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Abstract

Motivation: Cancer is a complex and evolving disease, making it
difficult to discover effective treatments. Traditional drug discovery
relies on high-throughput screening on reductionist models in order
to enable the testing of 10° or 10° compounds. These assays lack the
complexity of the human disease. Functional assays overcome this
limitation by testing drugs on human tumors, however they can only
test few drugs, and remain restricted to diagnostic use. An algorithm
that identifies hits with fewer experiments could enable the use of
functional assays for de novo drug discovery.

Results: We developed a novel approach that we termed ‘algorith-
mic ideation’ (AI) to select experiments, and demonstrated that this
approach discovers hits 10* times more effectively than brute-force
screening. The algorithm trains on known drug-target-disease asso-
ciations assembled as a tensor, built from the (public) TCGA and
STITCH databases and predicts novel associations. We evaluated our
tensor completion approach using a temporal cutoff with data prior
to 2012 used as training data, and data from 2012 to 2015 used as
testing data. Our approach achieved 10%*-fold more efficient hit dis-
covery than the traditional brute-force high-throughput screening. We
further tested the method in a sparse, low data regime by removing
up to 90% of the training data, and demonstrated the robustness of
the approach. Finally we test predictive performance on drugs with
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no previously known interactions, and the algorithm demonstrates
103-fold improvement in this challenging problem. Thus algorithmic
ideation can potentially enable targeted antineoplastic discovery on
functional assays.

Availability: Freely accessible at https://bitbucket.org/aiinc/drugx.
Contact: {quejebo, mcancobanoglu} @ gmail.com

1 Introduction

Cancer is a disease characterized by genomic instability [10] which
gives rise to disease evolution [I2] and heterogeneity |20} 23]. These
characteristics make cancer therapeutics particularly difficult to dis-
cover [25] when drug discovery is already a process with high attrition
rates [0, 13, 29]. Commonly used cell line or single target based re-
ductionist approaches cannot accurately account for the tumor’s mi-
croenvironment or subclonal/phenotypic heterogeneity [30] thus ne-
cessitating more representative assays.

Testing of antineoplastic therapeutic candidates on human tumor
tissue alleviates these concerns by generating results that are highly
relevant to the human disease context [4] [14] 16, 22, 32, [15]. However
there is a key obstacle to the use of human tumor based testing for
driving de novo drug discovery: the divergence between the numbers
of compounds tested in traditional drug discovery campaigns — high
throughput screening (HTS) of 10° to 10° compounds [21] — and the
number of compounds that can be tested on a human tumor sample
— 10! to 10% [22]. If human tumor samples are to be used for screen-
ing an entire chemical library, one must either use multiple samples
from many individuals or use immortalized cell lines originally de-
rived from primary tumors. Using samples from multiple patients in
the same screening would present high batch-to-batch variability prob-
lems. When using patient derived cell lines the 3D tumor microen-
vironment and the clonal heterogeneity are lost while the selective
pressure of the culture environment can also deviate the phenotypic
responses. Using even more reductionist models such as isolated pro-
tein binding assays or enzymatic assays completely lack the intracellu-
lar context, in addition to the intercellular context, including some key
features such as protein-protein interactions or compensatory signal-
ing networks. Thus no drug discovery pipeline that relies on screening
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large numbers of compounds can feasibly be run on human tumor
samples.

Consequently functional assays that allow for testing drug activ-
ity on human tumor samples have so far been restricted primarily
to diagnostic use — i.e., determining which of the approved therapy
alternatives would work best for a specific patient [7]. However an
algorithmic approach that could effectively discover hits with few
numbers of tested compounds could utilize functional assays for de
novo drug discovery. We have addressed this important challenge
and hereby present our methodology for computationally predicting
targeted cancer therapeutics. Our approach, which we termed ’algo-
rithmic ideation’, relies on the factorization of a tensor representation
of drug-target-disease associations.

New machine learning advances in analyzing the relationships in
large networks for predictive purposes such as probabilistic matrix
factorization [24], restricted Boltzmann machines [28], probabilistic
tensor factorization [35], and factorization machines [26] [27] have pro-
vided a rich algorithmic basis for large-scale analysis of genomics and
drug-discovery questions. Some recent work applying matrix comple-
tion based approaches to drug-target interaction prediction has fo-
cused on the integration of two sets of spaces, genomic and chemical,
and mapping the two categories of information into a joint space for
interaction prediction [36]. Later, this work was expanded by tak-
ing into account pharmacological insert information [37]. Other ap-
proaches developed for this problem with successful results included
supervised learning [1], Gaussian interaction profile kernel approaches
[31], and twin-kernel (genomic and chemical) Bayesian matrix factor-
ization [8,[9]. Probabilistic matrix factorization has also been success-
fully applied to the drug-target interaction problem [2] 3]. Kshirsagar
et al. have used the low rank nature of biological interaction matrices
to identify host-pathogen interactions [I7]. Motivated by the success
of these algorithmic efforts, our approach relies on efficient latent fac-
tor modeling of a large tensor.

Thus, we present here a novel approach that aims to harness these
advances in machine learning systems to perform sample-efficient test-
ing of novel drug-disease interactions, using transcriptomic data to
identify gene-cancer associations. To achieve this goal, we first build a
tensor representing drug-target-disease associations, and then predict
new associations through latent variable decomposition. Our model
returns a list of experiments sorted by the algorithm’s confidence of
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their success, thus dramatically reducing the number of experiments
leading to the first hit. Since the hit discovery efficiency is dramati-
cally improved in this manner, the algorithmic ideation approach can
potentially be used to run a de novo drug discovery pipeline on human
tumor samples. We hope that the work described here contributes
to creating an impetus for algorithmic and rational drug discovery
pipelines instead of those that rely on brute-force screening.

Additionally, we would like to recognize the benefit of open source
software in realizing the technical aspects of the approach we described
here. We have used the Python/NumPy/SciPy stack, Numba from
Continuum Analytics, the scikit-tensor library, the ChemFP Python
library, and the Pandas data analysis library in our implementation.
In recognition of the importance of open source code we release our
code base under the GNU Lesser General Public License v3.0, both
to allow the community to access our code as well as to spur other
researchers in the community to develop their algorithmic approaches
on this critical problem.

2 Methods

Our method entails the construction of a drug-target-disease associa-
tions tensor, and novel association prediction in that tensor. We first
extract meaningful drug-target-disease tuples from the public TCGA
and STITCH databases, which we use to seed a three dimensional
tensor. We then perform PARAFAC tensor factorization on this ten-
sor to infer relationships between drugs and diseases. These inferred
relationships consist of a drug-disease pair, and a set of gene targets
by which data indicates they potentially interact. We then evaluate
these predictions by querying on held-out public data. The results of
the evaluated predictions are then used to update the training data
for the model, increasing future prediction accuracy. We have also
implemented a passive version of the method to demonstrate the ben-
efits of active learning, in line with previous work on active learning
in drug discovery [33].
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Table 1: The number of TCGA samples across cancer and tissue types.

Cancer Type ‘ Tissue Type ‘ No. Samples

2.1 Generating drug-target-disease triplets from
public data

To develop a training and testing set for evaluating our algorithm,
we harness existing public data. We first identify a set of disease-
target pairs using TCGA (The Cancer Genome Atlas) [34] data. We
then cross-reference this information with the drug-target pairs in the
STITCH database [19].

2.1.1 Generating disease-target pairs from TCGA

We developed a measure of gene differential expression using tran-
scriptomic profiling data (RNASeq v2) from five different TCGA can-
cer types from both cancer and normal samples, with the cancer types
and the number of samples shown in Table [I| For each cancer type,
we perform a t-test comparing the normal and cancer sample readings
for each gene. We have manually selected a highly stringent p-value
cutoff separately for each cancer. The cutoffs are highly stringent:
even the least stringent threshold is lower than a Bonferroni-corrected
threshold of 0.001 (which corresponds to a p-value cutoff of 5e-8).
Cutoffs were selected to maintain a roughly equal number of genes
selected per cancer. The distribution of the significance values and
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the selected thresholds are shown separately for each cancer in Sup-
plementary Figures 1-5. Each significantly perturbed gene is assigned
a score equal to the negative log of the p-value of their perturbation
(and thus higher scores imply more confidence in their perturbation).

2.1.2 Generating drug-target-disease triplets

We then cross-reference our disease-gene links with a set of drug-gene
links derived from the STITCH database. We use all STITCH inter-
actions between chemicals and human genes with reported confidence
above 40%. This score from STITCH is a combination of experimen-
tal evidence, database curation, literature text mining, and predictions
based on chemical structure [19].

To join the TCGA and STITCH data, we first represent it as a
tripartite graph as shown in Figure [Th. This graph contains nodes for
diseases (i.e., cancer subtypes), drugs, and genes. Edges connect drugs
to genes (using STITCH data), and diseases to genes (using TCGA
data). Each edge weight corresponds to the score for that interaction
from the given database. For each pair of drug D; and disease I;, we
calculate a score:

S(Di, Ij) = > w(D;, Ti)w(Ty, I;)
keT
where w(D;,T),) and w(T}, ;) are the edge weights from D; to Tj
and T}, to I; respectively, for each gene target 7). We then select a
threshold score S such that all drug-disease pairs with a score above S
are chosen as putative interactions. For the results reported here, we
have selected S to be such that the most confident 10% of the predicted
drug-disease interactions remain in S. (Our algorithm is robust to the
selection of this cutoff threshold, see Supplementary Figure 7).

For each of these drug-disease interactions that we select as our
positive set, we furthermore know the set of gene targets through
which both the drug and disease show activity (all targets T with
weights w(D;, T)) and w(T}, I;) greater than 0). We consider these
drug-target-disease triplets to represent specific genes through which
the selected drug might modulate the selected disease.

2.2 Learning on a drug-target-disease tensor

Now that we have developed a set of canonical drug-target-disease
interactions, we can perform learning to discover new putative drug-
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Figure 1: Overview of the method. (a) We identify drug-target-disease con-
nections using STITCH for connecting drug candidates to targets, and TCGA
for connecting targets to diseases, and construct a tensor by cross-referencing
the data. (b) We use PARAFAC decomposition to create a latent factor
model that reconstructs the tensor as a summation of the outer product
of factor vectors, thus enabling the completion of the tensor from sparsely
known entries.

target-disease interactions. Discovering these novel triplets may result
in possible drug hits targeted against specific cancer subtypes, while
simultaneously providing the gene target(s) through which they inter-
act.

We represent our data as a three dimensional tensor, with the
dimensions being drug, target and disease. We take each known triplet
and fill in their cell of the tensor with 1. Unknown triplets remain at
0; hence the value of each cell is based on the confidence of it being a
true interaction.

Once all known entries have been input into the tensor, we perform
tensor completion. Having evaluated several approaches, we use the
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venerable PARAFAC approach [I1] due to its relatively rapid runtime
and appropriately sized latent factor space. In PARAFAC, the tensor
is decomposed into a number of latent factors as shown in Figure [Tp.
A parameter N is chosen, representing the size of the latent factor
space.

We initialize the latent factors using eigen-decomposition of the un-
folded tensor, which provides a good and deterministic starting point.
These latent vectors can also be initialized randomly, and using an en-
semble of such initialized models would also likely work well (however
it would come at significant computational cost, as the model training
would have to be repeated for every member of the ensemble at every
update step of the active learner).

After initialization, we use alternative least squares to optimize
the fit of the model to our data. We repeat the alternating process
until the model converges (i.e. the fit of the model changes by a very
small amount, le-4). Once learned, we can use the model to predict
all entries of the tensor as follows:

N
T=) d;ot;o
j=1
where d;, t;, and i; respectively denote the drug, target, and disease
factor vectors corresponding to the j-indexed factor of the decom-
position model, and ® represents the outer product. Thus, given a

drug dimension of size I, target dimension of size J and disease target
dimension of size K, PARAFAC learns (I + J + K) * N parameters.

2.3 Performing learning on drugs with no known
interactions

To be able to conduct de novo cancer drug discovery, it is important
for the algorithmic approach to be able to generalize to drugs with no
previously known interactions. However the standard PARAFAC al-
gorithm cannot make any inferences on columns/rows with no known
entries. For these drugs without any known interactions, we use their
chemical structure to identify drugs with known interactions that have
.95% chemical similarity (as calculated by ChemFP v1.1 OpenBabel
FP4 fingerprints). We carry over the interactions of these highly sim-
ilar drugs, but only after ’dampening’ them by multiplying with a
small coefficient 0 < C' < 1, as follows:
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Ve,d € D s.t. sim(c,d) > 0.95:

T<D07 E ) = T(DC'7 ) ) * Ok sim (C’C/)Z

where sim(c, ') is the chemical similarity between unknown (entry-
less) drug ¢ and known drug ¢/, T is the tensor, and D is the set of
all drugs. We set the value C to 0.25 in our implementation. The
motivation for using a dampening coefficient, C, is to reflect the in-
tuition that chemical similarity is an imperfect indicator of functional
similarity for drugs since drugs with high chemicals similarity can
end up having different interaction dynamics. For example, an ex-
tra methyl group can render a drug incapable of fitting to the same
binding pocket as one without the methyl group, yet these two struc-
tures would likely have very high similarity. It further allows us to
reduce the weight of these imputed interactions compared to observed
interactions from the public data. We multiply C' with the square of
the similarity to expand the difference between the similarity scores.
Since chemical similarity above 95% is required for out cross-drug in-
ference, this coefficient has a range of [0.9025, 1]. Where a compound
has multiple analogues we carry over the interactions of all of its ana-
logues, and if multiple analogues overlap on the same target-disease,
then we arbitrarily select the last one as a tie-breaker — since only the
similarity varies among ties, and that variation is restricted to such a
small range, tied scores are always very close.

2.4 Software

The software used in this work is implemented in Python and available
in an open source git repository at https://bitbucket.org/aiinc/drugx.
It is licensed under the GNU Lesser General Public License v3.0.

3 Results

We have described here a novel algorithmic pipeline that allows us
to predict likely interactions between drugs and diseases, as well as
the gene targets through which they interact. We demonstrate the
ability of algorithmic ideation to drive de novo interaction discoveries
through four facets:

i) Our approach can predict hits efficiently
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ii) The low-rank assumption intrinsic in a factorization model holds
iii) Our approach can work effectively in a low data (sparse) regime
iv)  Our approach can infer interactions on novel chemicals

The results section is organized into subsections that discuss our
results for each of these claims.

3.1 Drug-target-disease association prediction
performance

We evaluated the algorithm using a temporal cutoff of gene-compound
interactions: for training, we use the compound interaction data in
STITCH 3.0 [I8]; for testing, we use the new compound interactions
found in STITCH 4.1 [19]. Effectively, this amounts to a temporal
cutoff where the training data was collected before 2012, while the
test data was collected between 2012 and 2015. Given this data, we
constructed a 18.6-billion entry space, consisting of 5 diseases, 292,631
compounds, and 12,737 genes with 37,800 entries in the training set
and 39,805 entries in the test set. Transcriptomic information was
considered always available.

The results of our algorithm on this test can be seen in Figure
We define a ‘hit’ as any disease-drug-gene tuple that we propose for
experimentation that is present in our test set. The predictions are
made in 10 batches, with each batch comprised of 5,000 predictions for
a total of 50,000 predictions. Our algorithm is highly insensitive to the
choice of these batch number and size parameters as shown in Supple-
mentary Figure 8. In the evaluation of our method, we follow previous
work on active learning in drug discovery [33, 2] and present the results
from both the active and passive versions of our method. Therefore we
compare our active learning approach to a passive version of the same
algorithm, as well as high throughput screening (random). The active
versus passive comparison demonstrates that the tensor factorization
based approach to the problem of predicting targeted antineoplastics
is the main driver of hit discovery efficiency. We find that our algo-
rithmic approach cumulatively performs 48,204-fold better than HT'S.
The batch with the best performance achieves 124,351-fold improve-
ment and the batch with the worst performance still achieves 15,543-
fold improvement. This demonstrates that the presented algorithmic
ideation always outperforms standard screening approaches 10*-fold.
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Figure 2: Predictive performance of the presented algorithmic ideation (AT)
approach with active learning (red) and passive learning (blue). Brute force
screening (random; indicated in green) is used to model the hit discovery
performance of high-throughput screening. Training and testing were per-
formed with a temporal cutoff using two versions of the STITCH database:
STITCH v3 (training, data collected up to 2012) and STITCH v4.1 (test,
data collected from 2012 to summer 2015). The initialization and the op-
timization are also deterministic, hence the results are deterministic. Algo-
rithmic ideation significantly outperforms the brute force method in terms of
hit discovery efficiency. Predictions done in 10 batches of 5000 predictions.

3.2 Testing the low rank assumption

The use of latent factor decomposition inherently assumes that the
space is low rank, therefore it is important to make an effort to check
that this assumption is valid. It is impossible to directly validate or
refute the low rank hypothesis on this specific tensor, as calculating
the actual rank of the tensor is impossible without knowing the full

11


https://doi.org/10.1101/057901
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/057901; this version posted June 8, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

6000————78@m@8 ™M
I Active
50000} [ Passive ||

40000}

30000¢

20000t

Cumulative Learning Factor

10000}

Figure 3: Predictive performance as a function of latent factor decomposition
rank, with active (red) and passive (blue) implementations of the presented
method. Results suggest that the tensor the low rank assumption is reason-
able: at very low rank the method performs very poorly, then the perfor-
mance peaks, and yet higher rank values lead to loss of performance. Active
and passive approaches perform similarly, with active learning consistently
demonstrating a small yet significant advantage.

tensor, and it is unfeasible to complete the entire tensor (in fact that is
precisely the reason we want to algorithmically complete this tensor).
Hence we have estimated the inherent rank of the tensor through test-
ing the method’s performance at different rank values with the idea
that if the space is low rank then the performance should also peak
at low rank: if decomposition rank is too low, this would lead to
low performance due to not being sufficiently descriptive, whereas too
high a rank would lead to overfitting and thus degrade performance.
The results of this test are shown in Figure Too low rank val-
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ues cripple the performance, in fact when the rank is 1, the method
effectively discovers hits only on the first batch and then becomes ex-
hausted (Supplementary Figure 6). Slightly higher but still very low
rank values, such as 7 to 70, lead to high performance with a plateau
between 15 and 60. Higher rank values, such as 120, lead to a loss
of performance due to overfitting. Peak performance occurs at rank
10. We have compared active and passive implementations of the
method and the 10%-fold improvement persists in either scenario, yet
active learning consistently outperforms passive (as to be expected).
This demonstrates that the key factor behind the dramatic efficiency
improvement is the algorithmic approach.

At this point we would like to underscore that we did not con-
duct the rank scan as a hyperparameter search, but solely for the
purpose of testing the low rank assumption. We did not pick rank
10 (where performance peaks) for use in all the other results in this
paper, because that would constitute train-test contamination as we
would effectively be using the testing set in the identification of hy-
perparameters of the method [5]. Instead we could either implement
a cross-validation routine that splits the training data into training
and validation sets and picks the top performing rank parameter sep-
arately every time the learner is called; or we could simply ab initio
select a value that we think is reasonable. We have opted for the
latter, mainly to demonstrate that the method and the conclusions
presented here (namely that this type of algorithmic ideation confers
10*-fold hit discovery efficiency) are highly robust and do not require
hyperparameter fine-tuning.

An alternative way to think about the representation of a 10-
dimensional latent factor decomposition is that this representation
models a space of (I xJ x K) with (I +J + K) * N parameters where
I, J, K are the sizes of the dimensions, and N is the number of la-
tent factors. Thus we can write the number of tensor entries modeled
by every single parameter as M = m{,ﬂ{% and if we plug in the
values for our tensor we can calculate that M = 6103, which means
that each parameter models about 6,103 entries of the tensor. Thus
the 10-dimensional representation is low-rank in the sense that it is
efficient in describing the tensor with few entries, however it can also
achieve sufficient descriptive power to allow us to effectively discover
hits at 10%-fold effectiveness compared to brute-force screening.

This sparse representation is due to most members of the same
class being highly similar to each other. For example almost ev-
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ery drug class has multiple members (SSRIs, statins, etc.) and even
though each drug is represented by a separate matrix, they are highly
similar. Likewise cancers share aberrations in similar pathways — ev-
ery cancer type does not create an entirely unique growth aberration.
Targets are the potential exception, since each drug target protein can
have unique characteristics but even then one can expect genes that
are regulated with the same programs to change with similar trends.
Therefore knowledge about one member of the class (drug, target, or
disease) is often transferable to other members. Hence we think that
the decomposition would be low rank even if significantly more data
were to be added about other drugs or cancer types.

3.3 Predictive performance in low data regime

Beyond simply demonstrating that our approach finds more hits than
HTS, we have also investigated several other properties of our algo-
rithm that demonstrates its suitability to realistic, information-poor
testing scenarios. This is important because drug-target-disease as-
sociations are difficult to compile, and will never be available in a
large quantity compared to the size of the space of possible interac-
tions. Thus, the approach should demonstrate utility even when only
highly sparse training data is available. In Figure [l we show that
our approach is robust to scenarios with minimal training data by
holding out a randomly selected fraction (up to 90%) of the training
data. To evaluate the effect of removing different subsets of data, the
tests were repeated 8 times in each condition. Figure [] shows that
the results are mostly robust across these repetitions. The scenario
with 100% of the training data is equivalent to the setup discussed
in Section with both the training/testing data and the method
deterministic, hence variance zero. To give a sense of the scale of the
training data compared to the total space, in the most extreme case
tested, we used only 10% of our training data, which results in fewer
than 4,000 known interactions being used. Even in this extreme sce-
nario, we observe close to 10%-fold improvement. As the training data
used increases, so does the performance which is exactly as expected.
Active learning consistently confers an advantage, however the passive
implementation also benefits from the additional boost in data which
shows that the ability of the presented approach to effectively utilize
the available data is the key driver of performance, with the active
component offering a secondary advantage.
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Figure 4: The learning factor (fold-improvement over random) as a function
of training data constriction for active (red) and passive (blue) implementa-
tion of the proposed method. At % training data allocation, 100 — 2% of
the data in the training set is randomly removed. Since data is randomly
removed, the train/test sets are stochastic and the results can vary, hence
at each point the experiment is repeated 8 times and the distribution of the
maximum learning factors are reported as a boxplot: center line indicates
median, top and bottom lines of the rectangle represent the first and third
quartiles respectively, whiskers extend to any points within 1.5 standard de-
viations, and outliers are indicated with a 'plus’ sign. 100% training data is
equivalent to using all the STITCH v3 data and is thus deterministic (there
is zero variance in the results). The algorithmic ideation approach effectively
performs even in low data regimes.
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Figure 5: Predictive performance on de novo drugs. The x-axis shows the
number of predictions made, and the y-axis shows the number of hits dis-
covered in those predictions. The results from both the active (red) and
passive (blue) implementations are shown. The green line shows brute-force
arbitrary order compound selection, (labeled random). Even in the more
challenging scenario with no known interactions for the test set chemicals,
the method still outperforms brute-force testing, albeit at a rate of 103-fold
instead of the rate of 10*-fold observed when some associations are known
about the drugs.

3.4 Predictive performance on de novo drugs

To perform de novo discovery, it is important to be able to make pre-
dictions on chemicals for which no interaction data is known. Our
method is capable of reasoning in this scenario, as we use the distance
metric described in Section 2.3] to infer interaction information for
compounds with only chemical structure information. To test the de
novo scenario, we separate the training and test data using a cutoff
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similar to that in Section [3.I] with the difference that we separate the
data so that we train on all of the known interactions of compounds
that had any interactions known in STITCH 3, while we test on com-
pounds for which interaction data is only found in STITCH 4. Hence,
for all compounds in our test set, the training set has no entries in the
corresponding plane of the tensor.

In Figure bl we show the number of hits resulting from the pre-
dictions of our method in 160 batches of 100 predictions. The results
of 50,000 predictions in various batch size and batch number combi-
nations are available in Supplementary Figure 8, and they show that
the algorithm is highly robust and performs similarly with different
choices of batch size and number. Even at the first batch we are able
to identify hits at a 4,165-fold improvement over HTS. The cumula-
tive learning rate (fold improvement over brute force) ranges between
1,233 and 19,040 with a median of 2,262. Since predicting in the de
novo chemical space is a much harder problem than predicting on
chemicals for which some interaction data is already known, the fold
improvement falls from 10 to 103. However the key point we wish to
emphasize here is that the algorithmic ideation approach still signif-
icantly outperforms the established brute force testing of chemicals,
and is capable of effective learning even on de novo chemicals. These
results show that our algorithmic ideation can use the public data for
training and generalize to any chemical space. Therefore the approach
proposed here can be utilized to run a screening on any chemical li-
brary.

4 Discussion

Currently there exist two different types of assays to test anticancer
drug effectiveness. On the one hand there exist functional assays test
few drugs but on human tumor tissue/cells thus have very high rel-
evance to human disease [7], almost exclusively used for diagnostic
purposes, specifically to identify the best drug among the currently
available treatment options for a given patient. On the other hand, de
novo drug discovery requires high-throughput screening over millions
of chemicals and even the most relevant of these assays are conducted
on monotypic cell lines in test tubes — missing critical aspects of rele-
vance to human disease such as heterogeneity and microenvironment
[25].
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We have demonstrated here a novel technique to harness public
data to create an active learning-based ‘algorithmic ideation’ system
that proposes linkages between drugs, diseases, and the genes through
which they interact. By increasingly the efficiency of hit discovery in
screening by a factor of 104, we believe that our approach renders it
possible to use functional assays for de novo drug discovery for the
first time.

It is worth mentioning that the method performance seems to
plateau after discovering a certain number of hits. This shows that
with the latent factor decomposition based approach, there are only
so many unknown novel associations that can be predicted. However
the critical point to note here is that the method’s predictions are not
tested in actual experiments — when the method asks for the testing of
an association, if that drug-target interaction has not been reported
in STITCH, we consider that a miss. The interactions reported in
STITCH are likely to be true (otherwise they would not be reported)
however the converse is not true: there are likely to be many more
interactions between the chemicals and targets in our testing space
that have simply not been discovered. Therefore, our results repre-
sent a lower bound on the performance of our predictions — the actual
performance cannot be lower, but is likely to be higher. We argue
that the exhaustion of hits after a few thousand hits is due to the
fact that because the model’s predictions are not actually tested, the
model cannot infer the actual space and simply a smaller and less
diverse subspace.
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