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Abstract

With the rise of both the number and the complexity of traits of interest, control of the false

discovery rate (FDR) in genetic association studies has become an increasingly appealing and

accepted target for multiple comparison adjustment. While a number of robust FDR control-

ling strategies exist, the nature of this error rate is intimately tied to the precise way in which

discoveries are counted, and the performance of FDR controlling procedures is satisfactory only

if there is a one-to-one correspondence between what scientists describe as unique discoveries

and the number of rejected hypotheses. The presence of linkage disequilibrium between mark-

ers in genome-wide association studies (GWAS) often leads researchers to consider the signal

associated to multiple neighboring SNPs as indicating the existence of a single genomic locus

with possible influence on the phenotype. This a posteriori aggregation of rejected hypotheses

results in inflation of the relevant FDR. We propose a novel approach to FDR control that is

based on pre-screening to identify the level of resolution of distinct hypotheses. We show how

FDR controlling strategies can be adapted to account for this initial selection both with theo-

retical results and simulations that mimic the dependence structure to be expected in GWAS.

We demonstrate that our approach is versatile and useful when the data are analyzed using

both tests based on single marker and multivariate regression. We provide an R package that

allows practitioners to apply our procedure on standard GWAS format data, and illustrate its

performance on lipid traits in the NFBC66 cohort study.
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Introduction

In the last decade, genome-wide association studies (GWAS) have been the preferential tool to

investigate the genetic basis of complex diseases and traits, leading to the identification of an

appreciable number of loci [1]. Soon after the first wave of studies, a pattern emerged: there exists

a sizable discrepancy between, on the one hand, the number of loci that are declared significantly

associated and the proportion of phenotypic variance they explain [2] and, on the other hand,

the amount of information that the entire collection of genotyped single nucleotide polymorphisms

(SNPs) appears to contain about the trait [3, 4]. In order to increase the number of loci discovered

(and their explanatory power), substantial efforts have been made to obtain larger sample size

by genotyping large cohorts [5, 6] and by relying on meta-analysis. However, the gap remains,

although not as large as in the original reports. This parallels, in part, the discrepancy between

the multivariate model that is used to define complex traits and the univariate approach to the

discovery of associated SNPs which is standard practice, as underscored, for example, in [7–9].

Two approaches to bridge the gap emerge quite naturally: (a) an attempt to evaluate the role

of genetic variants in the context of multivariate models, more closely matching the underlying

biology, and (b) relaxing the very stringent significance criteria adopted by GWAS to control the

false discovery rate (FDR) [10] rather than the family-wise error rate (FWER)—a strategy that has

been shown attractive when prediction is considered as an end goal together with model selection

[11]. Both strategies have been pursued, but have encountered a mix of success and challenges.

Multivariate models for the analysis of GWAS data have been proposed as early as 2008 [12, 13]:

examining the distribution of their residuals, it is clear that they provide a more appropriate model

for complex traits. However, their use to discover relevant genetic loci has encountered difficulties

in terms of computational costs and interpretability of results. On the computational side, progress

has been made using approaches based on convex optimization such as the lasso [14], developing

accurate methods to screen variables [15–17], and relying on variational Bayes [18, 19]. There

are, however, remaining challenges. Firstly, the genetics community is, correctly, very sensitive

to the need of replicability, and finite samples guarantees for the selected variants are sought.

Unfortunately, this has been difficult to achieve with techniques such as the lasso: [20] attempts to

use stability selection, [21] does a simulation study of a variety of penalized methods, showing that

tuning parameters play a crucial role and that standard selection methods for these do not work well,

and [22] proposes some analytical approximation of FDR as an alternative to the lasso. Our recent
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work [23] also explores alternative penalty functions that under some circumstances guarantee FDR

control. Secondly, multivariate models encounter difficulties in dealing with correlated predictors,

in that the selection among these is often arbitrary: this is challenging in the context of GWAS,

when typically there is a substantial dependence between SNPs in the same genetic region.

The suggestion of controlling FDR rather then FWER in genetic mapping studies that expect

to uncover a large number of loci was put forward over a decade ago [24–26] and is accepted

in the expression quantitative trait loci (eQTL) community, where FDR is the standard error

measure. The existence of strong local dependence between SNPs has also posed challenges for

FDR controlling procedures. While the Benjamini-Hochberg [10] procedure (BH) might be robust

to the correlation between tests that one observes in GWAS, the fact that the same biological

association may be reflected in multiple closely located SNPs complicates both the definition and

the counting of discoveries, so that it is not immediately evident how FDR should be defined. Prior

works [27–29] underscore this problem and suggest solution for specific settings.

This paper proposes a phenotype-aware selective strategy to analyze GWAS data which enables

precise FDR control and facilitates the application of multivariate regression methodology, by

reducing the dependency between the SNPs included in final testing. The Methods section starts

by briefly recapitulating the characteristics of GWAS, with reference to an appropriate count of

discoveries and the identification of a meaningful FDR to control. We introduce our selective

strategy and provide some general conditions under which it controls the target FDR. We then

describe a specific selection procedure for GWAS analysis and describe how it can be coupled with

standard BH for univariate tests, or with SLOPE [23] to fit multivariate regression. In the Results

section we explore the performance of the proposed methodology with simulations and analyze a

dataset collected in the study of the genetic basis of blood lipids. In both cases, the FDR-controlling

procedures we propose allow us to explain a larger portion of the phenotype variability, without a

substantial cost in terms of increased false discoveries.

1 Methods

1.1 The GWAS design, dependence and definition of discoveries

The goal of a GWAS study is to identify locations in the genome that harbor variability which

influences the phenotype of interest. This is achieved using a sample of n individuals, for whom

one acquires trait values yi and genotypes at a collection of M SNPs that span the genome.
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Following standard practice, we summarize genotypes by the count of copies of minor allele that

each individual has at each site, resulting in a n ×M matrix X, with entries Xij ∈ {0, 1, 2}. The

variant index j is taken to correspond to the order of the position of each SNP in the genome.

The true relation between genetic variants and phenotypes can be quite complex. For simplicity,

and in agreement with the literature, we assume a linear additive model, which postulates that the

phenotype value yi of subject i depends linearly on her/his allele counts at an unknown set C of

causal variants. Since there is no guarantee a priori that the variants in C are part of the genotype

set, we indicate their allele counts with Zij , letting

yi =
∑
j∈C

bjZij + ϵi.

Investigating the relation between y and X is helpful to learning information about the set of causal

variants C and their effects bj in two ways: (1) it is possible that some of the causal variants are

actually genotyped, so that Zij = Xik for some k; (2) most importantly, the set ofM genotyped SNP

contains reasonable proxies for the variants in C. To satisfy (2), GWAS are designed to capitalize

on the local dependence between variable sites in the genome known as linkage disequilibrium (LD),

which originates from the modality of transmission of chromosomes from parents to children, with

modest recombination. The set of M genotyped SNPs is chosen with some redundancy, so that

the correlation between Xj and Xj+k is expected to be non-zero for k in a certain range: this is to

ensure that any non-typed casual variant Zl will be appreciably correlated with one (or more) of

the typed Xjs which are located in the same genomic region. Any discovered association between

a SNP Xj and the phenotype y is interpreted as an association between y and some variant in the

genomic neighborhood of Xj . This design has a number of implications for statistical analysis:

1. Often, the existence of an association between y and each typed variant Xj is queried via

a test statistic tj which is a function of y and Xj only: these test statistics are “locally”

dependent, with consequences for the choice of multiple comparison adjustment, that, for

example, might not need to be as stringent as in the case of independence.

2. When multivariate regression models are used to investigate the relation between y and X,

one encounters difficulties due to the correlation between regressors—the choice among which

is somewhat arbitrary.

3. The fact that the true causal variants are not necessarily included among the genotyped SNPs

makes the definition of a true/false association non-trivial.
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We want to underscore the last point. To be concrete, let’s assume the role of each variant Xj

is examined with tj , the t-statistic for Hj
0 : βj = 0, with βj defined in the univariate regression

yi = α + βjXij + ϵi. Even if none of the M genotyped variants are causal, a number of them

will have a coefficient βj ̸= 0 in these reduced models: whenever Xj is correlated with one of the

variants in C, Hj
0 should be rejected. Indeed, simulation studies that investigate the power and

global error control of different statistical approaches routinely adopt definitions of “true positive”

that account for correlation between the known causal variant and the genotyped SNPs (see [21]

for a recent example). At the same time, a rejection of Hj
0 should not be interpreted as evidence

of a causal role for Xj : in fact, geneticists equate discovery with the identification of a genomic

location rather then with the identification of a variant. The rejection of Hj
0 for a number of

correlated neighboring SNPs in a GWAS is described in terms of the discovery of one single locus

associated with the trait of interest. The number of reported discoveries, then, corresponds to

the number of distinct genomic regions (whose variants are uncorrelated) where an association has

been established. This discrepancy between the number of rejected hypotheses and the number of

discoveries has important implications for FDR controlling strategies, which have received only a

modest attention in the literature. Siegmund and Zhang [29] suggest that in situations similar to

those of GWAS, neighboring rejections should be grouped and counted as a single rejection and

that the global error of interest should be the expected value of the “proportion of clusters that

are falsely declared among all declared clusters”. This FDR of clusters—a notion first introduced

in [28]—is not the error rate controlled by the Benjamini-Hochberg [10] procedure on the p-values

for the Hj
0 hypotheses. Indeed, because FDR is the expected value of the ratio of the random

number of discoveries, its control depends crucially on how one decides to count discoveries. In [30]

we give another example of how controlling FDR for a collection of hypotheses does not extend to

controlling FDR for a smaller group hypotheses logically derived from the initial set. Both in the

setting described here and in [30], targeting FWER would have resulted in less surprising behavior:

assuring that the probability of rejecting at least one null Hj
0 is smaller than a level α would also

guarantee that the probability of rejecting a null cluster of hypotheses is smaller than α. Siegmund

and Zhang [29] study a setting that is close to our problem and propose a methodology to control

their target FDR relying on a Poisson process distribution for the number of false discoveries.

We investigate here a different approach: one that is more tightly linked to the GWAS design,

is adapted to the variable extent of LD across the genome, and capitalizes on results in selective

inference [31].
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1.2 Controlling the FDR of interesting discoveries by selecting hypotheses

The approach we study emerged from our interest in using multivariate linear models to analyze the

relation between y and X, so it is useful to motivate it in this context. Suppose both Xj and Xj+1

are strongly correlated with the untyped causal variant Zk. When univariate regression is used as

the analysis strategy, both the test statistics tj and tj+1 would have large values, resulting in the

discovery of this locus. Instead, the marginal p-values for the coefficients of Xj and Xj+1 derived

from a multivariate model that includes both would be large; and model selection strategies would

rather arbitrarily lead to the inclusion of one or the other regressor, leading to an underestimate of

their importance when resampling methods are used to evaluate significance. If using multivariate

linear models, one would achieve the best performance if, from the start, only one of Xj and

Xj+1 (the most strongly correlated with Zk) is included among the possible regressors. A natural

strategy is to prune the set of M typed SNPs to obtain a subset of m quasi-orthogonal ones and

supply these to the model selection procedure of choice. However, this encounters the difficulty

that the best proxy for some of the causal variants might have been pruned, resulting in a loss of

power. It seems that ideally one would select from a group of correlated SNPs the one that has

the strongest correlation with the trait to include among the potential regressors. Unfortunately,

this initial screening for association would invalidate any guarantees of the model selection strategy,

which operates now not on m variables, but on m selected ones. The emerging literature of selective

inference, however, suggests that we might be able to appropriately account for this initial selection

step, preserving guarantees on error rate control.

Abstracting from the specifics of multivariate regression, consider the setting where a collection

H of M hypotheses H1
0 , . . . , H

M
0 with some redundancy is tested to uncover an underlying structure

of interest. The hypotheses in H can be organized linearly or spatially and are chosen because a

priori they provide a convenient and general way of probing the structure; however, it is expected

that a large portion of these will be true, and that when one Hj
0 is false, a number of neighboring

ones would be also false. In case of GWAS, these clusters of false hypotheses would correspond to

markers correlated with causal mutations. Because of the mismatch between H and the underlying

structure, the number of scientifically interesting discoveries does not correspond to the number

of rejected Hj
0s and strategies that control the FDR defined in terms of these might not lead to

satisfactory inference. Specifically, as noted in [29], “a possibly large number of correct rejections at

some location can inflate the denominator in the definition of false discovery rate, hence artificially

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2016. ; https://doi.org/10.1101/058230doi: bioRxiv preprint 

https://doi.org/10.1101/058230
http://creativecommons.org/licenses/by-nc-nd/4.0/


creating a small false discovery rate, and lowering the barrier to possible false detections at distant

locations”. This problem was recognized already in [27] and [28], who introduce the notion of cluster

FDR and suggest defining a priori clusters of hypotheses, corresponding to signals of interest and

apply FDR controlling strategies to hypotheses relative to these clusters. We take here a different

approach, where “clusters” of hypotheses are defined after looking at the data, and used to select a

subset of representative hypotheses. Only this subset is then tested, with a procedure that accounts

for this initial selection.

Formally, let y indicate the data used to test the hypotheses in H and let S(y) be a selection

procedure that, on the basis of the data, identifies a subset Hs of s representative hypotheses. Let

S = {i : 1 ≤ i ≤ M & H i
0 ∈ Hs} be the set of their indexes, so that it is relevant to control the

following FDRs:

FDRs = E

(∑
j∈S 1(Hj

0rejected)1(H
j
0true)∑

j∈S 1(Hj
0rejected) ∨ 1

)
. (1)

In other words, the decision of acceptance/rejection is made only for the hypotheses in the selected

set. The work of [32] and [31] suggests a possible strategy to control FDRs at level q: apply BH to

the p-values p[S] corresponding to the subset of hypotheses Hs, targeting the more stringent level

q|S|/M to penalize for the initial selection. According to this strategy, the smallest p-value p[S](1)

for Hs would be compared to |S|q/M × 1/|S| = q/M , and p[S](i) would be compared to qi/M : the

p-value thresholds are identical to those implied by BH on H, but the number of hypotheses tested

is smaller and the hypotheses are more clearly separated. This prevents the excessive deflation of

the BH threshold that results when each true discovery is represented by many rejected hypotheses,

and therefore helps to control the number of false discoveries.

The results in [31] imply that if S(y) is a simple selection rule, the procedure described above

controls the selective FDR

selective FDR = E

(∑
j∈S 1(Hj

0rejected)1(H
j
0true)

|S| ∨ 1

)
,

whenever BH applied to H would control the standard FDR, E

(∑M
j=1 1(H

j
0rejected)1(H

j
0true)∑M

j=1 1(H
j
0rejected)∨1

)
. If

the selection is stringent enough, controlling the selective FDR might be meaningful. Building on

the results obtained in [33], we can also prove that for a general class of selection rules the same

procedure leads to control of FDRs at level q, as long as the distribution of p-values follows the

condition of positive regression dependence on a subset (PRDS), described in [34]. As noted in [25],

PRDS condition can be loosely interpreted as the requirement of the positive correlation between
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p-values at linked markers, and in this way it corresponds well to the practice of GWAS.

Theorem 1 FDR control for selected hypotheses. Let S(y) be a selection procedure, and let RS be

the number of rejections derived by applying BH with target q|S|/M on the selected hypotheses HS.

If the p-values are PRDS and the selection procedure is such that RS(p1, . . . , pM ) is non-increasing

in each of the p-values pi , rejecting RS guarantees control of FDRs.

Proof. Letting H0 be the collection of true null hypotheses in H and HS
0 the set of true null

hypotheses in HS , we write FDRs as

FDRs = E

(∑
i∈HS

0
1(H i

0rejected)

RS ∨ 1

)
= E

(∑
i∈H0

1(H i
0rejected)1(i ∈ S)

RS ∨ 1

)
,

where RS indicates the number of rejections resulting from applying the BH rule with target level

q|S|/M to the p-values p[S] of HS . Going forward, we write RS instead of (RS ∨ 1) for simplicity.

Recalling that a hypothesis is rejected if its p-value is smaller than the BH threshold, exchanging

the order of summation and expectation, and multiplying and dividing by q/M we have

FDRs =
q

M

∑
i∈H0

E
1(pi < RSq/M)1(i ∈ S)

RSq/M
≤ q

M

∑
i∈H0

E
1(pi < RSq/M)

RSq/M
, (2)

where the last inequality comes from relaxing a restriction. We now recall Lemma 1 from [33], which

states that for a set of p-values that satisfy PRDS, when f : (p1, . . . , pM ) −→ [0, 1] is non-increasing,

E
1(pi < f(p))

f(p)
≤ 1. Under the assumption that f(p1, . . . , pM ) := RSq/M is non-increasing we then

have our result, as FDRs ≤ q
M ×M. �

An example selection procedure that satisfies the assumptions of the theorem is as follows: the

hypotheses H are separated in groups a priori and from each group, S(y) selects the hypothesis

with the smallest associated p-value. In the next section, we describe a slightly more complicated

selection procedure S(y), that appears appropriate for the case of GWAS, and where the separation

of hypotheses into groups is data-driven. While this procedure may not satisfy the assumption

that the number of rejections is a non-increasing function of the p-values, our extensive simulations

studies suggests that its use in the context of Theorem 1 still leads to FDRs control.

1.3 A GWAS selection procedure: phenotype-aware cluster representatives

In the context of genetic association studies, the selection function S(y) defined in Procedure 1 and

illustrated in Figure 1 emerges quite naturally. One starts by evaluating the marginal association
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Figure 1: Phenotype-aware cluster representatives. The x-axis represents the genome, with

the locations of genotyped SNPs Xi indicated by tick-marks. The true causal effect of each position

of the genome is indicated in red: there is only one causal variant in this region, between SNPs X6

and X7. Solid black circles indicate the value of βi, coefficient of Xi in a linear approximation of

the conditional expectation E(y|Xi). Asterisks mark the estimated β̂is in the sample. The SNPs

X5 and X14, selected as cluster representatives in this schematic diagram, are indicated in blue.

of each SNP to the phenotype using the p-value of the t-test for its coefficient in a univariate

regression. Then, SNPs with a p-value larger than threshold π are removed from consideration.

The collection of remaining SNPs is further pruned to obtain a selected set S with low correlation,

so that each variant Xi ∈ S can be equated to a separate discovery. To achieve this, we define

clusters of SNPs using their empirical correlation in our sample, starting from the variants with

the strongest association to the phenotype, which are selected as cluster representatives.

Procedure 1 Selection function S(y) to identify cluster representatives

Input: ρ ∈ (0, 1), π ∈ (0, 1]

Screen SNPs:

(1) Calculate the p-value for Hj
0 : βj = 0, with βj defined in the univariate regression yi =

α+ βjXij + ϵi, as j varies across all SNPs.

(2) Retain in B only those SNPs whose p-values are smaller than π.

Cluster SNPs:

(3) Select the SNP j in B with the smallest p-value and find all SNPs whose Pearson correlation

with this selected SNP is larger than or equal to ρ.

(4) Define this group as a cluster and SNP j as the representative of the cluster. Include SNP j

in S, and remove the entire cluster from B.

(5) Repeat steps (3)-(4) until B is empty.
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Procedure 1 has two tuning parameters: π and ρ, corresponding to the two steps of the

selection. The screening in steps (1)-(2) is similar to that described in [13, 15] for model selection

procedures, where the parameter π controls the stringency of the selection based on univariate

association. Its influence is minimal if marginal tests are used to control FWER. However, large

values of π result in a larger dimensions of selected clusters, leading to increased number of false

discoveries when controlling FDR. On the other hand, in the context of multivariate regression, it

is possible to uncover a role for variants that have weak marginal effects due to masking: to enable

this, one must not be too stringent in the initial screening step. In all the simulations and data

analyses presented here we have used π = 0.05, which seems to be a good compromise. The results

in [13, 15] can provide additional guidance on the choice of π.

Steps (3)-(5) of Procedure 1 aim to “thin” the set of SNPs on account of the dependency among

them. This is related to the selection of tag SNPs [35], for which there is an extensive literature,

and is similar to correlation reduction approaches [36]. A defining characteristic of Procedure 1,

however, is that both the SNP clusters and their representatives are selected with reference to the

phenotype of interest. This ensures that the representatives maximize power, and that the location

of the true signal is as close as possible to the center of the respective cluster. This also reduces

the probability of the selection of more than one SNP per causal variant. The value of ρ needs

to be set with reference to the sample size and the density of the available markers. Indeed, we

suggest that researchers run a simple simulation (as in the one described in the first part of the

Results section) to select appropriate values for ρ (see Discussion section for further remarks on

this). Certainly, Procedure 1 is but one possibility for creating clusters. For example, one might

want to include information on physical distance in the formation of clusters. In our experiments,

however, this has not led to better performance.

We now consider two approaches to the analysis of GWAS data that can be adopted in con-

junction with the selection of cluster representatives to control the FDRs.

1.4 Univariate testing procedures after selection

By and large, the most common approach to the analysis of GWAS data relies on univariate tests

of association between trait and variants. This has advantages in terms of computational costs,

handling of missing data, and portability of results across studies. We therefore start by considering

how to control relevant FDR in this context.

While most disease-related GWAS aim to control FWER, FDR has been the global error of
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choice in eQTL studies, and that literature testifies to some of the challenges encountered, in par-

ticular, to difficulties related to dependence across tests and hypotheses (see [30] for a detailed

description). Starting from [25], it was observed that BH seems to be able to deal with the type

of dependence across test statistics induced by LD. However, the relatedness between hypotheses

and the lack of one-to-one correspondence between hypotheses and meaningful scientific discov-

eries remains a problem. For example, when investigating the genetic basis of variation in gene

expression, the authors in [37] change the unit of inference from SNPs to genes, so as to bypass

the redundancy due to many SNPs in the same neighborhood. Here we address the problem by

inviting the researchers to identify the resolution of discoveries prior to testing, but after having

observed the data. We consider two different approaches to obtain the p-values for each of the Hj
0

hypotheses: univariate linear regression (which we indicate with SMT for single marker test) and

EMMAX [7], a mixed model which allows us to consider polygenic effects. To enable computational

scaling, EMMAX only estimates the parameters of the variance component model once rather than

for every marker. We use SMTs and EMMAXs to denote the procedures that consist in testing the

set of hypotheses Hs corresponding to cluster representatives, using p-values obtained with SMT

and EMMAX, respectively, and identifying rejections with the BHs procedure described below.

Procedure 2 Benjamini-Hochberg on selected hyotheses BHs

Input:

M - total number of SNPs (before initial screening)

Hs - collection of selected hypotheses (cluster representatives)

q ∈ (0, 1] - desired level for FDRs

Let |S| be the number of hypotheses in Hs, and p[S] the vector of their p-values.

(1) Apply BH to p[S] with target level |S|q/M .

1.5 GeneSLOPE - FDR control in multivariate regression.

SLOPE [23] is a recently introduced extension of the lasso that achieves FDR control on the selection

of relevant variables when the design is nearly orthogonal. Specifically, assume the following model

Y = Xβ + z,
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where X is the design matrix of the dimension n × M , z ∼ N(0, σ2In×n) is the n-dimensional

vector of random errors, and β is the M-dimensional vector of regression coefficients, a significant

portion of which is assumed to be zero. For a sequence of non-negative and non-increasing numbers

λ1, . . . , λM , the SLOPE estimate of β is the solution to a convex optimization problem

β̂ = arg min
b∈RM

{
1

2

∥∥y −Xb
∥∥2 + σ

M∑
i=1

λi|b|(i)
}
, (3)

where |b|(1) ≥ . . . ≥ |b|(M) are sorted absolute values of the coordinates of b.

If we define a discovery as i such that the estimated β̂i ̸= 0, and a false discovery as the case

where β̂i ̸= 0 but the true βi = 0, [23] provides the sequence of λi (corresponding to the sequence of

decreasing thresholds in BH), which provably controls FDR at a desired level if the design matrix

X is orthogonal. Moreover, the modified sequence λ—described in Procedure 4 in the Appendix—

has been shown in simulation studies to achieve FDR control in genetic studies when SNPs are

nearly independent and the number of non zero β’s is small or moderately large. Note that, as

for other shrinkage methods [38, 39], the results of SLOPE depend on the scaling of explanatory

variables: the values of the regularizing sequence in Procedure 4 assume that explanatory variables

are “standardized” to have zero mean and a unit l2 norm. Moreover, since in most cases the

variance of the error term σ2 is unknown and needs to be estimated, in [23] an iterative procedure

for the joint estimation of σ and the vector of regression coefficients was proposed. This is described

in the Appendix as Procedure 5 and follows closely the idea of scaled lasso [40]. All these data

preprocessing and analysis steps are implemented in R package SLOPE, available on CRAN.

The fact that SLOPE comes with finite sample guarantees for the selected parameters makes

it an attractive procedure for GWAS analysis. However, the presence of substantial dependence

between SNPs (regressors Xj) presents challenges: on the one hand, the FDR-controlling properties

have been confirmed so far only when the explanatory variables are quasi-independent; and on the

other hand, the definition of FDR is problematic in a setting where the true causal variants are not

measured and X contains a number of correlated proxies, similarly as for univariate procedures.

The identification of a subset of variants with Procedure 1 takes care of both aspects : the regressors

are not strongly correlated and, for sufficiently small ρ, they represent different locations in the

genome, so that we can expect the projection of the true model in the space they span to be sparse

and the number of β̂i ̸= 0 to capture the number of scientifically relevant discoveries. We therefore

propose as a potential analysis pipeline the application of Procedure 1 followed by Procedure 3,

which outlines the application of SLOPE to the selected cluster representatives. Both procedures

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2016. ; https://doi.org/10.1101/058230doi: bioRxiv preprint 

https://doi.org/10.1101/058230
http://creativecommons.org/licenses/by-nc-nd/4.0/


have been implemented in the R package GeneSLOPE, which is available on CRAN and can handle

typical GWAS data provided in PLINK format.

Procedure 3 GeneSLOPE

Input:

y - vector of trait values

M - total number of SNPs (before initial screening)

X[S] - selected SNPs (cluster representatives)

q ∈ (0, 1] desired level for FDRs

Initialize A = ∅

(1) Center y by subtracting its mean, and standardize X[S] so that each column has a zero mean

and unit l2 norm.

(2) Calculate the sequence λ using Procedure 4, and retain the first |S| elements of it.

(3) Compute the RSS obtained by regressing y onto variables in A and set σ̂2 = RSS/(n−|A|−1),

where |A| denotes the cardinality of A.

(4) Compute the solution β̂ for SLOPE as in equation (3) explaining y as a linear function of

X[S] with parameters σ̂ and λ. Set A+ = supp(β̂).

(5) If A+ = A stop; if not, set A = A+ and iterate Steps (3)-(4).

2 Results

To test the performance of the proposed algorithms we relied on simulations and real data anal-

ysis. In both cases, genotype data came from the North Finland Birth Cohort (NFBC66) study

[41], available in dbGaP under accession number phs000276.v2.p1 (http://www.ncbi.nlm.nih.

gov/projects/gap/cgi-bin/study.cgi?study_id=phs000276.v2.p1). The raw genotype ma-

trix contains 364,590 markers for 5,402 subjects. We filtered the data in PLINK to exclude copy

number variants and SNPs with Hardy-Weinberg equilibrium p-value < 0.0001, minor allele fre-

quency < 0.01, or call rate < 95%. This resulted in an n × M predictor matrix with n = 5, 402

and M = 334, 103. When applying GeneSLOPE, missing genotype data were imputed as the SNP

mean.
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For simulations, the trait values are generated using the multiple regression model:

Yi =
∑
j∈Ck

βjX̃ij + ϵi , i ∈ {1, . . . , n} , (4)

where X̃ is the standardized matrix of genotypes, Ck is the set of indices corresponding to “causal”

mutations and ϵi ∼ N(0, 1). The number of causal mutations takes the value k ∈ {20, 50, 80, 100},

and in each replicate, the k “causal” features are selected at random from a subset of the M

SNPs. For each k, the values of βj are evenly spaced in the interval [SignalMin, SignalMax], with

SignalMin := 0.6
√
2 log p and SignalMax := 1.4

√
2 log p. As a result, the smallest genetic effect is

rather weak (heritability in a single QTL model h2 = 0.0017), while the strongest effect is relatively

large (h2 = 0.0091). Each scenario is explored with 100 simulations.

In evaluating FDRs and power, we adopt the following conventions, which we believe mimic

closely the expectations of researchers in this field: the null hypothesis relative to a SNP/cluster

representative is true if the SNP/cluster representative has a correlation less then 0.3 with any causal

variant. Similarly, a causal variant is discovered if at least one of the variants in the rejection set

has correlation of at least magnitude 0.3 with it.

In addition to evaluating performance in the context of simulated traits, we apply the proposed

procedures to four lipid phenotypes available in NFBC66 [41]: high-density lipoproteins (HDL),

low-density lipoproteins (LDL), triglycerides (TG), and total cholesterol (CHOL). We compare the

discoveries obtained by the univariate and multivariate procedures on the NFBC data to those

reported in [42], a much more powerful study based on 188,577 subjects.

2.1 Simulation study

Cluster sizes

We begin by exploring the distribution of the size of clusters created according to Procedure 1.

Figure 2 illustrates the size of clusters when the trait was generated according to the model in

equation (4) with k = 80 and genotypes from the NFBC dataset. We illustrate the results of both

the original version of Procedure 1 using simple univariate regression (SMT) to obtain the p-values

as well as a modification in which the initial p-value calculation is performed using EMMAX. It can

be seen that most of the clusters are rather small and do not include more than 5 SNPs. There are

no significant differences in the size of clusters created starting from EMMAX or SMT p-values. Of

course, differences in the genotype density would result in a differences in the cluster sizes obtained.
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Figure 2: Histograms of the number of SNPs included in each cluster when Procedure 1 is applied

to p-values calculated from SMT and EMMAX with π = 0.05 and ρ = 0.3 or ρ = 0.5.

Error control with EMMAX and single marker tests

Figure 3 illustrates the results of simulations exploring the FDRs control properties of BH applied

the complete set of M p-values obtained from EMMAX or SMT (i.e. with no pre-screening or clus-

tering of the hypotheses) and the corresponding two-step approaches we recommend (EMMAXs

and SMTs), where cluster representatives are first chosen using Procedure 1 and then discoveries

are identified with Procedure 2. The FDRs for the traditional version of EMMAX and SMT is

calculated mimicking what researchers typically do in practice to interpret GWAS results. Specifi-

cally, the SNPs for which the null hypotheses are rejected using BH are supplied to Procedure 1 to

identify clusters. The realized FDRs is defined as the average across 100 iterations of the fraction

of falsely selected clusters over all clusters obtained.

Figure 3 illustrates that, in agreement with Theorem 1, EMMAXs controls FDRs at all levels

of ρ and for any number of causal SNPs. In contrast, BH applied to the full set of p-values obtained

from EMMAX with post-hoc clustering of the discoveries results in a somewhat elevated FDRs due

to the deflation of the BH threshold. Moreover, EMMAXs offers better control of FDRs than

SMTs, particularly as the number of causal SNPs increases. This makes sense given that the model

assumed by EMMAX is better able to account for polygenic effects than the single-marker test.
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Figure 3: FDRs for EMMAX and SMT and the corresponding procedures EMMAXs and SMTs

which operate on cluster representatives. The dashed black line represents the target FDRs level of

0.05. Note that EMMAX with ρ = 1 (i.e. with no clustering) coincides with EMMAXs, and that the

FDRs for this specific case corresponds to the regular FDR. Shapes indicate the procedures: hollow

triangles for the application of BH to the collection of p-values from EMMAX for all hypotheses

followed by clustering of the discoveries, filled triangles for the selective procedure EMMAXs, hollow

squares for the application of BH to the collection of p-values from EMMAX for all hypotheses

followed by clustering of the discoveries, filled squares for the selective procedure SMTs, and hollow

circles for the application of BH to the full collection of p-values with no clustering. Colors indicate

the parameters for clustering: orange for ρ = 0.3, turquoise for ρ = 0.5, and blue for ρ = 1.

GeneSLOPE error control and power

Figure 4 illustrates the performance of geneSLOPE in terms of FDRs and power in the context of

the performance of EMMAXs and SMTs for the same setting and range of k. For all procedures,

power decreases as k increases, with a slower decay for geneSLOPE. Note that the average power

of geneSLOPE is systematically larger than the power of SMTs, with the difference increasing with

k, while the FDRs of geneSLOPE is always smaller then that of SMTs. Figure 4 also demonstrates

how using the standard genome-wide significance threshold setting π = 5 × 10−8 results in a very

substantial loss of power as compared to procedures controlling FDR.
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Figure 4: FDRs and power for geneSLOPE when clustering is done with π = 0.05, ρ = 0.3, and

target FDRs level 0.05 (marked in slate blue). For comparison, we reproduce from Figure 3 the

curves indicating the performance of EMMAXs and SMTs for the same setting (marked in shades

of orange). We also include the values of FDRs and power when EMMAXs and SMTs are carried

out using cluster representatives selected with π = 5 × 10−8, the standard GWAS genome-wide

significance threshold (marked in shades of red). Shapes indicate the procedures: filled circles for

geneSLOPE, filled triangles for EMMAXs, and filled squares for SMTs.

2.2 Real Data Analysis

To analyze the lipid phenotypes, we adopted the same protocol described in [41]: subjects that

had not fasted or were being treated for diabetes (n = 487) were excluded, leaving a set of 4, 915

subjects for further analysis. All phenotypes were adjusted for sex, pregnancy, oral contraceptive

use, and population structure as captured by the first 5 genotype principal components (computed

using Eigensoft [43]); the residuals were used as the trait values Yi in the subsequent association

analysis.

We compare the results of geneSLOPE, EMMAXs and classically applied EMMAX. GeneS-

LOPE (Procedure 1 followed by Procedure 3) was applied using π = 0.05, ρ = 0.3 or 0.5, and q =

0.05 or 0.1 (for a total of 4 versions) to a centered and normalized version of the genotype matrix

where each column has mean 0 and ℓ2 norm 1. EMMAXs (Procedure 1 followed by Procedure 2)

was applied with π = 0.05, ρ = 0.3 or 0.5, and q = 0.05 or 0.1. To mimic the standard GWAS

analysis, we ran EMMAX identifying as significant those SNPs with p-value ≤ 5× 10−8; to obtain
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comparable numbers of discovered SNPs we applied Procedure 1 to cluster the results.

We compare the discoveries of these three methods on the NFBC data to those reported in

[42], a much more powerful study based on 188,577 subjects. We compute the realized selected false

discovery proportion FDPs for each method assuming that SNPs within 1Mb of a discovery (defined

as p < 5 × 10−8) in the comparison study are true positives (even if, of course, the biological truth

for the given study population is not known, and the association statistics in [42] are based on

univariate tests and may therefore not fully capture the genetic underpinnings of these complex

traits). We also seek to understand what proportion of the trait heritability is captured by the

selected SNPs: to this end, we estimate the proportion of phenotypic variance explained by the set

of genome-wide autosomal SNPs using GCTA [44], and compare this to the adjusted r2 obtained

from a multiple regression model including the selected cluster representatives as predictors.

The estimated proportion of phenotypic variance explained by genome-wide SNPs is 0.34,

0.32, 0.10, and 0.29 for HDL, LDL, TG and CHOL, respectively. A comparison of the number of

discoveries (i.e. the number of selected cluster representatives), number of true discoveries, FDPs,

and r2 across methods is given in Figure 5. As an illustrative example, geneSLOPE selections with

π = 0.05, q = 0.1 and ρ = 0.5 are shown in Figure 6 along with p-values obtained using EMMAX

and those obtained in the more highly-powered comparison study [42].

The application on real data illustrates how FDRs controlling procedures are more powerful

than the standard practice of identifying significant SNPs using a p-value threshold of 5×10−8. Both

EMMAXs and geneSLOPE attain realized selected false discovery proportions that are consistent

with the nominal targeted FDRs. There does not appear to be an advantage of multivariate analysis

(geneSLOPE) over univariate tests (EMMAXs) in this example: this is consistent with the results

in our simulations, which indicate that multivariate analysis is really more powerful when there

are many (detectable) signals contributing to the phenotype. While it is by now established that

hundreds of different loci contribute to lipid levels, the signal strength in our dataset (which has a

modest sample size) is such that only a handful can be identified: in this regime we find no evidence

of an advantage for the multivariate linear model.

3 Discussion

Following up on an initial suggestion of [29] and reflecting elements of the standard practice, we

argue that discoveries in a GWAS study should not be counted in terms of the number of SNPs for
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Figure 5: Comparison of methods on the phenotypes high-density lipoproteins (HDL), low-density

lipoproteins (LDL), triglycerides (TG), and total cholesterol (CHOL). “Total discoveries” corre-

sponds to the number of selected cluster representatives under each method; in the plot, true

discoveries (those within 1Mb of a discovery in [42]) are marked in green, while false discoveries

(those not within 1Mb of a discovery in [42]) are marked in red. FDPs is the realized selected false

discovery proportion, and r2/h2 is the adjusted r2 obtained when using the set of selected cluster

representatives as predictors in a multiple regression model divided by the proportion of phenotype

variance explained by genome-wide SNPs obtained using GCTA.

which the hypothesis of no association is rejected, but in terms of the number of “clusters” of such

SNPs. We propose a strategy to control the FDR of these discoveries that consists in identifying

groups of hypotheses on the basis of the observed data, selecting a representative for each group,

and applying a modified FDR-controlling procedure to the p-values for the selected hypotheses.

We present two articulations of this strategy: in one case we rely on marginal tests of association

and modify the target rate of BH on the selected hypotheses; in the other case we build on our

previous work on SLOPE to fit a multivariate regression model. We show with simulations and

real data analysis that the suggested approaches appear to control FDRs and allow an increase in
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power with respect to the standard analysis methods for GWAS.

The idea of identifying groups of hypotheses and somehow transferring the burden of FDR

control from the single hypothesis level to the group one is not new [27, 28]. In particular, two

recent contributions to the literature can be considered parallel to our suggestions. In the context

of tests for marginal association, Foyel-Barber and Ramdas [33] propose a methodology to control

FDR both at the level of single hypotheses and groups. In the context of multivariate regression,

[45] extends SLOPE to control the FDR for the discoveries of groups of predictors. Both these

contributions, however, are substantially different from ours in that they require a definition of

groups prior to observation of the data. Instead, our “clusters” are adaptive to the signal, and

identified starting from the data. This assures that the group of hypotheses are centered around

the locations with strongest signal.

Defining cluster representatives that are input to a multivariate regression framework allows

us to think more carefully about what FDR means in the context of a regression model that does

not include among the regressor the true causal variants, where one is substantially looking for

relevant proxies. In their recent work [46], Foyel-Barber and Candes take a different approach,

deciding to focus on the directional FDR. The knock-off filter provides an attractive methodology

to analyze GWAS data. However, it still requires an initial selection step: top performance can

be achieved only when the selected features are optimally capturing the signal present in a given

dataset. We believe that the cluster representatives approach has a substantial edge at this level

over, for example, running LASSO with only a modest penalization parameter.

We consider here a fairly simple strategy to construct clusters of SNPs, exploring two possible

levels of resolution, corresponding to ρ = 0.3 and ρ = 0.5. In reality, depending on sample size and

genotype density, each dataset might have a different achievable level of resolution. The study of

how this can be adaptively learned is deferred to future work.

It should be noted while we conduct formal testing only on the selected set of cluster represen-

tatives, when the null hypothesis of no association is rejected for a selected SNP, the entire cluster

is implicated. In other words, in follow-up studies, the entire region spanned by the cluster should

be considered associated with the trait in question.

Finally, we would like to underscore how, even if we have here focused on the case of GWAS,

adopting a selective approach might have wide range applications whenever there is not an exact

correspondence between the hypotheses conveniently tested and the granularity of the scientific

discoveries. Further studies of the emerging literature on selective inference should lead to better
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understanding of the theoretical properties of the method we propose as well as to the identification

of other possible strategies.
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Procedure 4 Sequence of penalties λ for SLOPE

Input: q ∈ (0, 1); n,M ∈ N

1. set λBH = [λBH(1), . . . , λBH(M)]T , for λBH(i) := Φ−1
(
1− qi

2M

)
;

2. define

λG(i) :=

 λBH(1) , i = 1

λBH(i)

√
1 +

∑
j<i

λ2
G(j)
n−i , i > 1

;

3. find the largest index, k⋆, such that λG(1) ≥ . . . ≥ λG(k
⋆);

4. put

λi :=

 λG(i), i ≤ k⋆

λG(k
⋆), i > k⋆

.

Procedure 5 Selecting λ when σ is unknown

Input: y, X and basic sequence λ

1. initialize: S+ = ∅

repeat

2. S = S+

3. compute RSS obtained by regressing y onto variables in S

4. set σ̂2 = RSS/(n− |S| − 1), where —S— is the number of elements in S

5. compute the solution β̃ to SLOPE with parameter sequence σ̃ · λS

6. set S+ = supp(β̃) (i.e. S+ is the set of regressors selected by SLOPE in step 5).

until S+ = S
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Figure 6: GeneSLOPE selections using π = 0.05, ρ = 0.5, and target FDRs 0.1 are marked using

solid green bars for cluster representatives and semi-transparent bars for the remaining members of

the cluster. P -values from EMMAX (purple) and the Global Lipids Genetics Consortium compari-

son study (orange) are plotted on the -log10 scale. The horizontal dashed line marks a significance

cut-off of 5 × 10−8, and the purple diamonds below the x-axis represent selected cluster represen-

tatives under EMMAX using π = 0.05, ρ = 0.3, and a p-value threshold of 5 × 10−8.

28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2016. ; https://doi.org/10.1101/058230doi: bioRxiv preprint 

https://doi.org/10.1101/058230
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Methods
	The GWAS design, dependence and definition of discoveries
	Controlling the FDR of interesting discoveries by selecting hypotheses
	A GWAS selection procedure: phenotype-aware cluster representatives
	Univariate testing procedures after selection
	GeneSLOPE - FDR control in multivariate regression.

	Results
	Simulation study
	Real Data Analysis

	Discussion

