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Abstract—Root cause analysis of cancer as well of design of
personalized treatment depends on the ability to prioritize mu-
tated genes in cancer. In this paper, we propose a novel approach
’MutPrior’ to prioritize genes in a given caner. We hypothesize
that a gene is important for cancer if it has high functional impact
mutations, is strategically important for network stability and has
high relevance to the disease. This approach integrates functional
impact scores, centrality in gene-gene interaction network and
disease relevance scores to prioritize the mutated genes. MutPrior
outputs a prioritization of genes which is more actionable than
any current approaches. In the process, we do away with the
arbitrary cutoffs as well as confusion caused by notions of driver-
passenger.

I. INTRODUCTION

Carcinogenesis or oncogenesis, the process of formation
of cancer cells from normal cells, involves high mutation rates
and structural variants of the genomic material. However, only
a small subset of these mutations plays an active role in
the proliferation and growth of tumor cells. Such mutations
are called driver mutations. These mutations can be the root
causes and hence, potential drug targets of different cancer
types. So, we want to distinguish them from mutations that
are not functionally associated with oncogenesis, or passenger
mutations. The existing methods for driver mutation detection
can be broadly classified into the following three classes:
Methods based on Hypothesis Testing, Methods using Machine
Learning techniques and Methods based on pathways or gene
sets.

Hypothesis Testing based methods find driver genes in a
tumor sample by calculating the probability of observing an
extreme feature value purely by chance.

Some tools use machine learning mechanisms such as
clustering or classification to distinguish driver genes from
passenger genes.

Since genes often interact in pathways or as functionally
related gene sets, some methods utilize this interaction of
gene sets, instead of individual genes, for analyzing driver
mutations.

II. RELATED WORK

A. Methods using Hypothesis Testing

In MutSig, genes which are mutated at a rate significantly
higher than the Background Mutation Rate (BMR) are detected
as driver genes. However, the estimation of BMR is not
accurate due to heterogeneity in the mutational processes in
cancer. MutSigCV [1] is an improvement on MutSig that
accounts for this heterogeneity. Here, genes are mapped to

a covariate space and the inter gene distances are used to find
the nearest neighbors of each gene. The BMR is then obtained
by pooling the nearest neighbors. MutSigCV is adaptive and
can be personalized but it does not detect genes with lowly
recurrent mutations and has false positives as well.

OncodriveFM [2] identifies genes with accumulation of
variations with high functional impact (FI) scores as driver
genes. It takes the gene-wise FI scores from SIFT [3],
PolyPhen2 [4] and Mutation Assessor (MA) [5], calculates
p-values for each tool and combines them using Fisher's com-
bined probability test. Unlike recurrence based approaches, this
method is not limited by number of samples and can detect
some lowly recurrent genes. However, averaging the FI scores
across a gene leads to possible loss of useful information.

OncodriveCLUST [6] works on the hypothesis that gain-
of-function mutations always tend to cluster in specific protein
position. In this method, positions with mutation rate higher
than a Background Mutation Rate are combined and extended
to form clusters, which are then assigned scores. It identifies
genes mutated in specific protein positions but fails to rec-
ognize lowly recurrent mutations and some loss-of-function
mutations.

B. Machine learning techniques

OncodriveROLE [7] uses a Random Forest classifier to
classify driver genes into oncogenes (or Gain-of-Function
genes) and tumor suppressor genes (or loss-of-function genes)
based on features such as relative abundance of truncating
mutations, protein affecting mutations(PAMs) and degree of
clustering of missense mutations. Combination of multiple
signals controls the rate of false positives identified. However,
it fails to identify some lowly recurrent mutations.

CHASM [8] selects features based on Mutual Information
and uses Random Forest classifiers to classify mutations into
driver and passengers. The fraction of trees voting in favor
of the passenger class for a gene is converted to a score,
which is in turn assigned a p-value by comparing it to a
null distribution formed from synthetically generated passenger
mutation dataset. It is one of the first methods to capture
large-size custom datasets. However, recent studies have shown
that that the occurrence of passenger mutations is affected by
factors such as replication time and gene expression. These are
not sufficiently captured by a set of random synthetic passenger
mutations as used in CHASM.

CanDrA [9] overcomes this drawback by using real passen-
ger mutation data. It uses a two-step feature selection method
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followed by SVM classification to group mutations into 3
categories: drivers, passengers and no-call. It is cancer-specific.
However, it uses its own set of empirical rules to decide driver
and passenger mutations while curating the training dataset,
which might not be accurate.

C. Methods using Pathways/Gene Sets

DriverNet [10] predicts driver genes based on the hypoth-
esis that driver genes are ones with those mutations which
will push the gene expression values of the connected genes
to some extreme. It uses a greedy algorithm to rank genes
and statistical hypothesis testing to compare the results on real
data against a randomized dataset. Results revealed a number
of rare mutations in known cancer genes typically associated
with other cancers. However it has a couple of shortcomings. It
does not gracefully handle the directionality of the expression
change. Also, the threshold used for determining significant
copy number alterations is obtained from third party algorithms
and can affect results.

MEMo [11] extracts mutually exclusive gene sets by build-
ing event matrix of significantly altered genes and extracting
cliques from gene-gene network pairs. This method uses
pathway information, resulting in improved accuracy. However
it fails to detect co-occurring gene sets. Dendrix [13] identifies
mutated driver pathways directly from somatic mutation data
collected from large numbers of patients, using a greedy
algorithm. It identifies pathways without using any pathway
information. However, the greedy algorithm runs the risk of
losing out gene sets/pathways that shared some genes with the
pathway identified and removed in its previous iteration.

Multi-Dendrix [14] overcomes this by using an Integer
Linear Program (ILP) instead of a greedy approach to find
multiple driver pathways simultaneously. The results obtained
are statistically tested using PPI networks, which themselves
contain a large number of false positives.

Tug of War [12] Tug of War models the impact of driver
and passenger mutation populations in cancer cells. New
traits required for cancer progression are acquired by driver
mutations in a few key genes. Most mutations, however, are
unimportant for progression and can be damaging to cancer
cells, termed passengers. This paper hypothesizes that driver
mutations engage in a tug-of-war with damaging passengers.
Tug of war model predicts cancer progression.

III. NEED FOR A NEW APPROACH

In spite of a plethora of tools available to detect driver
genes, the cancer biologists suffer because of the following:

1) The notion of passenger genes is neither well defined
nor scientifically established.

2) There is high discordance among the output of mul-
tiple tools.

3) Most the algorithms depend of use of background
mutation rate, which cannot be accurately estimated.

4) Hypothesis testing based methods assume indepen-
dence of parameters and fail to exploit correlations

5) Techniques that use machine learning approaches
tend to suffer from lack of appropriate labeling of
driver vs passenger genes. These tools tend to use a

high number of features but often do not have enough
training data to deliver desired accuracy.

6) Pathway based approaches rely on accuracy and com-
pleteness of interaction network. However, interaction
data is incomplete and noisy.

7) All of the current approaches fail to exploit the gene
relevance information that is available in literature.

8) Driver detection process employs hard cutoffs and
hence might ignore role played by gene below that
threshold.

We therefore propose to do away with notion of driver
genes. In the next section, we describe a new integrated
approach ’MutPrior that exploits the correlation among the
parameters, integrates network and relevance information.

IV. MUTPRIOR

We hypothesize that a gene is important for cancer if it has
high functional impact mutations, is strategically important for
network stability and has high relevance to the disease.

This hypothesis necessitates an integrated approach to
detect genes important in a given cancer. We use an ensemble
approach MutPrior for driver detection. We compute scores
for genes using several methods and combine them to rank
genes by their importance for a given cancer. In a given
experimental setup, for each gene, we calculate the functional
impact of its mutations and its graph centrality. We also use
publicly available relevance score of the genes for cancer.
These three scores are combined to obtain final ranking of
genes. This final ranking indicates the prioritization of the gene
in a cancer. Therefore shortlisting the genes based on cut-offs
in not necessary.

A. Materials and Methods

In this section, we describe the methods generating various
scores and an approach to combine them to generate final
ranking. Following are the details of data used in this exercise.

1) We use Chronic Lymphocytic Leukemia(CLL) data
from OncodriveFM [2] for generation of functional
impact scores.

2) The centrality measure is calculated based on a graph
generated from a manually curated Human Reference
Network (HRN1) published by MEMo [11].

3) We get disease relevance score from DISEASES [21]
method developed by Pletscher-Frankild et. al.

Below, we describe the score generation process ins detail:

B. Functional Impact Score-Based Method

This method is based on the hypothesis that genes impor-
tant for a cancer contain mutations with high functional impact
scores. In other words, the important genes are outliers in terms
of functional impact scores. As discussed earlier, OncodriveFM
is also based on a similar hypothesis. However, it calculates
the p-value for each FI score independently and then gets
a combined score using Fisher's combined probability test.
However, this method violates the independence assumption
of the p-values. The FI scores calculated by the tools are not
independent. In addition, we believe that there should not be a
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cutoff on the p-values to shortlist the genes. The score should
just be indicators of relative priority of the genes in a given
cancer analysis.

Here, we give a brief description of the steps involved in
our calculation. This is followed by detailed explanation.

1) Calculate k functional impact (FI) scores for each
gene using k known tools of choice.

2) Each gene is represented by a k dimensional vector.
3) Calculate centroid of this data as mean of all the gene

vectors.
4) Calculate covariance matrix of this data.
5) Calculate Mahalanobis Distance [19] of each gene

from the centroid using above covariance matrix.
6) Sort genes in ascending order of their Mahalanobis

Distance.

Details:

• We calculate functional impact (FI) score of a gene by
averaging the FI scores of all the mutations throughout
the gene in a sample. The tools used for calculating
functional impact scores are SIFT, Polyphen-2 and
MutationAssessor. Hence, for each gene we get three
functional impact scores.

• We use Mahalanobis distance to detect outliers in the
data. This method takes into account the covariance of
the gene-wise FI scores calculated by various tools.
Let, gi be the vector of functional impact score for
ith gene, µ be the mean FI score vector, and Σ be the
covariance matrix of the above data.
Then, Mahalanobis distance di for gene gi is calcu-
lated as following:

di = (gi − µ)T Σ−1(gi − µ) (1)

• Most of the genes have very low functional impact
scores and hence would be very close to the cen-
troid. As a result, most of the genes will have low
Mahalanobis distance scores. Therefore, a gene with
very high Mahalanobis distance score would have
mutations that have very high functional impact. These
genes would be of interest for further study and are
highly likely to be driver candidates.

C. PageRank Score-Based Method

We try to incorporate the gene-gene interaction information
in prioritizing the genes. If genes strategically located in the
interaction network are disturbed, they tend to affect larger
part of the graph and hence have potential to be relevant for
a disease. In terms of graph theory, this translates to genes
with high centrality scores. We use PageRank [20] as measure
of centrality. Page rank is chosen over closeness and between
centrality as it considers not only shortest path and degrees
but also captures all the random paths passing through a node.
We score each gene as follows:

1) We take the gene-gene interaction network where
each gene corresponds to a vertex. Nodes are con-
nected if they are found to interact in the HRN1.

2) We calculate the PageRank [20] score of each vertex
(gene), which gives a measure of the centrality of the
gene in the network.

3) If genes with high page rank are mutated they might
disturb a larger portion of interaction network. There-
fore, they might have an important role in the disease.

Details:

• We use the Human Reference Network used in MEMo
as the background gene-gene interaction network
graph. It is manually curated and comprises a list
of directed interactions between pairs of genes. We
have removed self-loops (one gene interacting with
itself) from the network and used it for the centrality
calculation. Each vertex of the resultant directed,
unweighted graph corresponds to a gene and each edge
corresponds to an interaction between these two genes
in some pathway or biological process.

• Let G be a directed graph comprising n vertices (v1
vn) and m edges (e1 em). Let A be the transition
matrix of G where the A[i, j] denotes the transition
probability from vertex j to vertex i. We define Matrix
M as follows

M = α ∗A+ (1 − α) ∗R (2)

where, α is the damping factor, which assumes a value
from 0 to 1 (we use α equal to 0.85) and R is an n x
n matrix with all entries equal to 1/n. Let v be the n
x 1 significance vector. Then the sequence, v, Mv,..
Mkv, converges to the PageRank score vector.

• Each gene gets a PageRank score that gives a measure
of the centrality of the gene in the network. Higher this
score, more connected the gene is and disturbance to
gene can affect larger part of the network

D. Text Analysis Based Score

We incorporate text mining based association score from
DISEASES [21] method developed by Pletscher-Frankild et.
al. Following is the summary of how these scores were
generated by the authors. Abstracts of medical literature are
analyzed to find associations or co-occurrences between gene
names and disease names. STRING v9.1, which integrates
names from Ensembl [23], Uni-ProtKB [24] and HGNC [25],
is used for curating human protein and gene names whereas
disease names and synonyms are collected from the Disease
Ontology [26]. A dictionary is built and a corpus of medical
abstracts is analyzed using this dictionary to assign a co-
occurrence score to each gene-disease pair. This score takes
into account the co-occurrence of the gene-disease pair in the
same sentence as well as in the same abstract.

E. Combining Scores and Ranking Genes

As discussed, we use 3 scoring schemes to prioritize genes:
Scores from FI analysis, Scores from centrality analysis and
Scores from text analysis. MutPrior combines the three scores
and uses the final score to rank the genes.

1) MutPrior quantile-normalizes each score to make all
three distributions similar.

2) MutPrior calculates the geometric mean of the three
quantile-normalized scores to get the final score for
each gene.
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Details:

• Each score is distributed differently compared to the
others. To make the three distributions similar, we use
quantile normalization. Quantile normalization works
as follows: Let there be three distributions a, b and c.
Assume each of them has n values. We sort these
distributions and calculate the average of the highest
values of all three distributions (avg1), average of the
second highest values (avg2) and so on till the average
of the smallest values of each distribution (avgn). Now
in each of the lists, the maximum is replaced by avg1,
second maximum by avg2 and so on. The 3 score lists
are normalized as discussed above.

• The geometric mean of the three quantile normalized
scores for each gene is the final score of the gene.
Genes are sorted by this score and the top scoring
genes are selected.

V. RESULTS AND INTERPRETATION

We verify our results using standard databases like
DriverDB [14], Cosmic [15] and Census [16]. We compare
top 100 genes in our analysis against the standard databases
and 49 genes were present in at least one of the three
databases mentioned above. This indicates the effectiveness
of our methodology. The genes are listed in Appendix A. A
summary of the validation results against the 3 databases are
presented in Figure 1. List of top 100 genes is provided in
supplementary data.

Fig. 1. Counts of genes common between top 100 genes from our result and
the 3 standard databases
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