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Abstract 
Autism spectrum disorder (ASD) is a range of major neurodevelopmental disabilities with a 
strong genetic basis. Yet, owing to extensive genetic heterogeneity, multiple modes of 
inheritance and limited study sizes, sequencing and quantitative genetics approaches have had 
limited success in characterizing the complex genetics of ASD. Currently, only a small fraction 
of potentially causal genes—about 65 genes out of an estimated several hundred—are known 
based on strong genetic evidence. Hence, there is a critical need for complementary 
approaches to further characterize the genetic basis of ASD, enabling development of better 
screening and therapeutics. Here, we use a machine-learning approach based on a human 
brain-specific functional gene interaction network to present a genome-wide prediction of 
autism-associated genes, including hundreds of candidate genes for which there is minimal or 
no prior genetic evidence. Our approach is validated in an independent case-control sequencing 
study of approximately 2,500 families. Leveraging these genome-wide predictions and the brain-
specific network, we demonstrate that the large set of ASD genes converges on a smaller 
number of key cellular pathways and specific developmental stages of the brain. Specifically, 
integration with spatiotemporal transcriptome expression data implicates early fetal and midfetal 
stages of the developing human brain in ASD etiology. Likewise, analysis of the connectivity of 
top autism genes in the brain-specific interaction network reveals the breadth of autism-
associated functional modules, processes, and pathways in the brain. Finally, we identify likely 
pathogenic genes within the most frequent autism-associated copy-number-variants (CNVs) 
and propose genes and pathways that are likely mediators of autism across multiple CNVs. All 
the predictions, interactions, and functional insights from this work are available to biomedical 
researchers at asd.princeton.edu. 
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Introduction 
Complex human diseases such as autism are driven by a multitude of genetic variants across 
the genome that manifest as a range of developmental and functional perturbations, often in 
specific tissues and cell types1,2. Sequencing-based discovery efforts3–8 have produced valuable 
catalogues of genetic variants that point toward potential causal genes of autism. In particular, 
recent large exome sequencing studies of autism simplex families, as well as case-control 
cohorts, have combined the evidence from both de novo and transmitted loss-of-function 
mutations to implicate around 65 genes in autism risk9. However, this represents only a fraction 
of the estimated 400-1,000 genes likely involved in autism susceptibility10,11. To discover the 
complete genetic basis of autism and identify the dysregulated cellular and developmental 
functions of the brain underlying the disease, we need approaches that leverage previously 
implicated genes in the context of brain-specific biology to discover the full complement of 
autism-associated genes. 

Molecular interaction networks are effective summaries of our knowledge about cellular 
processes and powerful computational tools for investigating disease genes complementary to 
sequencing or genetic studies. Previous network-based analyses that focused on autism12–22 
(reviewed in23) demonstrate the promise of functional genomics approaches. These methods, 
however, are limited by the underlying networks themselves. Commonly used networks are 
based on sets of genes or proteins that are co-expressed in a single developmental context or 
on protein physical interaction networks that lack tissue-specificity and are still largely 
incomplete in human. Existing methods, while invaluable, are nevertheless focused on known 
risk genes or genes with strong prior genetic evidence of ASD association, thus limiting the 
potential for discovering the full spectrum of disease associated genes. 

We address these challenges with an evidence-weighted machine learning approach that 
utilizes a brain-specific functional interaction network24. The brain-specific network was built by 
integrating thousands of genomic experiments to create a genome-wide probabilistic graph 
representing how genes function together in pathways in the brain, or, intuitively, a molecular-
level functional map of the brain24. The evidence-weighted disease-gene classifier, described 
here, learns the connectivity patterns of known ASD genes in this brain network and then uses 
these data-driven signals specific to ASD-associated genes to predict the level of potential ASD 
association for every gene in the genome. Using this approach, here we provide predictions of 
ASD-associated genes, including candidate genes that have minimal or no prior genetic 
evidence. Many of these candidate genes have been validated by sequencing studies as bona 
fide ASD-associated genes since the initial predictions were made. Through integrated analysis 
of the network and our top predictions, we identify developmental stages implicated in ASD, 
characterize frequent autism-associated CNVs, and discover functional modules potentially 
dysregulated in the autistic brain. The genome-wide complement of autism candidate genes 
produced in this study can then be used to systematically prioritize genes for re-sequencing and 
validation through genetic association, as well as guide the analysis of whole genome 
sequencing results. This has the potential to accelerate discovery of the full genetic spectrum 
underlying ASD needed to refine genetic diagnosis and develop treatments. 
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Results 
We use a human brain-specific functional interaction network (developed recently24) to predict 
ASD candidate genes across the genome and then use these predictions to systematically 
explore the developmental and functional features of the molecular phenotype of autism (Figure 
1). Our predictions provide biomedical researchers with a diverse set of ASD candidate genes 
that they can explore in the context of the underlying brain functional network to further 
understand autism genetics and develop more focused genetic screening toolkits. 

 

Genome-wide prediction of autism-associated genes 
We recently developed a gene-interaction network model containing predicted functional 
relationships for all pairs within 25,825 genes in the human genome specifically in the context of 
human tissues, including the brain24. The brain-specific network was built using a Bayesian 
method that extracts and integrates brain-specific functional signals from thousands of gene 
expression, protein-protein interaction, and regulatory-sequence datasets. Intuitively, the 
Bayesian approach first learns a “weight” for each input dataset based on how relevant and 
accurate it is in reflecting how cellular pathways function in the brain. Then the method predicts 
a probability of functional relationship, reflecting how likely each pair of genes in the genome is 
to participate in the same pathway in the brain, calculated by probabilistically weighted 
integration of relevant signals across input datasets (see Supplemental Note 1 for more details). 

We developed an evidence-weighted network-based machine-learning method that uses this 
brain-specific network to systematically discover novel candidate ASD-associated genes across 
the genome. We first curated 594 genes linked with autism from a number of publicly available 
databases prior to 2014, ranging from high-confidence genetic associations (e.g., SFARI Gene25 
and OMIM26) to automatically text-mined frequent ASD-gene co-occurrences in published 
abstracts (e.g., Gene2Mesh (gene2mesh.ncibi.org) and DGA27). We grouped these genes into 
four evidence levels based on the strength of evidence associating them with ASD (E1-4; Table 
S1). Using these genes along with their evidence levels as positive gold-standard examples and 
genes annotated to non-mental-health diseases in OMIM as negative examples, we trained an 
evidence-weighted Support Vector Machine (SVM) classifier using the connectivity of these 
gold-standard genes to all the genes in the human brain-specific network as features (Figure 1; 
see Methods). Intuitively, this approach first identifies network patterns that characterize known 
ASD-related genes while taking into account the level of “trust” in each gene’s association with 
autism. The patterns consist of genes in the network that are differentially (strongly or weakly) 
connected to known ASD genes (positives) relative to genes linked to non-mental-health 
diseases (negatives). The classifier then uses these patterns to calculate a score of potential 
ASD association for each gene in the genome, identifying novel ASD candidate genes as those 
that highly resemble known ASD genes in their interaction pattern in the network (Figure S1; 
Table S2). This produces a comprehensive, genome-wide ranked list of autism candidate genes 
(Table S3) that is robust to variations in our training gold standard (Figure S2). To improve 
interpretability of these ASD gene predictions, we estimated probabilities (using isotonic 
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regression) and permutation-based P values (and corresponding FDR Q values) for each gene 
(Figure S3, see Methods). 

Evaluating only on held-out high-confidence (E1) genes through five-fold cross-validation 
(repeatedly training a model on 4/5th of E1 genes and testing on the hidden 1/5th), we found that 
our approach was accurate (AUC = 0.80; Figure 2a). Moreover, this evidence-weighted 
classifier trained using E1-4 significantly outperformed an unweighted classifier trained using 
only high-confidence E1 genes (AUC = 0.73), a weighted classifier using only E1 and E2 (AUC 
= 0.76), and a weighted classifier using E1 and E2 supplemented with random genes that match 
E3 and E4 in annotation, expression, and gene-length characteristics (AUC = 0.74), thus 
unequivocally establishing that including lower-confidence genes (E3 and E4) in an evidence-
weighted framework helps in significantly improving performance (Figure 2a). Intuitively, this 
demonstrates that although the individual genes in these lower confidence sets (E3 and E4) are 
not validated (a substantial fraction may not end up being associated with ASD pathogenesis), 
as a unit, they still contain signal that is informative for ASD. Our computational approach 
effectively leverages these signals to improve ASD gene prediction performance. 

In addition to computational evaluation by cross-validation, we performed a systematic empirical 
evaluation based on results from an external exome-sequencing study of 2,517 families7. We 
focused on de novo likely-gene-disrupting (LGD; also known as loss-of-function) mutations 
identified in these families with one autistic child (proband), and, in most cases, an unaffected 
sibling (Table S4). Genes harboring LGD mutations in probands are significantly enriched 
towards the top of our ranking independent of any specific cutoff (permutation test P = 2.3e-5, 
see Methods); this enrichment is even more pronounced for recurrent proband LGDs (mutations 
found more than once among autistic children), which are highly likely to be true autism-
associated genes (P = 1e-5). In contrast, this enrichment is absent for genes with LGD 
mutations in unaffected siblings (P = 0.081), showing that our predictions are specifically 
ranking LGD-target genes related to autism over those potentially unrelated to the disease 
(Figure 2b). For further analysis, we focus on the top decile of predicted ASD-associated genes 
(median FDR < 0.025), which reflects the above trend: these ~2,500 genes are significantly 
enriched for LGD mutations in probands (binomial test P = 2.7e-9; Figure 2c; see Methods), but 
not in unaffected siblings (P = 0.12). The enrichment is even more striking for proband recurrent 
LGDs (P = 5.7e-10), with about 60% of these proband recurrent LGDs present in the top decile. 
It is important to note that our prediction method does not use the quantitative genetics data as 
input, and predictions for each gene are made through cross-validation where any potential 
information about that gene’s known connection to autism (its presence in E1-E4) is “hidden” 
from the method. In fact, the trends observed in this analysis hold even when the evaluation 
standard is strictly limited only to ‘novel’ genes not used in our training set that were observed in 
families still unpublished at the time of our analysis (Figure S4) or when tested on genes 
identified in a study independent of the SSC8 (P = 4.12e-6). These trends are also not non-
specifically biased by long, brain-expressed genes (Supplemental Notes 2 and 3; see Methods). 
In contrast to prior network-based methods, our approach is able to identify novel candidate 
genes with no prior genetic link to ASD (Figure S5), while maintaining accuracy (Figures S6). 

Our top-ranked first decile predictions include a significant number of experimentally identified 
targets of major ASD-associated regulators (FMRP28, TOP129, and CHD830), as well as 
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members of some of the major pathways implicated in autism (Wnt/b-catenin4,21, MAPK31, post-
synaptic density32) (Figure 2c,d). Furthermore, we found that interaction partners of brain-
expressed isoforms of known ASD genes identified in an independent, high-throughput protein 
interaction assay33 were also enriched in the first decile of our ranking (binomial test P = 1.96e-
5). Our top-ranked genes are specific to autism, exhibiting an expected overlap with genetically 
similar disorders (e.g., intellectual disability and schizophrenia), while being distinct from genes 
associated with other unrelated neuronal diseases (e.g., Alzheimer’s and Parkinson’s diseases; 
Figure S7). Further, in agreement with recent findings34, genes we predict to be highly linked to 
ASD tend to be more evolutionarily constrained than all the other genes (permutation test P  = 
1e-6; Figure S8, Supplemental Note 4; see Methods). 

Our predictions (Table S3) contain genes with prior ASD-association that were not part of our 
positive training set. Variants in GNAO1 (rank #3) – encoding G-proteins that couple to 
receptors which function in the central nervous system – give rise to motor defects with 
associated behavioral phenotypes35 and can cause involuntary movements as well as severe 
developmental delay36. The gene SYN2 (rank #7) has replicated evidence for maternally-
inherited frame-shift and missense mutations associated with male ASD cases37, and Syn2 
deleted mice show impaired social behavior and memory, as well as abnormal exploration of 
novel environments38. ATXN1 (rank #8) is deleted in five out of six clinical cases, most of whom 
had ASD, developmental speech delay, and ADHD39. Two independent cases in the Simons 
Simplex Collection have been identified to harbor de novo nonsense mutations in the neuronal 
ankyrin gene ANK26,40 (rank #9). We highlight many more examples of such top-ranked genes 
in Supplemental Note 5. 

With the results above validating our ranking, our chief contribution is the prediction of several 
genes with completely novel associations to autism. Interestingly, many among these novel top-
decile genes are within large CNV intervals reported in autism cases, potentially implying their 
role in the pathogenicity of those CNVs. SYT1 (rank #5), for example, is a synaptic membrane 
protein in the CNV 12q21.2-21.31, which has been observed to be duplicated or deleted in 
autism cases in two large case-control studies41,42. A largely uncharacterized gene, OLFM1 
(rank #14) is within 9q33.2-34.4, a CNV with 5 duplications reported in autism cases42. Similarly, 
NOVA1 (rank #18) resides in the CNV 14q11.2-21.1; two cases with duplication of this CNV are 
found to suffer from developmental delay, intellectual disability, or ASD42. As potential drivers 
within CNVs, such genes are prime candidates for follow-up with experimental verification and 
genetic validation. 

Taken together, these rigorous evaluations based on several large, independent, experimentally 
derived data sets, along with evidence from published literature for individual genes, 
demonstrate that our genome-wide predictions capture a major molecular signature of autism. 
Our predictions can therefore be used for systematic analyses to further insights into autism 
genetics and pathogenesis. 
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Autism-linked genetic changes in fetal brain development 
One of the crucial characteristics of autism is altered brain development43. Identifying the 
precise developmental stages and regions that are affected by the genetic changes underlying 
autism is crucial in unraveling the disease mechanism. Here, we use our genome-wide ASD-
associated gene predictions in concert with large-scale spatiotemporal gene-expression data of 
the developing human brain44 to identify regions and stages most pertinent to autism. Previous 
computational studies have used these data to construct coexpression networks17,40 by pooling 
multiple regions or developmental stages to obtain a minimum number of samples for 
coexpression analysis. Our approach leverages the comprehensive set of ASD candidate genes 
and thus, for the first time, allows analysis of individual regions and time-points within these data 
in the context of autism. We tested the enrichment of gene expression signatures specific to 
each spatiotemporal window in our autism-gene predictions using a carefully controlled 
permutation test to identify when and where predicted ASD genes are specifically active (Figure 
3, Table S5, Figure S9; see Methods). 

Our analysis identifies a clear developmental pattern – a prenatal signal from the early, mid, and 
late fetal stages – indicating that autism-associated genetic changes affect the development of 
the fetal prefrontal, temporal, and cerebellar cortex. This finding is largely consistent with 
previous studies17,20,40,45 (reviewed in46), as well as recent findings on the possible role of 
callosal projection neurons19 and on the neuropathology of autism brain47. Spatially, on the other 
hand, we observe that the activity of ASD candidate genes is widely distributed across regions 
during early brain development, displaying a broad distribution that underscores the 
heterogeneity of the disorder. This pattern is consistent both with the lack of a single, highly 
reproducible neuroanatomical correlate of autism48, and with evidence that autism may be a 
disorder of general neural processing that manifests in many regions, including visual, auditory, 
motor, and somatosensory cortices49.   

Performing this analysis using our genome-wide ASD candidate genes not only aids in revealing 
high-level spatiotemporal patterns relevant to ASD, but also enables us to now localize 
hundreds of novel candidate genes to specific brain regions that have been previously linked to 
the etiology of autism, such as the cerebellum50 (reviewed in51) and striatum52,53. A substantial 
body of literature has implicated the cerebellum in the development of the disorder, both in 
mouse models50 and in humans (reviewed in51), and our results highlight both fetal and early 
postnatal time points when disrupted gene expression in the cerebellum may contribute to 
autism risk. In addition, the striatum is identified here as a key locus of autism pathology 
throughout fetal development, a finding of particular relevance to repetitive behaviors as 
explored in mouse models that have both construct and face validity52,53. In addition to known 
ASD-linked regions, we observe a new molecular signal in the mediodorsal nucleus of the 
thalamus in early and mid-fetal brain development that is consistent with reduced functional 
connectivity of this region in autism as suggested by fMRI54. Together, our analysis provides a 
way for choosing specific regions at relevant developmental stages for experimental verification 
of novel ASD candidate genes at the highest spatiotemporal resolution allowed by the 
expression data. 
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Brain-specific functional modules disrupted in ASD 
In concert with studying the developmental aspects of autism, a detailed understanding of the 
underlying effects of autism-associated genetic changes on cellular functions and pathways will 
result in a more complete picture of the molecular basis of ASD. Typical pathway analysis of 
known ASD-associated genes falls short of this goal, with the ability to only highlight functionally 
annotated genes, while providing little information about the hundreds of uncharacterized 
genes, let alone how all these genes and associated pathways are functionally interconnected 
in the brain. The human brain-specific functional gene interaction network that underlies our 
autism gene predictions lends itself naturally towards addressing this challenge. First, we define 
an autism-associated network by restricting the genome-wide brain network to the top 10% 
(~2,500) of the predicted ASD-associated genes. Then, we use a strategy based on shared k-
nearest-neighbors (SKNN) and the Louvain community-finding algorithm55 to cluster and 
partition the network into distinct and significantly cohesive functional modules predicted by our 
approach to be affected by ASD-associated genetic changes (Figure 4, Figure S10; see 
Methods). Based on the intuition that genes that functionally cluster together tend to have 
common local neighbors in the network56, the SKNN method calculates the number of shared 
nearest neighbors between ASD candidate genes in the brain network. The Louvain algorithm 
then finds communities of ASD candidates with shared local neighborhoods. Thus, the SKNN-
based strategy has the advantages of alleviating the effect of high-degree genes and 
accentuating local network structure by connecting genes that are likely to be functionally 
clustered together. 

The primary contribution of this analysis is a systematic way of associating individual genes – 
several among them being novel and uncharacterized – to specific processes and phenotypes 
that might underlie autism etiology (Figure 4, Table S6). This includes cellular functions (e.g., 
synaptic transmission and neuronal function8,12,31,57 (cluster 1, C1)), signaling pathways (e.g., 
canonical Wnt4,21 (C2), gamma interferon58 (C6 and C7),), and fundamental cell biological 
processes (e.g. histone modification and chromatin remodeling7,8 (C4) and cell cycle regulation 
(C5)) that have been repeatedly implicated in autism. The clusters delineated here also connect 
genes with key autism-associated phenotypes. For example, genes involved in enteric nervous 
system development (C1) might underlie the gastrointestinal symptoms common and persistent 
in children with autism59. Similarly, hypersensitivity to a range of stimuli is a well-established 
aspect of the autism phenotype60, and the genes identified in C3 include those involved in a 
whole assortment of perceptions (e.g., chemical stimuli, sound, light, smell, pain, temperature). 
Also noteworthy given a strong association of sleep dysregulation with autism61, is circadian 
rhythm captured in C9. 

These findings suggest functional roles for genes associated with ASD pathogenesis and 
provide a framework to better understand the genes that underlie the emergence of important 
and often poorly understood phenotypes in animal models. Approximately 20% of the genes 
within each cluster are completely uncharacterized (lack any annotation to specific 
processes/pathways in the Gene Ontology), and this analysis suggests specific functional roles 
for these genes. For example, DIP2C (#180) and RSBN1 (#85) are top-ranked uncharacterized 
genes in C8 and C4, respectively, that are also specifically expressed during early fetal 
development. The grouping of DIP2C in C8, its fetal gene expression, and the identification of a 
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de novo LGD mutation in DIP2C in an autistic proband in the Simons Simplex 
Collection6 together link DIP2C to autism through the Rho and IGFR pathways. Likewise, 
RSBN1 is tightly linked to chromatin remodeling and histone modification genes in C4. Its 
mouse homolog exhibits a punctate nuclear location62, consistent with a nuclear function for the 
protein. These and many other uncharacterized genes (Table S6) are candidates for 
experimental follow-up in specific functional contexts to characterize the cellular dysregulation in 
autism. 

 

Identifying ASD-associated genes within recurrent autism-associated CNVs 
Copy number variations (CNVs) are important risk factors for autism. However, identifying which 
among the genes in these chromosomal intervals are pathogenic remains challenging. Our 
genome-wide prediction enables us to systematically prioritize genes within CNVs and reveal 
candidates for experimental verification. We applied this approach to eight of the most common 
autism-associated CNVs: 16p11.2, 15q11-13, 15q13.3, 1q21.1, 22q11, 7q11.23, 17q12, 3q29 
(Figure 5). Further delving into the candidate genes, we garnered existing functional and genetic 
evidence and provide hypotheses about how perturbations of genes from different CNVs might 
converge at the molecular level by affecting specific biological pathways, leading to ASD. 

First, examining the genes that we prioritize within each of the eight autism-associated CNVs 
(genes within a CNV that are ranked in the first decile of our genome-wide ASD-gene ranking), 
we find that our network-based approach pinpoints many genes with previous genetic or 
functional evidence linking them to autism (Figure 5, Table S7). Across the CNVs, genes with 
prior genetic evidence (strongest, direct) are ranked significantly higher than those with 
functional evidence (indirect) (one-sided Wilcoxon rank-sum test P = 0.012), which are 
significantly ranked higher than CNV genes with no evidence of ASD association (P = 0.04; 
‘genetic’ ranked higher than ‘no evidence’ P = 1e-6; Figure S11). Our method also implicates 
novel ASD candidates within these CNVs, which, based on the above trend, are strong 
candidates for further experimental follow-up. Experiments may particularly be a priority in 
cases where known functions of a highly ranked gene dovetail with biological processes that 
have already been implicated in the downstream effects of these CNVs. For example, a recent 
report suggests that changes in copy number at the 16p11.2 locus – the most widely studied 
and one of the most common CNVs linked to autism63 – may affect RhoA signaling and 
dynamics of the actin cytoskeleton64. One of our top-ranked genes in 16p11.2 is PPP4C (ranked 
third within the interval), which is known to regulate Rho GTPases and levels of filamentous 
actin65, suggesting a mechanism whereby haploinsufficiency for PPP4C might contribute to the 
phenotypes associated with 16p11.2 deletion. Another potential link between 16p11.2 and ASD 
is the highly ranked transcription factor MAZ (ranked fourth within the interval; see Discussion). 
Strikingly, 10 out of the 23 top-predicted (first decile) genes across the eight CNVs, including 
MAZ, are significantly highly expressed in the mediodorsal nucleus of the thalamus (MD) during 
early-midfetal development, a spatiotemporal window that we associate with autism in this study 
(Fisher’s exact test P < 1.2e-9). 

With multiple CNVs and a number of candidate genes within each, a further challenge is to 
identify their convergence on similar cellular functions that might be dysregulated to result in 
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autism. Here, we attempt to shed light on this mechanism by leveraging the top-ranked genes 
within the CNVs and the brain-specific network to identify pathways and cellular processes that 
may be disrupted by ASD-associated CNVs. Intuitively, we hypothesize that genes involved in 
these disrupted pathways (referred to as ‘intermediate genes’) would be critical bridges between 
ASD candidate genes within CNVs and the major autism phenotype genes within the brain 
functional network. Practically, we identified such intermediate genes as those along the 
shortest paths in the brain network specifically linking the predicted ASD-associated genes 
within each CNV to the 19 high-confidence (E1) autism genes25,26 that represent the core 
molecular etiology of autism (illustrated in Figure S12; see Methods). The intermediate genes 
we identified thus likely represent cellular functions that CNVs impinge on to contribute to the 
autism phenotype. We then outlined the biological processes enriched in these intermediate 
genes that were also co-mentioned with autism in the literature (see Methods). Through this 
analysis, we were able to propose, in a data-driven way, genes and processes that underlie the 
functional connection of ASD-associated CNVs with the ASD molecular phenotype (Figure 6, 
Table S8). 

Multiple previous studies support our findings. For example, SNAP25, one of the intermediate 
genes mediating 16p11.2’s linkage with cognition/axonogenesis, is reported to bind PRRT2 in 
16p11.2 to regulate neuronal processes66. Besides these well-established CNV-gene-process 
linkages, many intermediate genes identified are themselves associated with autism. 
SMARCA2, which mediates 15q11-13’s association with regulation of transcription, is part of the 
BAF complex and is implicated in autism67. AFF2, linked with 16p11.2, is identified in multiple 
autism studies with rare mutations68,69. EPHB2, linking 7q11.23 with axonogenesis, harbors two 
de novo variants in ASD probands in separate sequencing studies. LPHN1 – linked to 1q21.1 – 
and SF3B1 – linked to 3q29 – were identified recently to be among 239 genes most likely 
involved in ASD based on de novo mutation and absence of mutation in healthy controls34. 
CACNB2, linked to 15q13.3, was recently added to category 3 in the SFARI Gene database25.	  
We also noticed that all three genes linking 17q12 to cell cycle (BRCA1, MSH2, H2AFX) are 
either directly or indirectly involved in DNA damage repair, which was highlighted in a 
postmortem gene expression study as an autism-associated process70. This observation is in 
agreement with the hypothesis that dysregulation of mismatch repair might contribute to the 
generation of somatic mutations in the brain that contribute to autism risk. The full set of 
intermediate genes and enriched processes (Table S8) provide a rich resource for experimental 
follow-up studies. 

 

A web-interface to explore autism-gene predictions 
We have developed a dynamic web interface – asd.princeton.edu – that provides an interactive 
portal to all autism-gene predictions from this study along with the results from the subsequent 
analyses, including spatiotemporal brain signatures, functional modules, and prioritized CNVs. 
Using this interface, autism researchers can explore the results from this study not just as 
ranked genes, but also their inter-connections in the context of the human brain-specific 
network. The interface allows gene-based search, dynamic network visualization, and ability to 
export results (Figure S13). 
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Discussion 
The genetic heterogeneity underlying ASD is daunting, with multiple modes of inheritance, a 
sizeable contribution from de novo events, and hundreds of both rare and common variants 
likely contributing to the disease71. Further compounded by diverse clinical phenotypes and 
limited sample sizes, it is unlikely that all risk genes would be identified by sequencing studies 
and statistical association alone. Sequencing screens mainly identify mutations with large effect 
size, and statistical quantitative genetic studies rely on relatively high mutation frequency, both 
of which are missing in gene variants with modest frequency and effect size. Moreover, all these 
methods fail to model epistatic effects that could underlie the ASD phenotype. 

In this study, we present a powerful, genome-wide computational approach to facilitate ASD 
gene discovery. By combining evidence from thousands of gene expression, protein-protein 
interaction, transcription regulation and genetic perturbation data, we recently built a gene 
network that serves as a robust scaffold of brain-specific gene interactions and cellular 
functions24. Here, we take advantage of this brain-specific functional interaction network to 
provide a ranking of all genes in the human genome by their potential pathogenic involvement in 
ASD (Figure 1). The validity of this comprehensive complement of genes is attested by an 
independent exome sequencing study published after our initial analyses were completed (and, 
therefore, not included in our training sets), with the strong autism candidates from the study 
(recurrent de novo LGD mutations) ranking near the top of our prioritized list (Figure 2). 
Therefore, our ranking can, for example, be used to prioritize novel autism-risk genes for 
experimental functional characterization or choose gene candidates for targeted sequencing in 
new studies, thus increasing specificity and reducing cost. Our predictions can further help 
guide the analysis of whole exome/genome sequencing results, by prioritizing which genes 
harboring missense mutations or nearby noncoding variants should be followed-up by 
downstream experimental investigation. 

Traditional disease-gene prediction methods72 use only the most-confident genes or all genes 
irrespective of the evidence linking them to disease. Our evidence-weighted machine learning 
method, which we used to make these genome-wide ASD candidate gene predictions, brings 
new prospects for incorporating a large number of genes with various levels of confidence of 
autism-association identified from multiple experimental/sequencing efforts. Even within a single 
study, different types of variants – LGD, missense, synonymous – potentially confer variable 
amounts of risk. Our weighted approach embraces this diffuse knowledge of disease genetics, 
and we demonstrate that our method is able to identify ASD-related signals among the noisy 
and weak gene associations present in the literature and make more accurate predictions 
(Figure 2a). Because the method is highly generalizable, it can be readily applied to the study of 
many other complex diseases. 

In addition to prioritizing hundreds of novel ASD candidate genes, we have used the underlying 
network to link individual ASD genes to perturbed cellular functions and higher-level phenotypes 
(such as brain development, sensory perception, and circadian rhythm), thus aiming to bridge 
the genotype-phenotype gap in autism. In fact, our genome-wide prediction ranks LGD genes in 
SSC probands with lower non-verbal IQ (<100) significantly higher than LGD genes in probands 
with higher non-verbal IQ (>=100; one-sided Wilcoxon rank-sum test P = 0.013). Similarly, LGD 
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genes highly ranked by our method are also associated with severe restricted repetitive 
behavior73 (permutation test P = 0.02). Using a combination of our whole-genome ranking of 
ASD candidate genes and spatiotemporal gene expression data of the human brain44, we have 
gained insights into specific stages in human brain development that might be critically affected 
by mutations in autism-associated genes. We provide the functional and developmental 
contexts of our top-decile predictions in Table S9.  Furthermore, this analysis showcases how 
biomedical researchers can use our genome-wide ASD candidate gene predictions as a 
framework for analyzing their data from high- or low-throughput assays, allowing high-resolution 
study of autism genetics in the functional and physiological contexts of their interest. For 
example, a researcher who has generated gene expression or proteomics data from a new 
high-resolution spatiotemporal window in the brain (either human or in a model organism) can 
use our approach to assess the molecular relevance of that window to ASD. This approach  – 
identifying a characteristic gene signature from the samples and estimating its enrichment in our 
genome-wide ASD-gene ranking (similar to results presented in Figure 3) – can provide results 
of increasing specificity with increasing spatiotemporal resolution in the available data. (S)he 
could then focus on the highly-ranked genes in her/his expression signature in combination with 
the specific functional contexts identified for these genes (‘ASD-associated functional modules’ 
as presented in Figure 4) to generate hypotheses and design experiments to further 
characterize autism. 

Finally, we have used the genome-wide predictions to prioritize potentially “causal” genes within 
large regions of autism-associated CNVs and illustrate how genes from different CNVs 
converge onto a set of common genes and pathways that could mediate the cellular 
perturbations associated with autism. This analysis provides experimentally-testable hypotheses 
for further research into the molecular mechanisms underlying the connection to ASD for the 
most common ASD-associated CNVs. For example, one of the top ranked ASD candidate 
genes in 16p11.2 is the transcription factor MAZ (ranked fourth in the 16p11.2 interval), which 
has not been previously characterized in the context of autism. On the genome-scale, 
computationally predicted targets of MAZ (genes with MAZ’s DNA-binding motif74 in their 
upstream sequences) are statistically over-represented in our ASD-associated gene predictions 
(P = 2.5e-93), and are involved in the regulation of neuron differentiation and axonogenesis. 
MAZ and its predicted targets also show specific spatiotemporal expression in the early mid-
fetal stage of development in the primary motor cortex (M1C; Figure 3), a stage demonstrated to 
be relevant to autism40. Together these observations lead to a specific hypothesis: the 
disruption of normal MAZ function (or one of its targets) in the primary motor cortex at the early 
mid-fetal developmental stage can lead to the autism phenotype by perturbing the transcription 
of neuronal differentiation and neurodevelopmental genes. 

In addition to specific analyses and hypotheses that we describe in this study, we have made all 
the genome-wide predictions, ASD-associated brain developmental stages, functional modules, 
and prioritized CNVs from this study, as well as their brain network contexts, available to the 
biomedical community via a dynamic web interface at asd.princeton.edu. Researchers can 
explore the top predicted candidate genes and processes as well as any genes they are 
specifically interested in (such as genes found in sequencing or GWAS studies) in the context of 
our network and generate new sets of related genes or processes. The top-ranked genes 
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identified here, especially the many novel uncharacterized genes, have the potential to speed 
up gene discovery and spur further focused experimental studies that can lead to better 
objective genetic biomarkers for early diagnosis of ASD. We also expect that these genes and 
associated pathways, along with their brain-specific functional contexts, will help identify 
potential therapeutic targets that can make intervention more impactful. The predictions and 
analysis in asd.princeton.edu will be updated regularly as new genetic/sequencing studies of 
ASD are published to keep the results of this work relevant in the longer run. 

 

Methods 
Sources of known autism-associated genes 

Several databases contained information about a number of autism-associated genes. Each 
resource, however, gathered data from sources with different levels of evidence, ranging from 
recurrent mutations in autistic patients to nebulous links gleaned from text-mining thousands of 
PubMed abstracts. In an effort to be comprehensive in putting together our initial picture of 
autism genetics, we collected genes linked to autism from all these sources (up to Dec. 2013) 
and designated them to four evidence levels, each associated with an evidence-weight that was 
commensurate with the quality of the evidence (Table S1). For example, genes from categories 
1 and 2 in SFARI25 found by statistically significant rare variant associations or nominally 
significant (but replicated) common variant associations, as well as genes from OMIM26 (a total 
of 19 genes) were designated as evidence-level 1 (E1) and given a weight of 1.00. 31 candidate 
genes with two lines of literature evidence annotated to category 3 in SFARI were designated as 
evidence-level 2 (E2) and given a weight of 0.50. Databases HUGE75 and GAD76 together 
record 413 genes identified based on genetic association studies, which were designated to 
evidence-level 3 (E3). 131 genes inferred purely based on text-mining PubMed abstracts from 
the Gene2MeSH (gene2mesh.ncibi.org) and DGA27 databases, as well as those assigned with 
minimal-evidence (to category 4) in SFARI were designated as evidence-level 4 (E4). Genes in 
levels 3 and 4 were given a weight of 0.25. Each gene was uniquely assigned to the highest 
evidence-level. In total, we curated 594 autism-associated genes with evidence-weights ranging 
from 0.25 to 1. 

 

Human brain-specific functional interaction network 

The human brain-specific network is a scaffold of predicted functional interactions between all 
pairs of genes in the genome. Each edge (link) in the network between a pair of genes is 
associated with a probability that represents how likely the two genes are to participate in the 
same biological process specifically in the brain. This network is the product of systematic 
integration of thousands of genomic datasets in the context of known functional gene 
interactions in the brain24 (Figure S13). We have shown that multiple genes associated with a 
particular disease often tend to have similar patterns of connectivity in a relevant tissue-specific 
functional network24. We use this notion (further described below) to discover autism-associated 
genes in the context of the brain-specific gene network. 
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Learning and cross-validation of the network-based classifier 

We use a machine learning approach to predict autism-association genes. Our approach has 
two steps: 1) Building a statistical model that captures the connectivity patterns of known autism 
genes in the brain-specific network, and 2) Using this model to subsequently predict whether 
each of the other “unknown/unlabeled” genes in the network looks like an autism gene based on 
its connectivity in the network. We trained an evidence-weighted linear support vector machine 
(SVM) classifier using the gold standard of known autism-associated genes (along with their 
weights) as positives and 1189 genes associated with non-mental-health diseases (from OMIM, 
with weights equal to 1) as negatives. The brain-specific interaction probabilities of each gene to 
all the genes in the brain network were used as features. Given the network features (xi) and a 
positive/negative label (yi) for all the m training genes, the linear SVM solves the following 
optimization problem77: 

min𝒘
!
!
𝒘!𝒘 + 𝑙! ∙𝑚𝑎𝑥(0, 1 − 𝑦!𝒘!𝒙𝒊)!!

!!! , 

where Ii is a penalty parameter specific to each gene that influences how costly it is to 
misclassify that gene. By setting Ii equal to the evidence-weight of the labeled gene (where 
negatives have Ii of 1), we ensure that we train a model that rarely misclassifies high-confidence 
genes while giving certain latitude in correctly classifying low-confidence genes. 

To evaluate this approach, we employed a stringent five-fold cross-validation scheme: in each 
fold, we trained a model on 4/5th of the labeled (positive and negative) genes and evaluated the 
model on only high-confidence (E1) positives (and all negatives) in the remaining 1/5th of the 
labeled genes. The model with weights equal to 1.00, 0.50, 0.25, and 0.25 for E1, E2, E3, and 
E4 genes had an area under the receiver-operator-curve (AUC) of 0.80. Taking model variance 
into account by repeating 5-fold cross-validation 50 times, we demonstrate that this model 
performs significantly better than one trained only using high-confidence genes (weights 1, 0, 0, 
0; AUC = 0.73; P < 2.2e-16, one-sided Wilcox rank based test; weights 1, 1, 0, 0; AUC = 0.76; P 
< 2.4e-15), and one trained with real E1-2 supplemented with random genes simultaneously 
matched with E3-4 for gene length, brain expression, and neuronal gene ontology (AUC = 0.75, 
P < 2.2e-16). Therefore, we used the evidence-weighted model further to make predictions. 

 

Genome-wide prediction using evidence-weighted network classifier 

We coupled whole-genome prediction with 5-fold cross-validation: a prediction for each labeled 
gene (positive/negative) was recorded only from the fold that did not include the gene for 
training, thereby relying only on its network-based similarity to other genes instead of its own 
prior evidence; a prediction for an unlabeled gene was recorded as the average of predictions 
from the five folds. Each prediction corresponded to the distance of the gene from the 
hyperplane that separates positive genes from negative genes, and these distances were used 
to rank all the genes in the genome. For interpretability, the distances were also converted to 
probabilities using isotonic regression (see below). This produced a genome-wide ranking of 
25,825 genes based on their predicted level of association with autism. 
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Evaluation of autism gene ranking on independent de novo mutations 

De novo mutations from exome-sequencing study 

The Simons Simplex Collection78 (SSC) contains more than 2,500 families, each of which has a 
single child with ASD (referred to as proband). Most of these families have at least one 
unaffected sibling. A recent study used whole exome sequencing of the SSC to identify de novo 
LGD mutations in autistic children and their unaffected siblings7. 350 and 174 genes were 
targets of LGD mutations in autistic probands and unaffected siblings, respectively. Among the 
350 LGD genes in probands, 27 were observed in more than one proband (recurrent LGD), 
indicating that these are very likely to be true autism-associated genes. We used these sets of 
genes – proband recurrent LGD (27), proband LGD (350) and sibling LGD (174) – to benchmark 
our genome-wide autism gene ranking. When testing each LGD set, we used 462 genes 
containing synonymous mutations in unaffected siblings (sibling SYN) as a control. Further, to 
account for potential biases in exome sequencing coverage, when defining a genomic 
background, we removed the 8,054 genes in which no rare variants from reference were reliably 
detected anywhere within genic boundaries. 

Since preliminary de novo mutation data on 682 SSC families were published in three separate 
reports in 20123,4,6, and it was likely that some of these data were represented in our training set 
of autism-associated genes, we created an “unpublished” evaluation data set from SSC which 
was released after our prediction. This data set was created from the new SSC families in 2014 
study7 (i.e., 1,835 families after removing the previously published 682 from the total of 2,517 
families), which performed whole exome sequencing to identify de novo LGD mutations in 
autistic children and their unaffected siblings. We used this “unpublished” set of mutations to re-
test the significance of our findings derived based on the entire SSC cohort (Figure S4). 

We also obtained the 107 likely ASD-associated genes from a study independent of the SSC8 
and used this set to evaluate our predictions. 

Decile enrichment test 

After removing SSC genes without rare variants from the autism gene prediction rankings, the 
remaining genome-wide gene ranking was first divided into deciles. For a given set of LGD 
genes, we used the binomial test to assess whether a larger fraction of the LGD genes occurred 
in the first decile when compared to the expected fraction based on the occurrence of sibling 
SYN genes. Reassuringly, sibling SYN genes are roughly apportioned 10% to each decile, 
indicating that it is a good control set. 

Rank-based enrichment test 

To demonstrate robustness of our evaluation to specific rank cutoffs (as our decile enrichment 
test assesses genes above a 10% rank cutoff), we also formulated a rank-based test. This test 
takes the entire genome-wide ranking and assesses if the set of LGD genes have a skewed 
distribution towards the top of the ranking relative to the control set. First, based on the genome-
wide autism-association ranking, we calculated an exponential score si for each gene i based on 
its autism-associated rank rank(i) as follows: 
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𝑠! =
𝑏!! − 1
𝑏 − 1

,𝑤ℎ𝑒𝑟𝑒  𝑟! =
𝑁 − 𝑟𝑎𝑛𝑘 𝑖 + 1

𝑁
, 

N is the total number of genes equal to 25,825, and b was set to 100. The score si ranges 
between 1 for the top-ranked gene dropping exponentially to 0 for the lowest ranked gene. The 
rank-based test then proceeds in three steps: (1) calculate the observed difference (dobs) 
between the mean rank-based score of the test LGD gene set (e.g. proband LGD) and the 
control gene set (sibling SYN); (2) shuffle the gene labels in the test and control gene sets 
100,000 times and, each time, record the difference between mean(test) and mean(control) 
(dpermut); (3) calculate a P value for the observed difference (dobs) equal to the fraction of 
permuted differences dpermut that were equal to or greater than dobs; also calculate an effect size 
for dobs as a z-score: 

𝑧 =   
𝑑!"# − 𝜇

𝜎
, 

where µ and σ are the mean and standard deviation of the distribution of dpermut values. 

Evaluation controlling for gene length 

Genes linked to ASD are known to be longer in size than genomic background29. To test if our 
genome-wide ranking is driven by prioritizing long genes, we repeated our LGD evaluation while 
controlling for gene length. We sorted all genes by their length, divided the genes into bins of 
500 genes (of very similar lengths), randomized ASD ranks of genes within each bin, and 
calculated the top-decile enrichment of LGD-target genes. A P value was calculating by 
repeating this procedure 10,000 times and calculating the fraction of times the permuted top-
decile enrichment P value was less than or equal to the observed P value. 

Evaluation controlling for bias in brain-/neural-functional annotations 

To demonstrate that brain/neural genes are not biasing our results, we evaluated our 
predictions on whether they can prioritize proband LGD genes within a non-neural-annotated 
gene set. We created this set by including proband LGD genes that are neither annotated to 
neural/brain-related functions in Gene Ontology nor part of our training gold standard. Fisher’s 
exact test was then used to calculate significance. 

Evolutionary constraint of ASD-associated genes 

Evolutionary constraint estimates of genes were obtained from two different studies79,80, one 
providing a quantitative (RVIS) score for each gene, and the other providing a single set of 
1,003 constrained genes. The Wilcoxon rank-sum test was used to assess the difference 
between the RVIS scores for genes in our top-decile compared to the rest of the ranking, and 
the Fisher’s exact test was used to calculate the enrichment of the constrained gene set in our 
top decile. We also evaluated both sets using a rank-based permutation test that does not 
involve any rank cutoffs. For the RVIS score, a test statistic equal to the Spearman correlation 
coefficient between genes ranked by our method and by RVIS scores was calculated; a P value 
for this statistic was estimated by permuting the ASD candidate gene ranking a million times 
and calculating the fraction of times the permuted correlation was less than or equal to the 
observed one. For the constrained genes, a test statistic equal to the mean rank-based scores 
(si) of genes in the set was calculated; a P value for this statistic was then estimated by 
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permuting ASD gene ranks a million times and calculating the fraction of times the permuted 
statistic was greater than or equal to the observed one. 

 

Developmental expression of autism-associated genes in the brain 

Defining spatiotemporal expression signatures 

The spatiotemporal developmental gene-expression data for the human brain was obtained 
from Brainspan44. Raw data from this study were downloaded from NCBI GEO81 accession 
GSE25219. CEL files were background corrected, normalized, and summarized using RMA82 
based on a custom CDF83, and expression for each gene was averaged across replicates. 
Further analysis was restricted to 13 stages from early fetal (10-13 weeks post-conception) to 
late adulthood (≥ 60 years) that contained expression data for all 16 brain-regions. We first 
established a gene-expression signature for each of the 208 spatiotemporal windows 
(combination of 16 regions and 13 stages) that was specific to that window with respect to other 
stages as well as other regions. For example, a signature for the striatum (region) at the late 
midfetal stage, was calculated in three steps: 

1) For each gene i, two modified z-scores were calculated by comparing 𝑒!!" , the gene’s 
expression in that region (striatum) and stage (late-midfetal), to the distribution of its expression 
values across i) all regions at late-midfetal stage (to get 𝑧!

!"#$%&), and ii) all stages of striatum (to 
get 𝑧!

!"#$%). 

𝑧!
!"#$%& =

𝑒!!" −𝑚!
!"#$%&

1.486 ∗𝑀𝐴𝐷!
!"#$%& ;   𝑧!

!"#$% =
𝑒!!" −𝑚!

!"#$%

1.486 ∗𝑀𝐴𝐷!
!"#$% , 

where 𝑚!
!"#$%& and 𝑚!

!"#$%, respectively, are the median expression levels of gene i across all 

regions and all stages; 𝑀𝐴𝐷!
!"#$%&  and 𝑀𝐴𝐷!

!"#$%  are the corresponding median absolute 
deviations (MAD). Since median and MAD are stable measures of central tendency and 
variance of a distribution without being influenced by outliers, scaling using these measures aids 
in identifying expression values that are particularly high. 

(2) These two z-scores were then combined into a meta z-score 𝑧!!" that tends to be high when 
the expression of the gene deviates substantially from its nominal expression along both the 
spatial and temporal axes. 

𝑧!!" =
𝑧!
!"#$%& + 𝑧!

!"#$%

2
 

(3) Finally, the set of genes with 𝑧!!" ≥ 2 were used as the gene-expression signature (of late 
midfetal striatum, in this example). 

We employed this procedure to compute a signature for all 208 combinations of regions and 
stages. 
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Rank-based enrichment test of spatiotemporal signatures 

This test was very similar to the rank-based test detailed above. For each signature, a test 
statistic equal to the mean exponential rank-based autism-association scores (si; described 
above) of genes in that signature was calculated. Mean scores based on random signatures of 
the same size sampled from the union of all genes in all signatures were then used to set up an 
empirical distribution. A P value for the signature was calculated ultimately as the fraction of 
permuted mean scores that were equal to or greater than the observed mean score for the real 
signature. We carried out this test for all 208 region-stage combinations and corrected for 
multiple tests using the Benjamini-Hochberg correction84 to get Q values. 

 

Clustering the autism-associated brain network 

In order to identify autism-associated functional modules in the brain, we created a subset of the 
brain-specific functional network containing the top 2,500 autism-associated genes from our 
genome-wide ranking and all the edges between them. Then, we used an approach based on 
shared k-nearest-neighbors (SKNN) and the Louvain community-finding algorithm55 to cluster 
the network into distinct modules of tightly connected genes. Given a graph G with V 
nodes/genes and E edges, with each edge between genes i and j associated with a weight pij, 
this technique proceeds the following way: (1) calculate a new weight for the edge between 
each pair of nodes i and j that is equal to the number of k nearest neighbors (based on the 
original weights pij) shared by i and j; (2) choose the top 5% of the edges based on the new 
edge weights and apply a graph clustering algorithm. This approach has two key desirable 
characteristics: a) choosing top k instead of all edges deemphasizes high-degree ‘hub’ nodes 
and brings equal attention to highly specific edges between low-degree nodes; and b) 
emphasizing local network-structure by connecting nodes that share a number of local 
neighbors automatically links genes that are highly likely to be part of the same cluster. We 
used a k of 50 to obtain the shared-nearest-neighbor autism-associated brain network and used 
the Louvain algorithm to cluster this network into distinct modules. We confirmed that the node 
membership and cluster sizes are robust by testing a range of values for k from 10 to 100. To 
stabilize clustering across different runs of the Louvain algorithm, we ran the algorithm a 100 
times and calculated cluster co-membership for all pairs of genes that was equal to the fraction 
of times (out of 100) the pair was assigned to the same cluster. These co-membership scores 
were used to layout the network in Figure 4 (using Cytoscape85), which represents all clusters 
that contained at least 10 genes, defined by a co-membership score ≥ 0.9. We confirmed the 
statistical significance of this score using a permutation test, randomizing the k-nearest 
neighbors of each node in the network of top ASD-genes and redoing the clustering procedure 
(Figure S8). 

One-sided Fisher’s exact test was used to find GO biological processes86 enriched in each 
cluster. Benjamini-Hochberg correction was used to correct for multiple tests and GO terms with 
Q ≤ 0.1 were deemed significant. The entire table of enriched GO terms is provided in Table S6. 
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Prioritizing genes in autism-associated CNVs 

We selected the eight most statistically significant and frequent autism-associated CNVs15 and 
obtained the genes in the intervals from UCSC87. An expert independently annotated genes in 
each interval with genetic or functional evidence for association with autism from existing 
literature. Genetic evidence refers to direct genetic evidence implicating a gene in autism or a 
related disorder (e.g., schizophrenia, epilepsy). Functional evidence refers to the annotation of a 
gene to a function, process, or pathway involved in autism, but without direct genetic evidence. 

Identification of CNV-specific intermediate genes 

The goal here was to identify key genes and the related cellular functions that may be 
deregulated by each CNV by tracing a biomolecular path from the CNV to the molecular 
phenotype of autism. We first marked the most autism-associated genes in each CNV as those 
within the top 10% of our genome-wide autism-associated gene ranking. Then, we defined the 
19 E1 (high-confidence) genes as the core genes representing the molecular phenotype of 
autism. Taking advantage of the underlying brain-specific network, for each CNV, we calculated 
the betweenness centrality (BC) of each network gene as the fraction of shortest paths from the 
top-ranked CNV genes to the core autism genes that also pass through that gene. The brain 
network was pre-filtered to contain only around top 1% of its edges, and path length was 
calculated as the reciprocal of the functional linkage score. Genes with high BC are molecular 
mediators between the CNV and autism. We identified genes with high BC that were also 
specific to the given CNV (with T total genes and t top-ranked genes) by keeping the core 
autism genes constant and repeating the BC calculation for random set of t genes from random 
genomic intervals with T genes. Finally, a permutation-based P value was computed for each 
network gene as the fraction of times that gene’s BC with random intervals was equal to or 
greater than that with the real CNV (n = 100,000). Upon Benjamini-Hochberg correction for 
testing the BC of thousands of genes, those with Q ≤ 0.1 were identified as mediator genes 
specific to the given CNV. 

Text mining for autism-associated processes 

We queried all available PubMed abstracts from 2000 to May 2015 for (autism OR ASD OR 
autistic), and retrieved these autism-associated abstracts. GO biological processes terms were 
mapped to each abstract using simple text search, and a given term was declared as 
associated with autism if it was found in at least two abstracts. 

Functional impact of multiple CNVs 

The next goal was to use the CNV-specific mediator genes to determine cellular functions that 
are likely deregulated by multiple CNVs. For this, we used the Fisher’s exact test to find sets of 
genes annotated to autism-associated GO biological processes that overlapped significantly 
with the CNV-specific mediator gene set. Processes/pathways that were significantly associated 
(Q ≤ 0.05) with two or more CNVs, and annotated to at least two mediator genes were analyzed 
further and were summarized to general terms based on gene overlap, term description, and 
their relationships in the ontology. 
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Identification of MAZ targets 

Computationally predicted targets were generated by using FIMO88 to map the binding site of 
MAZ (obtained from HOCOMOCO74) to the 1,000bp upstream regions of all the genes in the 
genome. 2,446 genes with a match at Q ≤ 0.01 were selected as potential targets of MAZ. 
Enrichment analysis for MAZ targets against the autism-gene predictions was applied using the 
one-sided Fisher’s exact test against the top 2,500 ranked gene predictions (top decile). 

 

ASD webserver 

The web interface is implemented using the D3 library89 for visualization, which enables use on 
any modern web browser without plugin installation. 

Probability estimates for predicted autism-related genes 

We estimated priors for several biological pathways and gene sets known to be enriched for 
autism-associated genes by calculating the fraction of genes with de novo LGD mutations 
occurring in quad family probands over all de novo LGDs. These pathways and sets include 
CHD8 targets, chromatin remodeling genes, FMRP targets, MAPK pathway genes, post-
synaptic density genes, TOP1 targets and Wnt/beta-catenin pathway genes. 

To improve interpretability for our autism predictions, we calibrated the SVM scores using 
isotonic regression. Isotonic regression, or monotonic regression, minimizes the same condition 
as a least-squares regression while imposing a monotonicity constraint (i.e., if gene A has a 
higher rank in original predictions relative to gene B, then isotonic regression enforces that the 
fitted probability estimate for gene A will also be higher than that of gene B), and it has been 
previously shown to have more power when sufficient data is available90. The response variable 
(probability of a gene being autism-related) was estimated based on their enrichment among the 
SSC proband LGDs. To prevent overfitting in our probability estimation, we used 10-fold cross 
validation to find the “knots” for the regression results of each held-out fold. We fit an isotonic 
regression curve through all knots, with hermite spline interpolation between knots, and provide 
the resulting estimated probabilities on the web interface. 

Permutation-based P values and Q values for our genome-wide predictions 

In order to improve the interpretability of our genome-wide ranking, we calculated a 
permutation-based P value and a corresponding Q value for each gene (Table S3), and provide 
these in our ASD web-server. We permuted labels of gold standards and retrained the model 
1000 times. P values were calculated as the probability of the gene being predicted to be as 
extreme as it is (considering both ‘highly ASD-associated’ and ‘highly non-ASD associated’, n = 
1,000), and were corrected to Q values by the Benjamini-Hochberg method84. 

Webserver updates 

We will keep the ASD gene predictions on our web server updated for the community. As the 
set of annotated ASD candidate genes increases, we will retrain our model with the most up-to-
date ASD candidate gene collection. We have already retrained our model with the entire 
collection of known ASD genes up to Oct. 2015 (with the same gene evidence weighting 
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criteria), and those predictions are available at asd.princeton.edu/v2. We see that the new 
genome-wide gene ranking is largely consistent with the predictions used in this study, with a 
correlation of 0.93 in overall gene ranking and 83.3% of genes in the top decile matching the 
original predictions. 
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Figures 
 

 
Figure 1: Genome-wide prediction of autism-associated genes. Our ASD-gene predictions 
are based on a machine learning approach that (1) uses a gold-standard of known disease 
genes – those linked to autism with varying levels of evidence (E1-4) as positives, and other 
genes linked to non-mental-health diseases as negatives – in the context of a (2) human brain-
specific functional interaction network to (3) build an evidence-weighted network-based 
classifier capturing autism-specific gene interaction patterns, and (4) predict the probability of 
autism association of each gene across the genome. We demonstrate the accuracy and utility of 
our genome-wide complement of autism-associated genes by (5) validating these predictions 
with de novo autism-associated mutations from an independent sequencing study; elucidating 
the spatiotemporal developmental gene-expression patterns of top-ranked autism genes; laying 
out the landscape of autism-associated brain-specific functional modules (network clusters); and 
prioritizing candidate causal genes within large intervals of recurrent autism-associated copy-
number variants. 
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Figure 2: Evaluation of autism-gene predictions. (a) Plot of area under the ROC curve 
(AUC) of autism gene prediction with different versions of training gold-standards. Including 
lower confidence genes in an evidence-weighted framework helps in predicting autism genes, 
whereas replacing them with a random set of genes with matched expression, annotation, and 
gene length characteristics (rand34) decreases performance. The evidence-weighted classifier 
(purple) significantly outperforms all the other classifiers (Wilcoxon rank-sum test; P < 1e-14). 
(b) Rank-based enrichment test on mutation data from an independent sequencing study (SSC 
2014). The plot shows the z-score quantifying the enrichment of the three gene-sets of interest 
(labeled in the legend below) towards the top of our genome-wide ranking of genes (see 
Methods). The number of genes in the gene-sets is given in parenthesis below each bar. Our 
top-ranked genes are significantly enriched in gene targets of de novo likely-gene-disrupting 
(LGD; also known as loss-of-function) mutations observed in probands (autistic children; second 
bar). This enrichment is striking for targets of recurrent LGD mutations in probands (first bar), 
and diminishes for LGD-targets in unaffected siblings of the autistic probands (third bar). The P 
values recorded at top of each bar were calculated using a permutation test described in 
Methods in detail. (c-d) All evaluations presented here were carried out by dividing our genome-
wide predictions into deciles and using a one-sided binomial test to calculate the significance of 
a specific gene-set of interest among the first decile (top 10%) of the predictions. Each bar plot 
shows the fraction of genes in the gene-set (y-axis) that occur within each of the 10 deciles (x-
axis), with the first decile colored in red. The name of the gene-set is given on top of each plot 
along with the total number of genes in the gene-set and the P value from the binomial test in 
parenthesis just below. (c) Mutation data from the 2014 SSC study (used in b) evaluated within 
the top 10% of our predictions shows a trend – significant enrichment of proband LGD 
mutations (first and second plots) and non-enrichment of sibling LGD mutations (third plot) – 
that is consistent with those observed with rank-based test (shown in b). (d) Targets of major 
ASD-associated regulatory proteins: Experimentally determined gene targets of FMRP, CHD8 
and TOP1 are also significantly enriched in the top 10% of our predictions. (e) Members of 
major ASD-associated pathways/complexes: Similar significant enrichment was also observed 
for genes involved in Wnt signaling, MAPK signaling, and the postsynaptic density complex. 
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Figure 3: ASD-associated genetic changes in the spatiotemporal development of the 
brain. The heatmap shows the enrichment of spatiotemporal gene expression signatures 
towards the top of the genome-wide ranking of ASD genes. The 16 brain regions and 13 
developmental stages considered label the rows and columns, respectively. The regions are 
further marked on illustrations of the human brain at the top right. Each cell in the heatmap (row, 
column) corresponds to a spatiotemporal signature – a set of genes highly expressed 
specifically in that region (row) at that developmental stage (column). The intensity of the color 
in each cell (scale below) represents the log-transformed significance of ASD-association of that 
signature. A rank-based scoring followed by a permutation test was used to calculate P values, 
which were then converted to Q values to account for multiple hypothesis testing (see Methods). 
The heatmap shows a striking prenatal signal suggesting major effect of ASD-associated 
mutations on fetal brain development. 
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Figure 4: Autism-associated brain-specific functional modules. The network of brain-
specific functional interactions among the top 2,500 ASD-associated genes were clustered 
using a shared-nearest-neighbor-based community-finding algorithm (see Methods) to elucidate 
several modules of genes (left). Nine of the clusters that contained 10 or more genes, labeled 
C1 through C9, were tested for functional enrichment using genes annotated to Gene Ontology 
biological process terms. Representative processes/pathways enriched within each cluster are 
presented here alongside the cluster label. Since C6 and C7 shared a number of strong links 
across the clusters, they were merged before calculating functional enrichment. The enriched 
functions provide a landscape of cellular functions potentially dysregulated by ASD-associated 
mutations. 
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Figure 5: Prioritization of genes within eight recurrent ASD-associated CNVs. Each plot 
corresponds to one of the eight CNVs ordered based on their observed frequency in autistic 
cases15 (given above each plot). The plots show the genes in each CNV interval in their 
genomic order (y-axis) and each gene’s ASD-association rank in our genome-wide predictions 
(x-axis) from top (low) ranks on the left to bottom (high) ranks on the right. The points 
corresponding to the genes are also colored red and blue based on whether there exists 
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previously known (direct) genetic or (indirect) functional links between the genes and autism, 
independently curated by an ASD expert. The detailed ranking and evidence for CNV genes are 
in Table S7. The dashed lines are visual aids to read the gene names (in bold) of the colored 
point. Across the CNVs, genes with independent genetic evidence (red) and those with 
functional evidence (blue) tend to be ranked near the top of our genome-wide predictions 
(towards the left of each plot), compared to all the other genes that lack any evidence (grey). 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 9, 2016. ; https://doi.org/10.1101/057828doi: bioRxiv preprint 

https://doi.org/10.1101/057828
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

 

Figure 6: Convergence of cellular functions disrupted by multiple CNVs identified 
through key intermediate genes in the brain network. The network diagram above illustrates 
the intermediate genes linking the eight CNVs (black rectangles) to the molecular phenotype of 
ASD. The dotted grey lines represent high confidence functional links in the brain that mediate 
the linkage of top CNV genes’ to ASD genes; these linkages go through key intermediate genes 
(black circles, see Methods). Enrichment analysis groups the intermediate genes into a small 
number of autism related processes (illustrated as colored clouds). For visual clarity, only 
representative examples of processes associated with at least two CNVs are included.  The 
functions of these intermediate genes illustrate the hypothesis that multiple CNVs might disrupt 
a core group of ASD-related biological processes and pathways. 
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