to stationary (TS), stationary (S), and late 

stationary (LS; time points in Methods). 

Rsd increases σ38/RpoS activity throughout growth

We defined differentially expressed genes as genes whose expression changed >=2-fold in a 

mutant strain relative to the wild-type, with an FDR-adjusted p-value < 0.05. Using these criteria,
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the Δrsd strain showed only 16 differentially expressed genes. These included several non-

coding RNAs (ryfD, sokA, oxyS, sroH, sibD) which were increased 2-6 fold in Δrsd during 

stationary phase. The expression of 6S RNA was also altered in Δrsd; 6S RNA was increased to 

more than twice the wild-type level in stationary phase, but in mid-exponential phase was 

reduced to about half its wild-type level (Table S2). 

As very few genes were differentially expressed in Δrsd, we looked for smaller changes. We 

found that in all growth phases, there was a trend for genes whose expression was significantly 

reduced (>=2-fold, p < 0.05) in ΔrpoS to also display slightly reduced expression in Δrsd. This is

illustrated in Figure 1B-C. These boxplots show the distribution of log2 fold change in gene 

expression in Δrsd relative to wild-type, for all genes. The central line represents the median, box

edges represent the inter-quartile range, and the whiskers represent 1.5 x IQR. For genes whose 

expression is significantly reduced in ΔrpoS, the distribution is shifted downward, indicating a 

tendency toward reduced expression (log2 fold change < 0). The upper edge of the IQR is below 

0, indicating that ~75% of the genes whose expression was significantly reduced in ΔrpoS also 

showed reduced expression  in Δrsd. Plots for other growth phases are in Figure S2A. 

This reduced expression was less than twofold in magnitude and so was not seen when searching

for differentially expressed genes directly in Δrsd. Though these fold changes are small, we 

consider them important for several reasons. They represent a consistent and highly significant 

(Wilcoxon test p < 10-15 in all growth phases except LS) decrease in expression across hundreds 
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of rpoS affected genes, in five growth phases. The average overlap between the set of rpoS-

regulated genes in successive growth phases is only 54%; so it is not a single set of genes whose 

expression was reduced in Δrsd, but a substantially different set in each growth phase. The Δrsd 

samples also showed high inter-replicate correlation in all growth phases (Table S3). This trend 

of decreased expression held true when only previously reported σ38 targets (18) were considered

(Figure S2B). Conversely, genes whose expression was increased >=2-fold in ΔrpoS showed 

increased expression in Δrsd, during the early exponential, mid-exponential and stationary 

phases (Figure S2C). However, expression of genes under the control of constitutive σ70 target 

promoters (34) was not substantially altered in any phase (Figure S3).

Thus the Rsd knockout behaved like a σ38 knockout, only with smaller changes in gene 

expression. As western blots in stationary phase did not show changed σ38 protein level in Δrsd 

(Figure S4), this is likely due to reduced binding of σ38 to E. Therefore, although Rsd binds to 

σ70, we hypothesize that its function is to increase σ38 binding to E, and therefore transcription of 

σ38 targets, in exponential as well as stationary phase. 

6S RNA regulates distinct sets of genes in all phases of growth

What role does the Eσ70 - sequestering 6S RNA play in gene regulation? Is its function similar to 

that of the σ70-sequestering Rsd? Our RNA-seq showed that the 6S RNA knockout (ΔssrS) was 
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very different from the Rsd knockout. To begin with, it showed >=2-fold differential expression 

of a total of 447 genes. 

Figure 2A and B show that there was little overlap between genes differentially expressed in 

ΔssrS in successive growth phases. In particular, 186 of 221 genes regulated by 6S RNA during 

late stationary phase were regulated only in that phase. The only genes upregulated >=2-fold in 

ΔssrS throughout growth were cusR, encoding a copper-sensing regulator, and its target genes 

(cusCFB) encoding a copper/silver efflux system. The only gene downregulated >=2-fold in 

ΔssrS throughout growth was fau (ygfA), which is downstream of 6S RNA in the same operon 

and encodes a putative 5-formyltetrahydrofolate cyclo-ligase. fau expression was increased when

6S RNA was overexpressed from a plasmid in a wild-type background (Figure 2C and D), 

indicating that this was at least in part a regulatory effect of 6S RNA and not merely a polar 

effect. The mechanism is unclear; however, it could indicate an autoregulatory role of 6S RNA.

During exponential phase, the expression of several genes encoding amino acid transporters 

(artM, artI, hisP, hisQ, hisJ, hisM, tdcC) and genes for amino acid biosynthesis (argH, argB, 

thrA, thrB, thrC, asnB, glyA) was increased in ΔssrS, while expression of genes involved in 

stress responses (rmf, appY, yadC, ybcM, yciF, gadW, ydeI, yodD, dps, hdeA, hslV, oppA, osmE, 

dosC) was reduced. These functional changes are consistent with previous reports (24, 33), 

though most of the specific genes are different. In LS phase, genes encoding global 

transcriptional regulators including crp, crl and hha and genes linked to the TCA cycle (sdhD, 
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sdhC, gltA, aceB, ppc, sucA) were upregulated, while downregulated genes included iraP, csrB, 

and 9 subunits of NADH dehydrogenase. 

While the effects of the ΔssrS deletion appeared largely growth phase-dependent, we observed 

certain patterns throughout growth. These are discussed in the following sections.

6S RNA increases σ38/RpoS activity throughout growth

Like Δrsd, the ΔssrS strain showed reduced expression of σ38 target genes (Figure 3A and B, 

Figure S5, Wilcoxon test p < 10-15 in all growth phases except late stationary). This was not due 

to reduced σ38 protein, as western blots in stationary phase showed that the ΔssrS strain had 

higher σ38 protein than the wild-type (Figure S4). On the other hand, expression of genes under 

constitutive σ70 promoters was slightly increased in the mid-exponential, transition to stationary 

and late stationary phases (Figure S6).

6S RNA regulates the expression of RNA polymerase, ribosomal genes, and Rsd 

Figure 4A shows that the wild-type expression of 6S RNA increased in successive growth 

phases, as reported (28). Therefore, the effect of 6S RNA on its target genes should be greater in 

each successive growth phase. Indeed, with the exception of the transition to stationary phase, 

the number of 6S RNA regulated genes increased with growth phase (Figure 2A and B). A 
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previous study (24) showed increased ppGpp in a 6S RNA knockout during the transition to 

stationary phase; consistent with this, we observed slightly increased expression of ppGpp-

activated genes and reduced expression of ppGpp-repressed genes in the ΔssrS strain during this 

phase (Figure S7). Since ppGpp also favors the competition of alternative sigma factors with σ70 

(3), increased ppGpp may reduce the effects of the ΔssrS deletion during this phase. 

Are there genes where 6S RNA has a dose-dependent effect throughout growth, increasing with 

its expression level? Of 447 6S RNA regulated genes, 36 show such an effect, with the 

magnitude of their repression or activation by 6S RNA increasing in each successive growth 

phase (Figure S8). For example, Figure 4B shows the log2 fold change in expression of rpoB 

(encoding the β subunit of core RNA polymerase) in ΔssrS. rpoB expression was slightly 

reduced in mid-exponential phase, and the magnitude of this reduction increased with time, as 

the level of 6S RNA in the wild-type increased. Reduced RpoB expression was validated in 

stationary phase by qRT-PCR (Table S7) and western blotting (Figure S9). Since excessive Eσ70 

inhibits rpoB transcription (35), we suggest that deleting 6S RNA leads to higher free Eσ70, 

which proportionally represses rpoB transcription. Since RpoB is the limiting subunit for the 

formation of core RNA polymerase (9), this implies that the cell compensates for the loss of 6S 

RNA by reducing RNA polymerase synthesis. 

Similarly, we observed changed expression of genes encoding ribosomal proteins (Figure 4C). 

Decreased expression of these genes in a 6S RNA knockout during stationary phase was reported
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previously (33); here, their expression was increased in ΔssrS during early and mid-exponential 

phases, then decreased steadily. 6S RNA also represses some genes similarly. For example, 

Figure 4D shows that crl expression is slightly increased in ΔssrS during early exponential 

phase, and the magnitude of this increase keeps growing, paralleling the increase in 6S RNA in 

the wild-type. As with the effect of reducing RNA polymerase synthesis to compensate for the 

loss of 6S RNA, increasing σ38 protein and Crl may be a means to compensate for reduced Eσ38 

activity in ΔssrS bacteria.

Since we observed that Rsd regulated 6S RNA expression, we checked whether 6S RNA in turn 

regulated Rsd expression. Our RNA-Seq showed that rsd was not differentially expressed in 

ΔssrS. To check if 6S RNA regulated Rsd post-transcriptionally, we added a 3xFLAG tag to the 

C-terminal of the Rsd protein. Indeed, western blots showed that the expression of 3xFLAG-

tagged Rsd was reduced in the ΔssrS background relative to wild-type, in both mid-exponential 

and stationary phases (Figure 4E). 

Finally, though 6S RNA binds to Eσ70, its effects are highly promoter-specific (24, 30, 32, 33). 

Therefore we asked what features of a gene might be responsible for its response to 6S RNA. 

However, we did not observe any link between 6S RNA sensitivity and an extended -10 or weak 

-35 promoter sequence as reported in (30) (Figure S10).  Instead, during stationary phase, the 6S 

RNA sensitivity of a gene was correlated with its expression level. Genes downregulated in 

ΔssrS tended to be highly expressed in the wild-type, and genes upregulated in ΔssrS had low 
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expression in the wild-type (Figure 4F). It was also correlated with the occupancy of the gene 

promoter by RNA polymerase, measured by ChIP-chip in (36) (Figure 4G). Thus, our data 

support a model in which sequestration of RNA polymerase by 6S RNA primarily represses 

promoters that are weak in binding to RNA polymerase.

The Rsd/6S RNA double knockout shows differential expression of a distinct set of 

genes

We have discovered several instances of crosstalk between 6S RNA and Rsd; apart from the fact 

that both sequester σ70 in different forms, each regulates the other's expression, and both favor the

activity of σ38. We therefore asked whether the double knockout of Rsd and 6S RNA showed 

effects on gene expression distinct from the single knockouts. 

The ΔrsdΔssrS strain showed several of the features described for ΔssrS (Figure S11 and S12). 

In addition, in each growth phase, hundreds of genes were differentially expressed in the double 

knockout relative to the wild-type. This far exceeded the number of differentially expressed 

genes in both single knockouts, suggesting significant crosstalk between the two regulators. 

Figure 5A and B show genes that showed differential expression in the double knockout, but less 

than twofold change in both single knockouts added together; there were 1780 such genes in 

total. These included genes encoding DNA Gyrase and Topoisomerase I, which maintain DNA 
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supercoiling and regulate expression of hundreds of genes (37), the nucleoid-associated proteins 

HU, H-NS and StpA, the global transcriptional regulators ArcA, LRP and IHF, the small RNA 

chaperone Hfq, and the F0-F1 ATP synthase. 

A theoretical model suggests possible explanations for the behavior of Rsd and 6S RNA

Our RNA-Seq demonstrated that Rsd and 6S RNA are regulators of sigma factor competition and

gene expression at a global scale; however, several results appear counter-intuitive. How does 

Rsd, which sequesters σ70, increase transcription of σ38 target genes without as much effect on σ70 

target genes? How does 6S RNA, which sequesters not only σ70, but also the core RNA 

polymerase which is required for transcription by all sigma factors, nevertheless increase 

transcription by σ38 ? 

To suggest possible answers, we constructed a mathematical model of transcription during 

stationary phase, using parameters from literature (Table 2.2). We focused on stationary phase as 

that is when σ38, 6S RNA and Rsd are at high concentrations. Our model is similar in structure to 

previous studies (8, 38), that have attempted to model sigma factor competition. However, this is 

the first model of stationary phase conditions and the first to include both 6S RNA and Rsd. 

Consequently, our results differ from previous models. 
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A schematic of reactions in the model is given in Figure 6A. Core RNA polymerase (E) binds to 

sigma factors (σ70 and σ38) forming holoenzymes (Eσ70 and Eσ38). Holoenzymes recognize target 

promoters (P70 and P38 respectively) and initiate transcription, releasing the sigma factor. The 

elongating RNA polymerase (Ee70 and Ee38) transcribes until released. Holoenzymes and E can 

also bind to DNA non-specifically. We focus on the steady state of this model, determined 

byequations (1) - (4) and (8) – (17) in Methods.                                                                               

To understand how Rsd and 6S RNA regulate competition between sigma factors for RNA 

polymerase, we initially modeled the formation of Eσ70  and Eσ38 holoenzymes in the absence of 

DNA. This is represented by the shaded area in Figure 6A. The corresponding steady-state 

equations are (1) - (9) in Methods. 

Figure 6B(i) depicts what happens when Rsd is added to a system containing only E, σ70 and σ38. 

We emphasize that this represents the steady-state behavior of the model. That is, each value of 

Rsd on the x-axis corresponds to a separate 'run' of the model where we compute the steady-state

for those fixed parameter values, before moving on to the next Rsd value. 

Initially, our model predicts that ~94% of total E would be bound to σ70. As Rsd is increased, it 

sequesters σ70, reducing Eσ70 formation. This allows more E to bind to σ38 and thus increases the 

formation of Eσ38 by an equal amount, consistent with previous predictions of the function of 

Rsd (26). However, Figure 6B(ii) predicts that when 6S RNA is present in the system, Rsd 
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increases Eσ38 with relatively little effect on Eσ70. How? This paradoxical result can be 

understood with Figure 6B(iii), which shows that the concentration of the 6S RNA–Eσ70 

complex decreases as Rsd is increased. When 6S RNA is present, increasing Rsd still reduces E-

σ70 association; however, the reduction in Eσ70 is partially compensated for by the release of Eσ70 

from its complex with 6S RNA, and so there is little change in the overall Eσ70 level.

Next, we included DNA in the model (represented by the complete schematic in Figure 6A) and 

observed how Rsd's effects on holoenzyme formation lead to changes in transcription. Here, we 

modeled 200 promoters specific to each sigma factor. As expected from Figure 6B(ii), the model 

predicts that Rsd increases the rate of transcription by Eσ38 with less effect on Eσ70 transcription 

(Figure 6B(iv)). 

Apart from losing Rsd, our Δrsd strain also displayed a ~2.3-fold increase in 6S RNA during 

stationary phase. Figure 6B(v) shows the predicted rate of transcription from Eσ70 and Eσ38 target

promoters in the wild-type and when Rsd = 0. The third pair of bars is an approximation of 

conditions in the Δrsd strain, where 6S RNA is increased 2.3-fold. We see that increased 

expression of 6S RNA could reduce Eσ70 dependent transcription in the Δrsd strain to almost the 

wild-type level, such that the main observable effect of knocking out Rsd would be reduced 

transcription by Eσ38. 
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We therefore hypothesize that in the presence of 6S RNA, Rsd increases the formation of Eσ38 

and therefore transcription of Eσ38 target genes, with less effect on Eσ70, consistent with both our 

RNA-seq and a previous study (27). We note that increasing Rsd is predicted to be a 

considerably more effective way to increase Eσ38 transcription than increasing σ38 itself (Figure 

S13). 

What is the effect of 6S RNA? Again, we initially modeled the effect of 6S RNA on sigma factor

competition without DNA. Figure 6C(i) predicts that 6S RNA sequesters Eσ70, reducing the 

available E for binding to both sigma factors, thus inhibiting formation of both holoenzymes. By 

sequestering Eσ70, 6S RNA also reduces the ratio of σ70 to σ38, and so the decline is sharper for 

Eσ70. Similarly, Figure 6C(ii) shows the predicted effect of 6S RNA on transcription; 6S RNA 

decreases the rate of transcription by both holoenzymes, though the decline is greater for Eσ70. 

However, our RNA-seq showed that deleting 6S RNA actually results in reduced transcription of 

Eσ38 target genes, i.e. 6S RNA causes increased transcription by Eσ38. How is this possible? A 10-

fold increase or decrease in any of the parameters was not sufficient to reproduce this 

observation. 

Apart from losing 6S RNA, our ΔssrS strain also displayed changed levels of Rsd, RpoB, and 

σ38. Figure 6C(iii) shows the predicted rate of transcription from Eσ70 and Eσ38 target promoters 

in the wild-type and when 6S RNA = 0. The third pair of bars is an approximation of conditions 
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in the ΔssrS strain (based on western blots in Figure 4, Figure S4 and Figure S9). Here, Rsd and 

E are reduced to 50% of their wild-type levels and σ38 is increased by 50%. We see that Eσ38 

transcription is now reduced to less than the wild-type level. In fact, within the default 

parameters of our model, reducing Rsd alone from 10.4 μM to 8 μM is sufficient to lower Eσ38 

transcription in the 6S RNA knockout below its wild-type level. 

We also observed increased crl mRNA in ΔssrS. We have not modeled this due to lack of 

quantitative data on Crl. However, if the change in mRNA corresponds to increased Crl protein, 

it could partially mitigate the effect of reduced Rsd in the ΔssrS strain. 

Thus, from our base model we can make the strong claim that the binding reactions of Rsd and 

6S RNA shown in Figure 6A cannot explain the reduced transcription of Eσ38 target genes in the 

ΔssrS strain. However, adding reduced Rsd levels to the model is sufficient. We therefore 

hypothesize that the reduced Eσ38 transcription in the 6S RNA knockout could be due to indirect 

effects, primarily via Rsd.

The predictions of this model would ideally be validated by in vitro transcription experiments 

with Rsd and 6S RNA in varying concentrations; to our knowledge, such studies have never been

carried out.  However, such experiments are necessarily limited to a few promoters, and previous

studies have not succeeded in distinguishing specific transcription inhibition by 6S RNA in vitro.

Some predictions may be testable by looking at distributions of gene expression in vivo; for 
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instance, increasing Rsd expression in ΔssrS back to the wild-type level should largely mitigate 

the reduced expression of σ38 target genes.

Discussion

6S RNA and Rsd have long been known to regulate RNA polymerase in E. coli. It was originally 

hypothesized, based on expression studies using single promoters, that Rsd reduces the 

association of E with σ70 and correspondingly increases its association with σ38 (26). However, a 

microarray experiment failed to find any significant effect of deleting Rsd (27). All studies so far 

have found effects of Rsd only in stationary phase. 

Here we report for the first time that Rsd regulates gene expression from early exponential to 

stationary phase. Though it sequesters σ70, our data leads us to hypothesize that its primary 

function is to increase the association of the alternative sigma factor σ38 with RNA polymerase. 

Based on theoretical modeling, we suggest that this is due to the presence of 6S RNA, which 

minimizes the effect of Rsd on Eσ70 levels. Since Rsd overexpression has been seen to increase 

transcription directed by σ24 and σ54 in a ppGpp0 background (4, 39), Rsd may generally assist 

alternative sigma factors in associating with RNA polymerase, under suitable conditions. 

6S RNA is more complex, regulating hundreds of genes controlled by multiple sigma factors. We

identified 447 6S RNA regulated genes, of which 203 are upregulated in the 6S RNA knockout, 
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243 are downregulated, and 1 (rzoD) is upregulated in EE phase but downregulated in LS phase. 

However, our data does not show associations between promoter sequence and 6S RNA 

susceptibility as previously reported (30). Our data has somewhat greater similarity with that of 

(33), who reported reduced expression of rpoB and ribosomal genes in ΔssrS in stationary phase,

and observed increased ppGpp without an increase in relA; however, there is still relatively low 

overlap in the list of 6S RNA regulated genes (46 genes). This is likely because these studies 

were carried out in different time points and media from ours. Even within our dataset, there is 

little overlap between genes regulated by 6S RNA at different time points. Therefore, it seems 

that there is generally a large difference in the 6S RNA regulon under different conditions. 

Nevertheless, certain patterns stand out; 6S RNA increases σ38 mediated transcription, and 

modulates the expression of the transcription and translation machinery. This supports a model in

which 6S RNA acts as a background-level regulator operating on RNA polymerase, with gene-

level outcomes depending strongly upon the cellular environment; this could potentially involve 

DNA topology, transcription factors, and other RNA polymerase-binding factors, all of which 

vary with growth phase (40). 

Previous work using a few promoters (32) had suggested that 6S RNA might increase 

transcription by Eσ38 during stationary phase. It was suggested that this was either a direct effect 

of 6S RNA, allowing σ38 to compete more effectively for E, or indirect, by means of a trans-

acting factor important for σ38 activity. However, another study (33) found no evidence of this 
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link. We show that 6S RNA increases transcription by Eσ38 globally, from early exponential to 

stationary phase, and suggest that it does so through indirect effects, such as increasing Rsd. 

It has been asked, given 6S RNA's function as a global regulator, why its deletion does not cause 

a growth defect. Our data, along with others (24, 33), shows multiple feedback effects in the 

ΔssrS strain, where the cell reduces RNA polymerase expression to compensate for the loss of 6S

RNA, and increases σ38 and possibly Crl to compensate for reduced Eσ38 activity; increased 

ppGpp may play a part during the TS phase. Our data also shows that in LS phase, 6S RNA 

represses ppk, responsible for the synthesis of inorganic polyphosphate - which increases σ38 

expression and inhibits transcription by Eσ70 (41). In stationary phase, the Rsd/6S RNA double 

knockout shows reduced expression of DNA supercoiling enzymes; supercoiling regulates 

promoter binding by Eσ70 and Eσ38 (42, 43); in ME phase, it shows reduced expression of the 

gene encoding the small RNA chaperone Hfq, which, among many functions, increases σ38 

expression (44). These examples, illustrated in Figure S14, demonstrate that RNA polymerase 

activity is very carefully controlled, and 6S RNA is connected to multiple pathways involved in 

this process. 

We also report for the first time that 6S RNA positively regulates the expression of its 

downstream gene fau. The ssrS-fau operon arrangement is conserved in α- and γ-proteobacterial 

genomes as well as some β-proteobacteria (45), suggesting that it is functionally relevant, 

perhaps for linking fau expression to 6S RNA, and thus to the nutritional state of the cell. As the 
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fau gene product has been linked to folate metabolism (46), biofilm formation (47) and persister 

cell formation (48), further investigation of the link between 6S RNA and fau is warranted. 

Lastly, we report that 6S RNA and Rsd regulate each other. Rsd activates 6S RNA expression in 

mid-exponential phase and inhibits it in stationary phase, and 6S RNA activates Rsd protein 

expression in both mid-exponential and stationary phase. In addition, 1780 genes across 5 

growth phases – almost 40% of the genes in the cell - are differentially expressed in the 6S RNA-

Rsd double knockout but not in the single knockouts added together, indicating some degree to 

which 6S RNA and Rsd can compensate for each other's absence. 

Given that 6S RNA homologs are widespread in bacteria, co-occurring with Rsd and with other 

RNA polymerase regulators such as the actinobacterial RbpA, and many bacterial species have 

two or three 6S RNA homologs with different expression patterns and potentially different 

binding partners (45, 49), we suggest that studying the relationships between these regulators of 

RNA polymerase will give greater insights into transcriptional control across the bacterial 

kingdom. 

Materials and Methods

Growth conditions 
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Luria-Bertani broth and agar (20 g/L) were used for routine growth. M9 defined medium (0.6% 

Na2HPO4, 0.3% KH2PO4, 0.05% NaCl, 0.01% NH4Cl, 0.1 mM CaCl2, 1 mM MgSO4, 5 x 10−4% 

Thiamin) supplemented with 0.5% glucose and 0.1% casamino acids was used for RNA-seq and 

validation. During strain construction, ampicillin or kanamycin were used at final concentrations 

of 100 μg/ml and 50 μg/ml respectively.

Strain construction 

Single gene deletions were achieved by the λ Red recombination system (50), using plasmids 

pKD46 and pKD13 and specific primers (Table S4). This method introduced a kanamycin 

resistance cassette into the chromosome. Knockout strains were selected on LB Kanamycin 

plates. In the rsd knockout, the resistance cassette was removed by FLP-mediated site-specific 

recombination using plasmid pCP20. The ΔrsdΔssrS double knockout was generated by P1 

transduction from single knockouts (51). The 3x-FLAG epitope was added to the C-terminus of 

Rsd by a PCR-based method using plasmid pSUB11 as template (52), and introduced onto the 

MG1655 chromosome by λ Red recombination using specific primers (Table S5). The ssrS 

knockout was moved into this strain using P1 transduction. Strain constructions were verified by 

PCR using specific primers (Table S6) and Sanger sequencing.

RNA extraction and mRNA enrichment 
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Overnight cultures in M9 glucose were inoculated in 100 mL fresh M9 glucose to a final OD600 

of 0.02 and incubated at 37 °C with shaking. Two biological replicates were performed for each 

strain. Cells were collected by centrifugation at the early exponential (OD600 ~0.3), mid-

exponential (OD600 ~0.8), transition to stationary (OD600 ~1.6), stationary (16 hrs, OD600 ~2), and 

late stationary (48 hrs, OD600 ~1.6) phases of growth. RNA was extracted using TRIzol 

(Invitrogen), following the manufacturer's protocol. Total RNA was treated with DNase I 

(Invitrogen, 18068-015) according to the manufacturer's protocol. Further precipitation of RNA 

and ribosomal RNA cleanup was achieved using the MICROBExpress bacterial mRNA 

purification Kit (Ambion, AM1905) according to the manufacturer's protocol. RNA was finally 

suspended in 10 μL RNAse free water. The concentration was determined using a Nanodrop 

2000 (Thermo Scientific) and quality was checked by visualization on agarose gels. 

RNA-Seq

Sequencing libraries were prepared using TruSeq RNA sample preparation kit v2 (Illumina, RS-

122-2001) according to the manufacturer's guidelines, checked for quality on an Agilent 2100 

Bioanalyzer, and sequenced for 50 cycles from one end on an Illumina HiSeq1000 platform at 

the Centre for Cellular and Molecular Platforms, Bangalore. The RNA-Seq data is summarized 

in Table S3. 

qRT-PCR for RNA-Seq validation
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qRT–PCR was carried out using specific primers to selected mRNA targets (Table S2 and S7). 5 

ng of RNA was used for each RT-PCR reaction. TAKARA One-step SYBR PrimeScript RT-PCR 

kit II (RR086A) was used according to the manufacturer's protocol, on an Applied Biosystems 

ViiA 7 Real-Time PCR system. 

Western Blotting

Cells were grown as for RNA-seq. For stationary phase samples, 5 ml of culture was harvested 

by centrifugation. For mid-exponential phase, 10 ml was harvested. Lysates were prepared and 

protein concentration was estimated using BCA assay (Thermo Fisher Scientific, 23227). Lysates

containing equal amounts of protein were loaded onto an SDS-PAGE gel. Proteins were 

elecroblotted onto a nitrocellulose membrane and probed with mouse primary antibody against 

the protein of interest followed by horseradish peroxidase-conjugated anti-mouse secondary 

antibody. The primary antibodies used were: Mouse monoclonal antibody to RpoB (Neoclone, 

WP023), Mouse monoclonal antibody to σ70 (Neoclone, WP004), Mouse monoclonal antibody to

σ38 (Neoclone, WP009), Mouse monoclonal anti-FLAG antibody (Sigma-Aldrich, F3165), 

Mouse monoclonal antibody to GroEL (Abcam, ab82592). Bands were visualized using 

SuperSignal West Dura Chemiluminescent Substrate (Thermo Fisher Scientific, 34076) and 

imaged using an ImageQuant LAS 4000 system (GE Healthcare Life Sciences). Band intensities 

were quantified using ImageJ (http://imagej.nih.gov/ij). 
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Cloning 

A segment of DNA constaining the ssrS gene, both its upstream promoters and its downstream 

terminator was amplified from MG1655 genomic DNA by PCR using specific primers (Table 

S8), and cloned into the pCR2.1-TOPO vector using the TOPO TA Cloning Kit (Invitrogen, 

K4500), to produce the circular plasmid pTOPO-ssrS. pTOPO-ssrS was digested with EcoRI to 

remove the insert, and the digested vector was eluted and self-ligated to produce the circular 

empty vector pTOPO-EV. 

Data sources

The E. coli K-12 MG1655 genome was downloaded from NCBI (NC_000913.2). Gene 

coordinates were taken from RegulonDB v8.0 (53). Lists of σ38 target genes and ppGpp regulated

genes were obtained from (18) and (54) respectively. Previous lists of genes regulated by 6S 

RNA were obtained from (30) and (33). Coordinates of RNA polymerase binding regions and 

their occupancy were obtained from (36). A list of 501 genes under the control of constitutive σ70 

promoters was obtained from (34). Of these, we selected 270 genes which were not regulated by 

σ38 or other sigma factors according to RegulonDB (53), (18), or our RNA-Seq data from the σ38  

knockout. 
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Data Analysis

RNA-Seq reads were mapped to the E. coli K-12 MG1655 genome using BWA (55), and reads 

mapping uniquely were used for further analysis. The number of reads mapping to each gene was

calculated and a matrix of read counts was generated with 50 columns, one per sample, and one 

row per gene. This matrix was fed into the Bioconductor package DESeq (56) for differential 

expression analysis. Genes with <= 10 reads mapping to them under all conditions were 

excluded from all analyses and plots. All statistical analyses were performed in R version 3.0.1.

Mathematical model

The reactions shown in Figure 6A can be represented by a set of differential equations that 

determine how the dynamical variables (levels of sigma factors, holoenzymes, etc.) change with 

time. These equations are given in Text S2. We are interested in steady-state conditions as the 

timescales on which these reactions occur is much faster than typical timescales of cell division, 

or processes such as stress responses in stationary phase. Therefore, it is reasonable to assume 

that the levels of sigma factors, holoenzymes, etc., are in quasi steady-state in the cell. 

Parameters that determine the specific steady-state include the dissociation constants of the 

various complexes, the total levels of Rsd, 6S RNA, E, sigma factors, and some others, listed in 

Table 2 with their default values. Some values are altered in specific simulations as mentioned in 
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the results. The model of holoenzyme formation (shaded in Figure 6A) describes the following 

reactions:

In steady state, the following equations must be fulfilled:

(Equation 1)

(Equation 2)

(Equation 3)

(Equation 4)

(Equation 5)
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(Equation 6)

(Equation 7)

(Equation 8)

(Equation 9)

Steady-state levels of the dynamical variables were obtained from the above equations both by 

solving them numerically and by integrating the corresponding differential equations until they 

reached steady-state.

The model with DNA (represented by the full schematic in Figure 6A) includes, in addition, the 

following reactions:
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Here, c represents the rate of promoter clearance and e represents the rate of transcript 

elongation. At steady state these fulfil the following equations, in addition to equations (1) - (4) 

and (8) – (9). KNS represents the dissociation constant for non-specific binding of RNA 

polymerase to DNA, which we assume is equal for E, Eσ70 and Eσ38.

(Equation 10)

(Equation 11)

(Equation 12)

(Equation13)

(Equation 14)

(Equation 15)

(Equation 16)

(Equation 17)
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Here, steady-state levels were obtained by integrating the corresponding differential equations 

until they reached steady-state.

Accession Numbers

RNA-Seq data have been deposited with NCBI GEO under the accession number GSE74809.
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Table 1: Cellular concentrations of RNA polymerase, sigma factors, Rsd and 6S RNA.

Molecule Exponential Stationary Reference

Core RNA Polymerase ~4.3 μM ~4.3 μM (9)

σ70 ~12.1 μM ~12.0 μM

σ38 Not Detected ~2.7 μM

Rsd ~5.5 μM ~10.4 μM

6S RNA ~1000 molecules/cell ~10,000 molecules/cell (28)

Table 2: Default values of parameters used for simulations. Wherever possible, values used are

specific to stationary phase. These values are discussed in Text S1.
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Parameter Meaning Value Reference
Volume Average cell volume 10-15 L (57)
Etotal Total cellular concentration of RNA Polymerase 4.3 μM (9)
σ70

total Total cellular concentration of σ70 12.0 μM
σ38

total Total cellular concentration of σ38 2.7 μM
Rsdtotal Total cellular concentration of Rsd 10.4 μM
6S RNAtotal Total cellular concentration of 6S RNA 13 μM (28)
DNAtotal Nonspecific binding sites per cell 4.6 x 106 MG1655

genome size
P70, P38 σ-cognate promoters per cell 200 (38)
KEσ70 Dissociation constant for E - σ70 binding 3.3 nM (19)
KEσ38 Dissociation constant for E - σ38 binding 15.2 nM
KNS Dissociation constant for nonspecific binding of

RNA Polymerase and DNA

10-4 M (58)

KRsd Dissociation constant for Rsd - σ70 binding 32 nM (59)
K6S Dissociation constant for 6S RNA - Eσ70 binding 131 nM (60)
KEσP Dissociation constant for holoenzyme - promoter

binding

10-7 M (61)

Operon length Average operon length 1000 nt (62)
c Rate of promoter clearance 0.005 s-1 (38, 63)
e Rate of escape from elongation 0.021 s-1 (64)
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Supplementary Material Legends

Figure S1: Sample growth curves of wild-type E. coli and the mutant strains used for RNA-Seq. 

Overnight cultures were diluted 1:100 in fresh M9 Glucose medium and growth was estimated 

by measuring optical density at 600 nm. 

Figure S2: (A) Boxplots of log2 fold change in gene expression (Δrsd/wild-type) for genes whose

expression is significantly reduced in ΔrpoS in the indicated growth phase, compared to all other 

genes. (B) Boxplots of log2 fold change in gene expression (Δrsd/wild-type) for reported σ38 

targets (18) in the indicated growth phase, compared to all other genes. (C) Boxplots of log2 fold 

change in gene expression (Δrsd/wild-type) for genes whose expression is significantly increased

in ΔrpoS in the indicated growth phase, compared to all other genes. p-values are for Wilcoxon 

Test.

Figure S3: Boxplots of log2 fold change in gene expression (Δrsd/wild-type) for 270 genes 

whose expression is controlled by constitutive σ70-dependent promoters, compared to all other 

genes, in the indicated growth phase. p-values are for Wilcoxon Test.

Figure S4: Western blot showing expression of σ38 (RpoS) during stationary phase, in the five 

strains used for RNA-Seq. GroEL was used as a loading control.
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Figure S5: (A) Boxplots of log2 fold change in gene expression (ΔssrS/wild-type) for genes 

whose expression is significantly reduced in ΔrpoS in the indicated growth phase, compared to 

all other genes. (B) Boxplots of log2 fold change in gene expression (ΔssrS/wild-type) for 

reported σ38 targets (18) in the indicated growth phase, compared to all other genes. (C) Boxplots

of log2 fold change in gene expression (ΔssrS/wild-type) for genes whose expression is 

significantly increased in ΔrpoS in the indicated growth phase, compared to all other genes. p-

values are for Wilcoxon Test.

Figure S6: Boxplots of log2 fold change in gene expression (ΔssrS/wild-type) for 270 genes 

whose expression is controlled by constitutive σ70-dependent promoters, compared to all other 

genes, in the indicated growth phase. p-values are for Wilcoxon Test.

Figure S7: Boxplots of log2 fold change in gene expression (ΔssrS/wild-type) during the 

transition to stationary phase, for 710 genes repressed by ppGpp, 3159 genes unaffected by 

ppGpp, and 704 genes activated by ppGpp (54). p-values are for Wilcoxon Test.

Figure S8: Heatmaps showing the log2 fold change in expression, in successive growth phases, of

(A) 16 genes whose expression was increased in ΔssrS/wild-type, with the magnitude of this 

increase increasing in successive growth phases, and (B) 20 genes whose expression was reduced

in ΔssrS/wild-type, with the magnitude of this reduction increasing in successive growth phases. 

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

52

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 10, 2016. ; https://doi.org/10.1101/058339doi: bioRxiv preprint 

https://doi.org/10.1101/058339


Figure S9: Western blot showing expression of RNA polymerase β subunit (RpoB) during 

stationary phase, in the five strains used for RNA-Seq. GroEL was used as a loading control.

Figure S10: (A) Boxplots of log2 fold change in gene expression (ΔssrS/wild-type) for genes as a

function of the number of nucleotides in their promoter -35 sequence that match to consensus, 

for a set of 312 mapped σ70 promoters, based on the data of (30) (B) Boxplots showing log2 fold 

change in expression (ΔssrS/wild-type) of the same genes in our dataset. (C) Boxplots showing 

log2 fold change in gene expression (ΔssrS/wild-type) for 77 genes whose promoters have a 

weak -35 element and extended -10 element, compared to 72 genes with a weak -35 element 

only, based on the data of (30) (D) Boxplots showing log2 fold change in gene expression 

(ΔssrS/wild-type) for the same genes in our dataset. p-values are for Wilcoxon Test.

Figure S11: (A) Boxplots of log2 fold change in gene expression (ΔrsdΔssrS/wild-type) for genes

whose expression is significantly reduced in ΔrpoS in the indicated growth phase, compared to 

all other genes. (B) Boxplots of log2 fold change in gene expression (ΔrsdΔssrS/wild-type) for 

reported σ38 targets (18) in the indicated growth phase, compared to all other genes. (C) Boxplots

of log2 fold change in gene expression (ΔrsdΔssrS/wild-type) for genes whose expression is 

significantly increased in ΔrpoS in the indicated growth phase, compared to all other genes. p-

values are for Wilcoxon Test.
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Figure S12: (A) log2 fold change in gene expression of rpoB in successive growth phases, in 

ΔssrS/wild-type (black) and ΔrsdΔssrS/wild-type (blue) (B) Boxplots showing log2 fold change 

in gene expression of 46 ribosomal protein-encoding genes in successive growth phases, in 

ΔssrS/wild-type (black) and ΔrsdΔssrS/wild-type (C) log2 fold change in gene expression of crl 

in successive growth phases, in ΔssrS/wild-type (black) and ΔrsdΔssrS/wild-type (blue). (D) 

Boxplots showing the wild-type expression level of genes that are downregulated by twofold or 

more, genes that are not differentially expressed, and genes that are upregulated by twofold or 

more, in ΔssrS/wild-type (black) and ΔrsdΔssrS/wild-type (blue) during stationary phase.

Figure S13: (A) Steady-state rate of transcription from Eσ70  dependent promoters (black) and 

Eσ38 dependent promoters (gray), as a function of total σ38, in the absence of Rsd. (B) Steady-

state rate of transcription from Eσ70  dependent promoters (black) and Eσ38 dependent promoters 

(gray), as a function of total Rsd. Vertical dashed lines represent wild-type cellular 

concentrations in stationary phase.

Figure S14: A schematic showing various pathways by which Rsd and 6S RNA have been 

proposed to regulate RNA polymerase. Bold lines represent sequestration into inactive 

complexes. Blue lines represent pathways which are affected only in the Rsd-6S RNA double 

knockout.  The three arrows connecting Rsd and 6S RNA show that Rsd inhibits expression of 

6S RNA (in stationary phase) and activates it (in ME phase), while 6S RNA increases expression

of Rsd. The question mark indicates the possibility that 6S RNA is autoregulatory.
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Table S1: Strains and plasmids used in this study

Table S2: Primers used for knockouts

Table S3: Primers used for flag-tagging

Table S4: Primers used for detection of knockouts

Table S5: Summary of RNA-Seq

Table S6: Primers used for qRT-PCR validation

Table S7: Results of qRT-PCR validation

Table S8: Primers used for cloning

Text S1: Selection of model parameters

Text S2: Differential Equations for Model
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