

Biologically plausible learning in recurrent neural networks

reproduces neural dynamics observed during cognitive tasks

Thomas Miconi
The Neurosciences Institute
La Jolla, CA 92037, USA

miconi@nsi.edu

Abstract

Neural activity during cognitive tasks exhibits complex dynamics that flexibly

encode task-relevant variables. Recurrent neural networks operating in the

near-chaotic regime, which spontaneously generate rich dynamics, have been

proposed as a model of cortical computation during cognitive tasks. However,

existing methods for training these networks are either biologically implausible,

and/or require a continuous, real-time error signal to guide the learning process.

The lack of a biological learning method currently restricts the plausibility of

recurrent networks as models of cortical computation. Here we show that a

biologically plausible learning rule can train such recurrent networks, guided

solely by delayed, phasic rewards at the end of each trial. Networks operating

under this learning rule successfully learn nontrivial tasks requiring flexible

(context-dependent) associations, memory maintenance, nonlinear mixed

selectivities, and coordination among multiple outputs. Furthermore, applying this

method to learn various tasks from the experimental literature, we show that the

resulting networks replicate complex dynamics previously observed in animal

cortex, such as dynamic encoding of task features, switching from

stimulus-specific to response-specific representations, and selective integration of

sensory input streams. We conclude that recurrent neural networks offer a

plausible model of cortical dynamics during both learning and performance of

flexible behavior.

1

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

Introduction

Recent evidence suggests that neural representations are highly dynamic, encoding multiple

aspects of tasks, stimuli, and commands in the joint fluctuating activity of interconnected

populations of neurons, rather than in the stable activation of specific neurons ​(Meyers et al.

2008; Barak, Tsodyks, and Romo 2010; Stokes et al. 2013; Churchland et al. 2012; Raposo,

Kaufman, and Churchland 2014)​. Models based on recurrent neural networks (RNN), operating

in the near-chaotic regime, seem well-suited to capture similar dynamics ​(Jaeger 2001; Maass,

Natschläger, and Markram 2002; Buonomano and Maass 2009; Sussillo and Abbott 2009)​. For

this reason, such models have been used to investigate the mechanisms by which neural

populations solve various computational problems, including working memory ​(Barak et al.

2013; Rajan, Harvey, and Tank 2016)​, motor control ​(Sussillo et al. 2015; Laje and Buonomano

2013; Hennequin, Vogels, and Gerstner 2014)​, and perceptual decision-making ​(Mante et al.

2013) ​.

However, the methods commonly used to train these recurrent models are generally not

biologically plausible. The most common training methods are based on supervised learning, in

which a non-biological algorithm (usually a form of backpropagation or regression) minimizes

the difference between the network’s output and a target output signal ​(Pearlmutter 1995; Jaeger

2001; Sussillo and Abbott 2009; Song, Yang, and Wang 2016; Rajan, Harvey, and Tank 2016)​.

Besides the non-biological nature of these algorithms, the requirement for a constant supervisory

signal is in stark contrast with most behavioral tasks, in which the only source of information

about performance are time-sparse rewards that are usually delayed with regard to the actions

that caused them.

A more biologically plausible form of learning is reward-modulated Hebbian learning: during

ongoing activity, each synapse accumulates a ​potential ​ weight change according to classical

Hebbian learning, by multiplying pre- and post-synaptic activities at any time and accumulating

2

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/3DotEt/LTBga+dzOsM+qR80Y+jNvVq+zbYGQ
https://paperpile.com/c/3DotEt/LTBga+dzOsM+qR80Y+jNvVq+zbYGQ
https://paperpile.com/c/3DotEt/LTBga+dzOsM+qR80Y+jNvVq+zbYGQ
https://paperpile.com/c/3DotEt/MRKR8+3yMEE+8Hsvt+oVk8t
https://paperpile.com/c/3DotEt/MRKR8+3yMEE+8Hsvt+oVk8t
https://paperpile.com/c/3DotEt/qgUj7+vhWhb
https://paperpile.com/c/3DotEt/qgUj7+vhWhb
https://paperpile.com/c/3DotEt/PtFdr+5CqY0+85ioz
https://paperpile.com/c/3DotEt/PtFdr+5CqY0+85ioz
https://paperpile.com/c/3DotEt/mgW5Y
https://paperpile.com/c/3DotEt/mgW5Y
https://paperpile.com/c/3DotEt/20YOy+MRKR8+oVk8t+ZES25+vhWhb
https://paperpile.com/c/3DotEt/20YOy+MRKR8+oVk8t+ZES25+vhWhb
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

this product over time. These potential weight changes are then multiplied by a global reward

signal, which determines the ​actual​ weight changes. This method, inspired by the effect of

dopamine on synaptic plasticity, has been successfully demonstrated and analyzed in

feedforward or weakly connected spiking ​(Izhikevich 2007; Florian 2007; Frémaux, Sprekeler,

and Gerstner 2010)​ and firing-rate ​(Soltoggio and Steil 2013)​ networks. However, simple

reward-modulated Hebbian learning does not work for strongly-connected recurrent networks

that can generate complex trajectories of the type discussed here ​(Fiete, Fee, and Seung 2007)

(see also Appendix).

A method that successfully trains arbitrary recurrent networks is the so-called ​node-perturbation

method ​(Fiete and Seung 2006; Fiete, Fee, and Seung 2007) ​. This method consists in applying

small perturbations to neural activity, then calculating potential weight changes by multiplying

the “normal” (non-perturbative) inputs by the perturbations (rather than by post-synaptic output,

as in Hebbian learning). These potential weight changes are then multiplied by a reward signal to

provide the final weight changes. This method was successfully applied to feedforward networks

to model birdsong learning ​(Fiete, Fee, and Seung 2007)​ and our own previous results show that

it is also successful for chaotic recurrent neural networks (T. Miconi, arXiv:1507.08973

[q-bio.NC]). Interestingly, this method is largely similar to the well-known REINFORCE

algorithm, which is widely used in reinforcement learning ​(Williams 1992; Mnih et al. 2014;

Peters and Schaal 2008; Kober, Bagnell, and Peters 2013)​ (see in particular Eq. 11 in ​(Williams

1992) ​).

However, node perturbation is non-Hebbian (since it multiplies two types of inputs, rather than

pre- and post-synaptic activities) and requires information that is not local to the synapse

(namely, the perturbatory inputs, which must somehow be kept separate from the “normal”

inputs). Thus, it is not obvious how node-perturbation could be implemented in biological neural

networks. Legenstein and colleagues ​(Hoerzer, Legenstein, and Maass 2014; Legenstein et al.

2010) ​ showed that, under certain conditions, node-perturbation could be made more biologically

plausible by leveraging moment-to-moment fluctuations in post-synaptic activity: by keeping a

3

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/3DotEt/1BuyJ+L6Vpn+KsGIt
https://paperpile.com/c/3DotEt/1BuyJ+L6Vpn+KsGIt
https://paperpile.com/c/3DotEt/iL61a
https://paperpile.com/c/3DotEt/wwOO
https://paperpile.com/c/3DotEt/VyV1F+wwOO
https://paperpile.com/c/3DotEt/wwOO
https://paperpile.com/c/3DotEt/FRIx+xdvrP+G6ycs+ILIHO
https://paperpile.com/c/3DotEt/FRIx+xdvrP+G6ycs+ILIHO
https://paperpile.com/c/3DotEt/FRIx
https://paperpile.com/c/3DotEt/FRIx
https://paperpile.com/c/3DotEt/CtxJS+6G4D2
https://paperpile.com/c/3DotEt/CtxJS+6G4D2
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

running average of recent activity and subtracting it from the current instantaneous response at

any time, we obtain a “high-pass” filtered trace of post-synaptic activity, which can be used as a

proxy for the exploratory perturbations of post-synaptic activity (but see below). This can then

be multiplied by the pre-synaptic inputs, and the final accumulated product is then modulated by

a reward signal to recreate the node-perturbation method in a more biologically plausible,

Hebbian manner (i.e. as a product of pre-synaptic and post-synaptic activities rather than

between two input sources) ​(Legenstein et al. 2010)​. This method can successfully train chaotic

recurrent neural networks ​(Hoerzer, Legenstein, and Maass 2014)​. Unfortunately, this method

critically requires an instantaneous, real-time continuous reward signal to be provided at each

point in time. The continuous, real-time reward signal is necessary to allow the subtraction

method to extract task-relevant information and counter the effect of spurious deviations

introduced by the running-average subtraction process (see Appendix). This is in contrast with

most tasks (whether in nature or in the laboratory), which only provide sparse, delayed rewards

to guide the learning process.

In summary, to our knowledge, there is currently no biologically plausible learning algorithm

that can successfully train chaotic recurrent neural networks with realistic reward regimes. This

limitation may restrict the potential plausibility of recurrent neural networks as operational

models of actual cortical networks.

Here we introduce a novel reward-modulated Hebbian learning rule that can be used to train

recurrent networks for flexible behaviors, with reward occurring in a delayed, one-time fashion

after each trial, as in most animal training paradigms. This method is Hebbian and uses only

synapse-local information, without requiring instantaneous reward signals (see Methods). We

apply our method to several tasks that require flexible (context-dependent) decisions, memory

maintenance, and coordination among multiple outputs. By investigating the network’s

representation of task-relevant aspects over time, we find that trained networks exhibit complex

dynamics previously observed in recordings of animal frontal cortices, such as dynamic

encoding of task features ​(Meyers et al. 2008; Stokes et al. 2013; Jun et al. 2010)​, switching from

4

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/3DotEt/6G4D2
https://paperpile.com/c/3DotEt/CtxJS
https://paperpile.com/c/3DotEt/LTBga+qR80Y+atJXi
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

stimulus-specific to response-specific representations ​(Stokes et al. 2013)​, and selective

integration of sensory input streams ​(Mante et al. 2013)​. We conclude that recurrent networks

endowed with reward-modulated Hebbian learning offer a plausible model of cortical

computation and learning, capable of building networks that dynamically represent and analyze

stimuli and produce flexible responses in a way that is compatible with observed evidence in

behaving animals.

Results

Description of the learning rule

Here we provide an overview of the plasticity rule used in this paper. A full description is

provided in Methods. Furthermore, we provide an extensive discussion of the rule at a more

intuitive level in the Appendix.

Our model networks are fully-connected continuous-time recurrent neural networks operating in

the early chaotic regime, which allows them to autonomously generate rich dynamics while still

being amenable to learning ​(Sompolinsky, Crisanti, and Sommers 1988; Sussillo and Abbott

2009; Jaeger 2001; Maass, Natschläger, and Markram 2002)​. The activity of neuron ​i​ is

governed by the following equations:

(t) r (t)τ dt
dxi = − xi + ∑

N

j=1
Jj,i j + u (t)∑

M

k=1
Bk,i k

 [Equation 1]

(t) tanh(x (t))ri = i [Equation 2]

where x​i​ is the total excitation (or “potential”) of neuron i, r ​i​ is its actual response (or “firing

rate” / activity), J​j,i​ is the connection weight from neuron j to neuron i, u​k​(t) is the current value of

each of the M external inputs to the network, and B​k,i ​is the connection weight from external

5

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/3DotEt/qR80Y
https://paperpile.com/c/3DotEt/mgW5Y
https://paperpile.com/c/3DotEt/hg7Uz+oVk8t+MRKR8+3yMEE
https://paperpile.com/c/3DotEt/hg7Uz+oVk8t+MRKR8+3yMEE
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

input k to neuron i (τ is the relaxation time constant of neuron activation). One or more neurons

in the network are arbitrarily designated as the “output” neurons, and their responses at any given

time are used as the network’s response (these neurons are otherwise identical to all others). For

the simulations reported here, networks include 200 neurons (400 for the motor control task).

Synapses between neurons are modified according to a novel form of reward-modulated Hebbian

learning, which we now describe.

First, in order to produce exploratory variation in network responses across trials, each neuron in

the network occasionally receives a random perturbation Δ​i​(t)​ ​to its activation. During a trial, at

every time step, every synapse from neuron ​i​ to neuron ​j​ accumulates a ​potential​ Hebbian weight

change (also called eligibility trace ​(Izhikevich 2007)​) according to the following equation:

(t) (t) S(r (t) x (t) x)) ei,j = ei,j − 1 + i − 1 * (j − j [Equation 3]

Remember that ​r​ i​ represents the output of neuron ​i​ , and thus the current input at this synapse. ​x​ j

represents the activation of neuron ​j​ and ​x​ j​ represents a short-term running average of ​x​ j​ , and thus

x​ (​t​) ​- ​ x​ tracks the fast fluctuations of neuron output. Thus this rule is essentially Hebbian, based

on the product of inputs and output (fluctuations). Importantly, ​S​ is a monotonic, supralinear

function; in this paper we simply used the cubic function ​S​ (​x​) = ​x​ 3​, though the particular choice

of function is not crucial as long as it is supralinear (see Methods and Appendix). Note that the

eligibility trace for any synapse is accumulated over the course of a trial, with each new timestep

adding a small increment to the synapse’s eligibility trace / potential weight change.

At the end of each trial, a certain reward R is issued to the network, based on the network’s

performance for this trial as determined by the specific task. From this reward, the system

computes a ​reward prediction error ​ signal, as observed in physiological experiments, by

subtracting the expected reward for this trial ​R​ (generally a running average of previously

6

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/3DotEt/1BuyJ
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

received rewards; see Methods) from the actually received reward R. This reward-prediction

signal is used to modulate the eligibility trace, producing the actual weight change:

J η e (R) Δ i,j = i,j − R [Equation 4]

where η is a learning rate constant. Together, equations 3 and 4 fully determine the learning rule

described here. See Methods and Appendix for a complete description.

Task 1: Delayed nonmatch-to-sample task

7

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

Figure 1. Delayed nonmatch-to-sample task. Top: task description. The network is exposed to

two successive stimuli, with an intervening delay. The task is to produce output -1 if the two

stimuli were identical (AA or BB), or 1 if they were different (AB or BA); the output of the

network is simply the activity of one arbitrarily chosen “output” neuron, averaged over the last

200 ms of the trial. Bottom, left: time course of response error for each successive trial, as a

function of the trial number (dark curve: median over 20 runs; gray area: inter-quartile range).

The solid vertical line indicate the median number of trials needed to reach the criterion of

95% correct responses over 100 successive trials (843 trials); dotted vertical lines indicate the

inter-quartile range (692-1125 trials). Performance (i.e., magnitude of the response error)

continues to improve after reaching criterion and reaches a low, stable residual asymptote.

Bottom, right: Activities of 6 different neurons, including the output neuron (thick black line),

for two stimulus combinations, before training (left) and after training (right). Note that neural

traces remain highly dynamical even after training.

The first task considered here is a simple delayed nonmatch-to-sample problem (Figure 1). In

every trial, we present two brief successive inputs to the network, with an intervening delay.

Each input can take either of two values, labelled A and B respectively. The task is to determine

whether the two successive inputs are identical (AA or BB), in which case the network should

output -1; or different (AB or BA), in which case the network should output 1 (see Methods for a

detailed description). This simple task exhibits several interesting features. First, it is arguably

the simplest possible flexible decision task: on sensing the second stimulus, the network must

flexibly produce a different response depending on the identity of the first stimulus. Second,

because the intervening delay is much longer than the neural time constant, the network must

maintain some memory of the first stimulus before the second stimulus arises. Third, to solve

this task, some neurons in the network must necessarily possess some form of nonlinear mixed

selectivity (note that the problem is in essence a delayed exclusive-or problem), a hallmark of

neural activities in prefrontal cortices ​(Rigotti et al. 2013)​.

8

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/3DotEt/VejMm
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

The networks consistently learn to perform the task with high accuracy. Figure 1 shows the time

course of the median error over 20 training runs, each starting with a different randomly

initialized network. Shaded area indicates 1st and 3rd quartile over the 20 runs. To define a

measure of successful performance, we set a criterion of 95% “correct” responses (i.e., correct

sign of the output cell activity) over 100 successive trials (​p​ <10​-20​ under random choice, binomial

test). The median time to criterion across 20 runs is 843 trials (inter-quartile range: 692-1125).

Response error reliably converges towards a very low residual value.

How does the network represent and maintain traces of incoming stimuli? One possibility is that

certain neurons encode stimulus identity by maintaining a stable “register” value over time, such

that the firing rate of certain cells directly specify stimulus identity in a relatively

time-independent manner. By contrast, physiological studies suggest that neural coding during a

working memory task is highly dynamic, with stimulus identity being represented by widely

fluctuating cell activations, in such a way that the tuning of individual neurons significantly

changes over the course of a trial ​(Meyers et al. 2008; Barak, Tsodyks, and Romo 2010; Stokes

et al. 2013) ​.

To analyze the encoding and maintenance of stimulus identity over time in the network, we used

a cross-temporal classification approach ​(Meyers et al. 2008; Stokes et al. 2013; Dehaene and

King 2016) ​. We trained a maximum-correlation classifier to decode various task-relevant

features (identity of 1st and 2nd stimulus, and final response), based on whole-population

activity at any given time, and then used these time-specific classifiers to try and extract the

same task-relevant features at all possible points in time. This method can detect not only

whether the network encodes a certain task-relevant variable, but also whether the representation

of this variable changes over time (see Methods).

9

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/3DotEt/LTBga+dzOsM+qR80Y
https://paperpile.com/c/3DotEt/LTBga+dzOsM+qR80Y
https://paperpile.com/c/3DotEt/LTBga+qR80Y+Fvh3g
https://paperpile.com/c/3DotEt/LTBga+qR80Y+Fvh3g
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

Figure 2. Cross-temporal classification performance reveals dynamic coding. Cross-temporal

classification of 1st stimulus identity (left panel), 2nd stimulus identity (middle panel) and

network response (right panel). Row i and column j of each matrix indicates the accuracy of a

classifier, trained on population activity data at time i, in guessing a specific task feature using

population activity data at time j (training and decoding data are always separate). While the

network reliably encodes information about stimulus identity right until the onset of the

response period (as shown by high accuracy values along the diagonal in left and middle

panel), this information is stored with a highly dynamic encoding (as shown by low

cross-classification accuracy across successive periods, i.e., “bottlenecks” with high accuracy

on the diagonal but low accuracy away from the diagonal). Note that in both left and middle

panel, stimulus identity information decreases greatly at the onset of the response period,

reflecting a shift to a from stimulus-specific to response-specific encoding (see also Figure 3).

The results in Figure 2 suggest highly dynamic representation of stimuli by the network. For

example, the identity of the first stimulus can be successfully decoded during both first and

second stimulus presentation, as well as during the intervening delay, as shown by high

classification accuracy values on the diagonal during this entire period (Figure 2, left panel).

However, the cross-temporal classification performance between these two periods, as seen on

the off-diagonal areas (for example, in the areas at 0-200ms on one axis and 400-600 on the

other, corresponding to training the classifier based on data from one stimulus presentation and

10

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

testing it on data from the other stimulus presentation) is essentially at chance level (accuracy ~

.5), or even below chance (dark patches). This suggests that while the network reliably encodes

information about 1st-stimulus identity across the first 800ms of the trial, the way in which this

identity is represented changes widely between successive periods within the trial. Similarly,

2nd-stimulus identity is maintained from its onset until the beginning of the response period, but

in a dynamical manner (low off-diagonal, cross-temporal accuracy between the 400-600ms

period and the 600-800ms period, in comparison to the high diagonal accuracy over the entire

400-800ms period).

Another feature of these plots is that the accuracy of stimulus identity decoding strongly

decreases over the course of the “response” period (low values along the diagonal for the

800-1000ms in 1st and 2nd panel of Figure 2). This suggests that the network largely stops

maintaining information about the specific identity of previous stimuli, and instead encodes

solely the actual response, as shown by the very strong classification accuracy in the upper-right

portion of the third panel.

Figure 3. Multi-dimensional scaling plots of population activity reflect shifting encodings of

task-relevant information. Population response vectors at various points in time (color-coded

11

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

by stimulus combination) are projected in two dimensions while preserving distances between

data points as much as possible, using multi-dimensional scaling. At the end of the first

stimulus presentation (200ms), population states are firmly separated by first stimulus identity,

as expected. After second stimulus presentation (600ms), all four possible stimulus

combinations lead to clearly separated population activity states. However, population states

corresponding to different responses start to cluster together at the onset of the response period

(800ms). Late in the response period (1000ms), population trajectories corresponding to the

same response (AA and BB, or BA and AB) have largely merged together, reflecting a shift

from stimulus-specific to response-specific representation and a successful “routing” of

individual stimulus-specific states to the adequate response-specific state.

To test this interpretation, following ​(Stokes et al. 2013)​, we produce Multi-dimensional scaling

(MDS) plots of population activity at different time points and for different stimulus conditions

(Figure 3). MDS attempts to find a two-dimensional projection such that the distance between

any two data points is as similar as possible to their actual distance in the full-dimensional space:

nearby (distant) population states should thus produce nearby (distant) points on the MDS plot.

Early in the trial, all possible stimulus identity combinations generate different, consistent

trajectories, indicating stimulus-dependent encoding. By the late response period, however

(1000ms), the trajectories have essentially merged into two clusters, corresponding to the

network response (“same” or “different”) and largely erasing any distinction based on specific

identity of either first or second stimulus. Thus, during the response period, the network flexibly

moves from a stimulus-specific representation to a response-specific representation: the

stimulus-specific response is flexibly routed to the appropriate, context-dependent response state,

as previously observed in cortical activity during a flexible association task ​(Stokes et al. 2013)​.

Task 2: Flexible selective integration of sensory inputs

12

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/3DotEt/qR80Y
https://paperpile.com/c/3DotEt/qR80Y
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

An important aspect of cognitive control is the ability to attend selectively to specific portions of

the sensory input, while ignoring the rest, in a flexible manner. Recently Mante, Sussillo and

colleagues have studied the neural basis of this ability in macaque monkey prefrontal cortex

(Mante et al. 2013)​. Monkeys were trained to report either the dominant color or the dominant

motion direction of randomly-moving colored dots. Thus, the same stimulus could entail

different appropriate responses depending on current context (i.e. which modality - color or

motion - was relevant for this trial). Furthermore, due to the noisy stimulus, the task required

selective temporal integration of the relevant sensory input. In addition to neural recordings,

Mante and colleagues also trained a recurrent neural network to perform the same task, using

supervised learning based on Hessian-free optimization. By analyzing the trained network, they

identified mechanisms for selective integration of flexibly-specified inputs in a single network

(Mante et al. 2013)​. This task was also used as an example application by Song and colleagues

for their recurrent network training framework ​(Song, Yang, and Wang 2016)​.

13

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/3DotEt/mgW5Y
https://paperpile.com/c/3DotEt/mgW5Y
https://paperpile.com/c/3DotEt/ZES25
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

Figure 4. Selective integration task. Top: task description. The network receives two noisy

inputs, simulating sensory information coming from two different modalities, as well as two

“context” inputs to indicate which of the two sensory inputs must be attended. The task is to

produce output 1 if the cued input has a positive mean, and -1 if the cued input has negative

mean; this task requires both selective attention and temporal integration of the attended input.

Bottom: Psychometric curves of network responses. Top-left panel: average response when

context requires attending to modality 1, sorted by the bias of modality 1 inputs. The network

response correctly tracks the overall bias of modality 1 inputs. Bottom-left panel: same data,

but sorted by modality 2 bias. Network response is mostly unaffected by modality 2 bias, as

expected since the network is required to attend to modality 1 only. Right panels: network

responses when context requires attending to modality 2. Again, the network correctly

identifies the direction of the relevant modality while mostly ignoring the irrelevant modality.

14

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

We trained a network to perform the same task, using our proposed plasticity rule (see Figure 4).

Our settings are deliberately similar to those described by Mante, Sussillo and colleagues. The

network has two “sensory” inputs (representing the two stimulus modalities of motion and

color), implemented as random (Gaussian) time series, with a randomly chosen mean for each

trial; the mean of each time-series thus represent the “value” of the corresponding modality for

this trial. In addition, two “context” inputs specify which modality is relevant for each trial. The

network must produce output 1 if the context-indicated sensory input has positive mean, or -1 if

it has negative mean (see Methods for a detailed description).

Figure 4 shows the psychometric curves of a fully-trained network, that is, the mean response as

a function of stimulus value. For either modality, we show separate psychometric curves for

when this modality was the relevant one and when it was irrelevant. When trials are sorted

according to the value of the relevant modality, responses form a steep sigmoid curve with a

relatively sharp transition between -1 and +1 centered roughly at 0. By contrast, when trials are

sorted according to the value of the irrelevant modality, responses are evenly distributed across

the entire range. Thus, the network accurately responds to the relevant signal, while largely

ignoring the irrelevant one in each context (Compare to Figure Extended Data 2 in ​(Mante et al.

2013) ​). This indicates that the network has learned not only to perform temporal integration of an

ambiguous, stochastic input, but also to flexibly “attend” to different input streams depending on

context.

15

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/3DotEt/mgW5Y
https://paperpile.com/c/3DotEt/mgW5Y
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

Figure 5. Orthogonal decoding of population activities. Population responses of trials having

the same context, the same final choice and the same modality 1 bias (from -0.25 to 0.25) are

averaged at each point in time, resulting in different trajectories (one per modality bias value),

and projected over dimensions indicating how much the network encodes modality 1 value,

modality 2 value, and final choice (the latter always on the x axis). Only correct trials are used

(thus top-left and bottom-right panels only have 10 trajectories). The trajectories reveal that

the network encodes both the relevant and the irrelevant modality, though only the relevant

one is linked to final choice. See text for details.

How is information represented in the network over time? We use Mante & Sussillo’s orthogonal

decoding procedure, which seeks to extract independent measures of how various task features

(stimulus values, context, decision) are encoded in the network (see Methods). Briefly, this

16

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

method consists in using multiple linear regression measure how much certain task-relevant

features are being ​independently​ represented by the network at any time (see Methods for a

detailed description). The results are shown in Figure 5 (compare to Figures 2, 5 in ​(Mante et al.

2013) ​). These trajectories plot the evolution of network information over time, for various

combinations of context and task feature. Each trajectory represents the average population

activity, at successive points in time, of all (correct) trials that have the same mean value for a

certain modality and resulted in the same final choice; we project these averaged population

trajectories along the orthogonal feature dimensions extracted by orthogonal decoding, and plot

the resulting trajectories in feature dimension subspaces (‘final choice’ dimension is always used

as the horizontal axis, while the vertical axis may be either of the two sensory modality

dimensions).

As observed in cortical recordings ​(Mante et al. 2013)​, these trajectories reveal that ​both​ the

relevant and the irrelevant modality are actually represented in the network: the trajectories for

varying value of either modality form an ordered progression in the corresponding “modality”

dimension (y-axis), even when that modality is irrelevant (bottom-left and top-right panels in

Figure 5); however, only the relevant modality correlates with representation of final choice

(compare panels where trajectories are separated by value of the relevant vs. irrelevant

modality), in accordance with physiological observations ​(Mante et al. 2013)​. This confirms that

the network has learnt to selectively integrate the context-indicated variable while discarding the

irrelevant one for each trial.

Task 3: Controlling a musculoskeletal model of the human arm

In both of the previous tasks, the network output was a single response channel. However,

flexible behavior often requires coordinating multiple outputs, especially during movement. To

test whether our plasticity rule can produce coordinated multiplexed responses, we trained a

network to control a biomechanical model of the human arm. The model is a custom

17

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/3DotEt/mgW5Y
https://paperpile.com/c/3DotEt/mgW5Y
https://paperpile.com/c/3DotEt/mgW5Y
https://paperpile.com/c/3DotEt/mgW5Y
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

modification of the one described in ​(Saul et al. 2015)​ (itself an extension of ​(Holzbaur, Murray,

and Delp 2005)​) and uses the Thelen muscle model ​(Thelen 2003)​. The model implements the

human upper skeleton, with 4 degrees of freedom (3 at the shoulder, 1 at the elbow), actuated by

16 muscles attached to the shoulder, chest, and upper and lower arm bones. Each of the 16

muscles is controlled by a specific network output cell. The task is to reach towards one of two

spherical targets, located in front of the body on either side of the sagittal plane. The appropriate

target ball for each trial is indicated by two input channels, set either to 1 and 0 (left-side target)

or to 0 and 1 (right-side target) respectively for the entire duration of the trial (700 ms). No other

inputs are provided to the system. The error at the end of each trial is measured by the absolute

distance between the tip of the hand and the center of the target ball, plus a small penalty for total

muscle activation over the entire trial. Note that while the target balls are symmetrically arranged

with regard to the body, they are not symmetrical with regard to the right arm (which is the one

we model): the right-side ball is closer than the left-side one, and thus reaching either target

requires qualitatively different movements.

18

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/3DotEt/8iDFH
https://paperpile.com/c/3DotEt/LXRxs
https://paperpile.com/c/3DotEt/LXRxs
https://paperpile.com/c/3DotEt/bqaRE
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

Figure 6. Controlling a biophysical model of the human arm. A: a model of the human upper

skeleton with 4 degrees of freedom (shoulder and elbow joints), actuated by 16 muscles at the

shoulder, chest and arm (colored strings: blue indicates low activation, red indicates high

activation). The task is to reach either of two target balls (blue or red), depending on a context

input. B: During training, the error (measured by the distance between tip of hand and target

ball at the end of each trial) improves immediately and reaches a low residual plateau after

about 3000 trials. C: Projection of network responses along the first three principal

19

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

components of network activity, both before and after training (blue: left-target, red:

right-target, dotted lines: untrained network, solid lines: trained network). D: frame-by-frame

illustrations of a right-target trial (top row) and a left-target trial (bottom row), after training.

Results are shown in Figure 6. Initially, as expected, the untrained network performs random,

aimless movements, resulting in high initial error (Figure 6B). Performance improves almost

from the start of the training process, reaching a low residual error after about 3000 trials. To

visualize the impact of training on the dynamics of population activity, we project the population

activity over its first three principal components at successive points in time over the course of

each trial, using 16 trials for either target context, both before and after training (i.e., 64 trials in

total). The projection shows that training considerably alters network trajectories (Figure 6C).

The fully trained network correctly reaches the adequate target according to context (Figure 6D).

Discussion

This paper makes three contributions:

1- We introduce a biologically plausible learning algorithm that can train a recurrent neural

network to learn flexible (input-specified) tasks, using only time-sparse, delayed rewards and

synapse-local information to guide learning.

2- We show that this rule can train network for relatively complex tasks, requiring memory

maintenance, selective attention, and coordination of multiple outputs.

3- We show that the trained networks exhibit features of neural activity observed in primate

higher cortex during similar tasks. In particular, we demonstrate highly dynamic population-wide

encoding of task-relevant information, as observed in neural recordings ​(Meyers et al. 2008;

Stokes et al. 2013; Barak, Tsodyks, and Romo 2010)​; and we show that selective integration of

sensory inputs occurs as described in both observational and modelling studies of primate

prefrontal cortex during a similar selective attention task ​(Mante et al. 2013)​. In our view, the

fact that these features of cortical activity arise spontaneously in networks trained with a

20

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/3DotEt/LTBga+qR80Y+dzOsM
https://paperpile.com/c/3DotEt/LTBga+qR80Y+dzOsM
https://paperpile.com/c/3DotEt/mgW5Y
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

biologically plausible rule (as opposed to training the network to directly reproduce observed

neural activity traces) increases the plausibility of recurrent neural networks as a model of

cortical computation, during both performance and learning of cognitive tasks.

Our proposed plasticity rule implements reward-modulated Hebbian learning between inputs,

outputs, and rewards, with the crucial introduction of a supralinear amplification applied to the

Hebbian plasticity increments (see Methods). In other words, we posit that plasticity is

dominated by large correlations of inputs and outputs, while smaller ones are relatively ignored.

This hypothesis of non-linear effects in Hebbian plasticity allows our rule to support robust

learning in highly dynamic networks, without requiring non-Hebbian plasticity between

segregated driving and perturbatory inputs ​(Fiete, Fee, and Seung 2007)​, or a continuous,

real-time reward signal ​(Legenstein et al. 2010; Hoerzer, Legenstein, and Maass 2014)​ (see

Methods and Appendix). We note that this suggestion is similar to the independent proposal of

so-called thresholded Hebbian rules ​(Soltoggio and Steil 2013)​, in which plasticity is only

triggered if the Hebbian product reaches a certain threshold.

The flexible, dynamic coding observed in prefrontal activity has led to suggestions that cortex

implements “silent” memory traces by using short-term synaptic plasticity ​(Barak, Tsodyks, and

Romo 2010; Stokes 2015)​. Short-term synaptic plasticity clearly plays an important role in

neural responses, and may well play an important role in maintaining a “hidden internal state” of

the network ​(Buonomano and Maass 2009)​. However, our network does not implement

short-term synaptic plasticity; no weight modification occurs during the course of a trial (all

learning occurs between trials), and all the decoding results reported above were obtained with

frozen synaptic weights. Our results suggest that the highly dynamic activities spontaneously

produced by near-chaotic recurrent networks can be harnessed to produce the dynamic encodings

observed in experiments, using only sparse, delayed rewards and biologically plausible plasticity

rules. Thus, while short-term synaptic plasticity clearly affects neural responses, it may not be

required to explain the highly dynamic nature of working-memory encodings.

21

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/3DotEt/wwOO
https://paperpile.com/c/3DotEt/6G4D2+CtxJS
https://paperpile.com/c/3DotEt/iL61a
https://paperpile.com/c/3DotEt/dzOsM+REofr
https://paperpile.com/c/3DotEt/dzOsM+REofr
https://paperpile.com/c/3DotEt/8Hsvt
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

It is unlikely that cortical connectivity should be drastically and finely remodeled through a long

training process for any new task. For example, while monkeys require extensive training to

perform decision tasks, human subjects can quickly perform new tasks simply by verbal

instruction. Rather, it is more likely that the process of slow, reward-modulated synaptic

modification in cortical circuitry depicted here reflects the learning of functional networks

capable of implementing a certain ​type​ of task (or cognitive ability), which must then be

activated and parameterized for each instance of the task. The latter process of flexible task

specification is likely to involve not just other cortical areas, but also the basal ganglia and

dopamine system. Elucidating the interactions between cortical, limbic, and dopaminergic

structures is an important future task for the study of flexible behavior and its neural

implementation.

Methods

Model description

Here we provide a full description of our model and proposed plasticity rule, with an emphasis

on implementation details. In the Appendix, we provide an extended discussion at a more

intuitive level. Note that the source code for all simulations reported here is available online at

http://github.com/ThomasMiconi/BiologicallyPlausibleLearningRNN.

As mentioned above, our model is a fully-connected continuous-time recurrent neural network of

N neurons, governed by the classical RNN equations ​(Sompolinsky, Crisanti, and Sommers

1988; Sussillo and Abbott 2009; Jaeger 2001; Maass, Natschläger, and Markram 2002)​:

(t) r (t)τ dt
dxi = − xi + ∑

N

j=1
Jj,i j + u (t)∑

M

k=1
Bk,i k

22

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/3DotEt/hg7Uz+oVk8t+MRKR8+3yMEE
https://paperpile.com/c/3DotEt/hg7Uz+oVk8t+MRKR8+3yMEE
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

(t) tanh(x (t))ri = i

where x​i​ is the excitation (or “potential”) of neuron i, r ​i​ is its response (or “firing rate” / activity),

J ​j,i​ is the connection weight from neuron j to neuron i, u​k​(t) is the current value of each of the M

external inputs to the network, and B​k,i ​is the connection weight from external input k to neuron i

(τ is the relaxation time constant of neuron activation). In addition, four arbitrarily chosen

neurons have a constant activation x=1 and thus provide a bias input to other neurons. There is

no separate feedback or output network. Instead, one or more neurons in the network are

arbitrarily designated as the “output” neurons, and their responses at any given time are used as

the network’s response (these neurons are otherwise identical to all others). J is initialized with

weights taken from a normal distribution with mean 0 and variance g​2​/N, while the input weights

B​k,i​ are fixed and taken from a uniform distribution over the [-1,1] interval. Activations x ​i​ are

initialized at the start of every trial with uniform noise in the [-0.1, 0.1] range. For the

simulations reported here, N=200 (400 for the motor control task), τ=30ms, and g=1.5. Note that

the latter value places the networks in the early chaotic regime, where the long-term behavior

generally remains non-periodic ​(Sompolinsky, Crisanti, and Sommers 1988)​.

Synapses between neurons are modified according to a novel form of reward-modulated Hebbian

learning, as described below. First, in order to produce exploratory variation in network

responses across trials, each neuron in the network occasionally receives a random perturbation

Δ ​i​(t)​ ​to its activation; these perturbations are not segregated from “normal” inputs (in contrast to

(Fiete and Seung 2006; Fiete, Fee, and Seung 2007)​). Note that Δ​i​(t) might also represent random

noise, or a “teaching” signal from a different area. In this paper, Δ​i​(t) is taken from a uniform

distribution within the [-.5, .5] range, occurring randomly and independently for each neuron

with a mean rate of 3Hz.

During a trial, at every time step, every synapse from neuron ​i​ to neuron ​j​ accumulates a

potential​ Hebbian weight change (also called eligibility trace ​(Izhikevich 2007)​) according to the

following equation:

23

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/3DotEt/hg7Uz
https://paperpile.com/c/3DotEt/VyV1F+wwOO
https://paperpile.com/c/3DotEt/1BuyJ
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

(t) (t) S(r (t) x (t) x)) ei,j = ei,j − 1 + i − 1 * (j − j [Equation 3]

Remember that ​r​ i​ represents the output of neuron ​i​ , and thus the current input at this synapse. ​x​ j

represents the activation of neuron ​j​ and ​x​ j​ represents a short-term running average of ​x​ j​ , and thus

x​ (​t​) ​- ​ x​ tracks the fast fluctuations of neuron output. Thus this rule is essentially Hebbian, based

on the product of inputs and output (fluctuations). Crucially, ​S​ is a monotonic, supralinear

function of its inputs; in other words, we posit that the plasticity mechanism is dominated by

large increments, and tends to suppress smaller ones. The particular choice of ​S ​ is not critical, as

long as it is supralinear. In this paper we simply used the cubic function ​S​ (​x​) = ​x​ 3​.

Sign-preserving squaring ​S​ (​x​) = ​x​ | ​x​ | also gives satisfactory results; however, simply using the

identity function fails to produce learning. The supralinear amplification of plasticity events

allows our learning rule to successfully learn from instantaneous deviations of activity, using

only sparse, delayed rewards, without requiring a continuous, real-time reward signal

(Legenstein et al. 2010; Hoerzer, Legenstein, and Maass 2014)​; see Discussion and Appendix.

Note that the eligibility trace for any synapse is accumulated over the course of a trial, with each

new timestep adding a small increment to the synapse’s eligibility trace / potential weight

change.

At the end of each trial, a certain reward R is issued to the network, based on the network’s

performance for this trial as determined by the specific task. From this reward, the system

computes a ​reward prediction error ​ signal, as observed in physiological experiments, by

subtracting the expected reward for this trial ​R​ (see below for computation of ​R​) from the

actually received reward R. This reward-prediction signal is used to modulate the eligibility trace

into an actual weight change:

J η e (R) Δ i,j = i,j − R [Equation 4]

where η is a learning rate constant, set to 0.5 for all simulations described here.

24

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/3DotEt/6G4D2+CtxJS
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

To compute the reward prediction error signal (R-​R​), we need to estimate the expected reward ​R​.

Following ​(Frémaux, Sprekeler, and Gerstner 2010) ​, we simply maintain a running average of

recent rewards for trials of the same type (where trial type is determined by the combination of

inputs). As ​(Frémaux, Sprekeler, and Gerstner 2010)​ pointed out, it is important that separate

traces should be maintained for each trial type, so as to provide an accurate estimation of the

expected reward ​R​ for each trial. Thus, after the ​n​ -th trial of a given type, ​R​ is updated as

follows:

(n) α R(n) (1) R(n)R = trace − 1 + − αtrace [Equation 5]

Where R(n) is the reward for this trial, and ​R​(n-1) was the expected reward after the previous

trial of the same type. In all simulations, α​trace​ = 0.33.

To stabilize learning, we clip the weight modifications for each trial to have a maximum absolute

value of 10​-4 ​(across experiments, roughly 10% of all potential weight modifications exceed this

value and are clipped).

Delayed nonmatch-to-sample task

The first task considered here is a simple delayed nonmatch-to-sample problem (Figure 1). In

every trial, we present two brief successive inputs to the network, with an intervening delay.

Each input can take either of two values, labelled A and B respectively. The task is to determine

whether the two successive inputs are identical (AA or BB), in which case the network should

output -1; or different (AB or BA), in which case the network should output 1. We specify the

input stimuli by using two different input channels u1 and u2; the identity of the input stimulus is

determined by which channel is activated (i.e., for stimulus A, u1=1 and u2=0; for stimulus B,

u1=0 and u2=1; remember that each input channel u​k​ is transmitted to the network by its own

independent set of weights - see Methods). In every trial, the first stimulus is presented for 200

25

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/3DotEt/KsGIt
https://paperpile.com/c/3DotEt/KsGIt
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

ms, then after a 200 ms delay the second stimulus is presented for 200 ms. Outside of input

presentation periods, both input channels are set to 0. The trial goes on for an additional 400ms,

thus each trial is 1000ms long. The network’s overall response is determined by the activity of

the arbitrarily chosen output neuron over the last 200 ms of the trial (the so-called “response”

period). The overall error for this trial is the average ​absolute​ difference between the network’s

output (that is, the activity of the output neuron) and the target response (1 or -1 depending on

presented stimuli), over these last 200ms.

For details on how the network activity was analyzed for Figures 2 and 3, see below.

Selective integration of context-cued sensory inputs

This task was introduced by Mante and colleagues ​(Mante et al. 2013)​. In this study, monkeys

looked at randomly-moving colored dots, in which both the value and coherence of motion

direction and dot color varied from trial to trial. Monkeys had to report the dominant motion

direction, or the dominant color, according to current task conditions; thus, the same stimulus

could entail different appropriate responses depending on current context. Furthermore, due to

the noisy stimulus, the task required temporal integration of sensory input. Importantly, the

authors showed that prefrontal neurons registered inputs from both the relevant and the irrelevant

modality; however, inputs from the irrelevant modality had no long-term impact on neural

activities, while inputs from the relevant modality were selectively integrated over time. Thus,

only information from the relevant modality contributed to the final decision.

Our settings are deliberately similar to those described by Mante, Sussillo and colleagues in their

neural network implementation of the task, and Song and colleagues in their own implementation

(Song, Yang, and Wang 2016)​. The network has two “sensory” inputs (representing the two

stimulus modalities of motion and color) and two “context” inputs (which specify which of the

two modalities must be attended to). The sensory inputs are noisy time-series, centered on a

specific mean which indicates the “value” of this input for this trial. More precisely, each of the

26

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/3DotEt/mgW5Y
https://paperpile.com/c/3DotEt/ZES25
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

two sensory inputs is sampled at each time step from a Gaussian variable with variance 1 and a

mean, or bias, randomly set at either -0.5 or 0.5 for each trial (this is for the learning phase; for

the testing phase used to generate the psychometric curves in Figure 4, the bias is varied in

increments of 0.1 from -0.5 to 0.5, inclusive). The mean/bias of the Gaussian (positive or

negative) represents the “direction” or “value” of the corresponding sensory input (left vs. right,

or red vs. green). The context inputs are set to 1 and 0, or 0 and 1, to indicate the relevant

modality for this trial. The goal of the network is to determine whether the sensory input in the

relevant modality has positive or negative mean.

Sensory inputs are presented for the first 500ms of the trial, followed by a 200ms response

period during which all sensory inputs are set to 0. The expected response of the network is 1 if

the relevant sensory input has positive mean, and -1 otherwise; thus the same sensory input can

entail different appropriate responses depending on the context. As for the previous task, the

network’s response for a trial is the firing rate of the arbitrarily chosen output cell, and the error

for a trial is the average absolute difference between the firing rate of this output cell and the

appropriate response for this trial (either -1 or 1) over the 200ms response period.

For details of network analysis (Figure 5), see below.

Analysis of network activity

1- Decoding of network information in a delayed nonmatch-to-sample task

In the delayed nonmatch-to-sample task, we used a cross-temporal classification analysis

(Meyers et al. 2008; Stokes et al. 2013)​ to investigate how fully trained networks encode

information over time (Figure 2). The interpretation of these cross-temporal decoding accuracy

matrices is that they tell us not only whether the network encodes a certain task-relevant variable,

but also whether it uses similar representations to encode this variable at different points in time.

If we train one such classifier using data at time ​t ​ in some trials, and then use it to decode

27

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/3DotEt/LTBga+qR80Y
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

population activity from data at the same time ​t​ in other trials, then decoding accuracy measures

how strongly the network encodes the feature at that time point ​t​ . However, when the decoder is

trained on data at time​ t​ learn​ and then applied to population activity data at time ​t​ decode​ , the

resulting accuracy measures the stability in the network’s “neural code” for this feature across

both time points, i.e., how similarly the decoded feature is represented by the network across

these time points. If representations are similar across both time points (that is, if the network use

similar patterns to represent each possible value of the feature across both time points), then

classifiers successfully trained with population activities at time​ t​ learn​ should also produce

accurate decoding of population activities at time ​t​ decode​ . By contrast, if the network uses different

representations/encoding of task features at these two time points, cross-temporal accuracy

should be poor; this should be represented as “bottlenecks” of high accuracy on the

cross-temporal decoding plots, whereby information is high along the diagonal (i.e. the feature is

indeed encoded by the network at that given time), but away-from-diagonal (cross-temporal)

decoding accuracy is low. This is precisely what we observe in Figure 2.

We follow the maximal-correlation classifier approach described in ​(Meyers et al. 2008)​ as

closely as possible. Briefly, we want to measure how well a certain task-relevant feature (identity

of 1st presented stimulus, or identity of 2nd presented stimulus, or final response) can be

predicted by observing network activity at time t​1​, using a classifier trained on network activity

at time t​2​. First, we sample the activation of each neuron, every 10 ms, for each trial. This data is

stored in a matrix of 100 rows and 200 columns, indicating the activities (firing rates) of all 200

neurons at each of the 100 sampling times. We first generate 80 trials (20 per possible condition,

where “condition” is defined as one of the 4 possible stimulus combination: AA, AB, BA or BB)

with a trained network. The time course of neural activity will differ somewhat between

successive trials, even for identical conditions, due to noise. Then we iterate the following

procedure. For each of all 4 possible conditions, we randomly choose half the trials as “training”

trials, and the other half as “testing” or “decoding” trials. The training trials corresponding to the

same category that we are trying to decode (for example, all stimuli having the same 1st

presented stimulus) are averaged together, pointwise, for each neuron and each time point, giving

28

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/3DotEt/LTBga
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

a “prototype” matrix of activation for each neuron at each timepoint under this category. This

training data allows us to decode the category of each testing trial, at each point in time, using

maximum-correlation classification, in the following way. We compute the Pearson correlation

between each row of each “testing” trial and each row of each “prototype” trial. Each such

correlation between row ​i​ of a testing trial and row ​j​ of a training category-average tells us how

much the population activity at time ​i ​ in the testing trial resembles the average population

activity at time ​j ​ for this particular category. We can then select the category for which this

correlation is maximal, at each training/testing timepoint pair, as the “decoded” category for each

testing trial. For each testing trial, this provides a 100x100 matrix of decoded categories (one for

each pair of training and testing timepoints). Of course, each testing trial belongs to only one

category, so only one possible answer is correct, and thus we can compute another 100x100

matrix of binary values, indicating whether the decoded category at a given point in the decoding

matrix (i.e., for any given pair of training and testing timepoints) is correct. The average of these

“correctness matrices”, over all testing trials, provides the accuracy in cross-temporal decoding

of this category for every training/testing pair of timepoints. We iterate this whole procedure 100

times and average together the resulting “correctness” matrices. The resulting 100x100 matrix

indicates at each row​ i​ and column​ j​ the proportion of times that the decoded category for

population activity at timepoint​ j​ was correct, using training data from timepoint ​i​ . This is the

matrix shown in each of the panels in Figure 2 (one for each of the three categories to be

decoded).

2- Orthogonal decoding of network information during a selective integration task

For the selective integration task, we used the analysis method introduced by Mante, Sussillo and

colleagues ​(Mante et al. 2013)​, and also used by Song and colleagues ​(Song, Yang, and Wang

2016) ​ (see Figure 5). Intuitively, the purpose of this method is to estimate how much information

the network encodes about different task feature (input value, context, final choice, etc.)

independently​ from each other.

29

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/3DotEt/mgW5Y
https://paperpile.com/c/3DotEt/ZES25
https://paperpile.com/c/3DotEt/ZES25
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

After generating multiple trials under various conditions (context -- that is, relevant modality --

and bias for each modality) with a fully trained network, we regress the activity of each neuron

over the values of features of interest (context, value of each modality, and final choice) for each

trial. This gives us a set of weights for each neuron, one for each feature, representing how much

each feature influences the neuron’s firing rate. We then “switch views” by grouping together all

such weights for any given feature (200 weights - one per neuron). This in turn produces vectors

in neuron population space, along which the feature is in a sense maximally represented (notice

that this is quite different from, and not equivalent to, the simpler idea of simply regressing each

feature over the firing rates of the neurons across trials). We then orthogonalize these vectors

using QR decomposition, to ensure that these representations are as independent from each other

as possible. Projecting population activity at a given time over the resulting vectors approximates

the network’s current estimate of the corresponding feature at that time. For successive time

slices, we average network activity vectors corresponding to the same value of bias in a certain

modality, a certain attended modality, and a certain final choice. We refer the reader to ​(Mante et

al. 2013)​ for a complete description of the method.

We project population activity, averaged within various groups of trials, at each point in time,

over these decoding axes. The trials are grouped according to final choice, value of one modality

(either modality 1 or modality 2), and current context (i.e., relevant modality), and the population

activity at each point in time is averaged across all trials within each group. When the resulting

averages are projected over the orthogonal feature vectors, they produce trajectories, indicating

the network’s encoded value for each feature, at each point in time, for trials of this group. Only

correct trials are used, and thus certain combinations are impossible (for example, positive value

of modality 1 bias, while attending modality 1, with a final choice of -1); this is reflected in the

top-left and bottom-right panels of Figure 6, which contain half as many trajectories as the

top-right and bottom-left panels.

30

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/3DotEt/mgW5Y
https://paperpile.com/c/3DotEt/mgW5Y
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

Appendix

We provide an extended discussion of the learning rule presented here (and other related learning

rules) in the Appendix enclosed in the Supplementary Text.

Acknowledgements

We thank W. Einar Gall for useful comments and suggestions. We thank Vishwa Goudar for

helpful discussions. We thank H. Francis Song for important insight regarding the computation

of state-space trajectories in Figure 5. This work was supported by Neurosciences Research

Foundation through funding from The G. Harold and Leila Y. Mathers Charitable Foundation

and the William and Jane Walsh Charitable Remainder Unitrust, for which we are grateful.

References

Barak, Omri, David Sussillo, Ranulfo Romo, Misha Tsodyks, and L. F. Abbott. 2013. “From
Fixed Points to Chaos: Three Models of Delayed Discrimination.” ​Progress in
Neurobiology​ 103 (April): 214–22.

Barak, Omri, Misha Tsodyks, and Ranulfo Romo. 2010. “Neuronal Population Coding of
Parametric Working Memory.” ​The Journal of Neuroscience: The Official Journal of the
Society for Neuroscience​ 30 (28): 9424–30.

Buonomano, Dean V., and Wolfgang Maass. 2009. “State-Dependent Computations:
Spatiotemporal Processing in Cortical Networks.” ​Nature Reviews. Neuroscience​ 10 (2):
113–25.

Churchland, Mark M., John P. Cunningham, Matthew T. Kaufman, Justin D. Foster, Paul
Nuyujukian, Stephen I. Ryu, and Krishna V. Shenoy. 2012. “Neural Population Dynamics
during Reaching.” ​Nature​ 487 (7405): 51–56.

Dehaene, Stanislas, and Jean-Remi King. 2016. “Decoding the Dynamics of Conscious
Perception: The Temporal Generalization Method - Springer.” In ​Micro-, Meso- and
Macro-Dynamics of the Brain​ , edited by G. Buzsaki and Y. Christen. Springer.

Fiete, Ila R., Michale S. Fee, and H. Sebastian Seung. 2007. “Model of Birdsong Learning Based
on Gradient Estimation by Dynamic Perturbation of Neural Conductances.” ​Journal of
Neurophysiology​ 98 (4): 2038–57.

Fiete, Ila R., and H. Sebastian Seung. 2006. “Gradient Learning in Spiking Neural Networks by
Dynamic Perturbation of Conductances.” ​Physical Review Letters​ 97 (4): 048104.

31

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

http://paperpile.com/b/3DotEt/qgUj7
http://paperpile.com/b/3DotEt/qgUj7
http://paperpile.com/b/3DotEt/qgUj7
http://paperpile.com/b/3DotEt/qgUj7
http://paperpile.com/b/3DotEt/qgUj7
http://paperpile.com/b/3DotEt/dzOsM
http://paperpile.com/b/3DotEt/dzOsM
http://paperpile.com/b/3DotEt/dzOsM
http://paperpile.com/b/3DotEt/dzOsM
http://paperpile.com/b/3DotEt/dzOsM
http://paperpile.com/b/3DotEt/8Hsvt
http://paperpile.com/b/3DotEt/8Hsvt
http://paperpile.com/b/3DotEt/8Hsvt
http://paperpile.com/b/3DotEt/8Hsvt
http://paperpile.com/b/3DotEt/8Hsvt
http://paperpile.com/b/3DotEt/jNvVq
http://paperpile.com/b/3DotEt/jNvVq
http://paperpile.com/b/3DotEt/jNvVq
http://paperpile.com/b/3DotEt/jNvVq
http://paperpile.com/b/3DotEt/jNvVq
http://paperpile.com/b/3DotEt/Fvh3g
http://paperpile.com/b/3DotEt/Fvh3g
http://paperpile.com/b/3DotEt/Fvh3g
http://paperpile.com/b/3DotEt/Fvh3g
http://paperpile.com/b/3DotEt/Fvh3g
http://paperpile.com/b/3DotEt/wwOO
http://paperpile.com/b/3DotEt/wwOO
http://paperpile.com/b/3DotEt/wwOO
http://paperpile.com/b/3DotEt/wwOO
http://paperpile.com/b/3DotEt/wwOO
http://paperpile.com/b/3DotEt/VyV1F
http://paperpile.com/b/3DotEt/VyV1F
http://paperpile.com/b/3DotEt/VyV1F
http://paperpile.com/b/3DotEt/VyV1F
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

Florian, Răzvan V. 2007. “Reinforcement Learning through Modulation of
Spike-Timing-Dependent Synaptic Plasticity.” ​Neural Computation​ 19 (6): 1468–1502.

Frémaux, Nicolas, Henning Sprekeler, and Wulfram Gerstner. 2010. “Functional Requirements
for Reward-Modulated Spike-Timing-Dependent Plasticity.” ​The Journal of Neuroscience:
The Official Journal of the Society for Neuroscience​ 30 (40): 13326–37.

Hennequin, Guillaume, Tim P. Vogels, and Wulfram Gerstner. 2014. “Optimal Control of
Transient Dynamics in Balanced Networks Supports Generation of Complex Movements.”
Neuron​ 82 (6): 1394–1406.

Hoerzer, Gregor M., Robert Legenstein, and Wolfgang Maass. 2014. “Emergence of Complex
Computational Structures from Chaotic Neural Networks through Reward-Modulated
Hebbian Learning.” ​Cerebral Cortex ​ 24 (3): 677–90.

Holzbaur, Katherine R. S., Wendy M. Murray, and Scott L. Delp. 2005. “A Model of the Upper
Extremity for Simulating Musculoskeletal Surgery and Analyzing Neuromuscular Control.”
Annals of Biomedical Engineering​ 33 (6): 829–40.

Izhikevich, Eugene M. 2007. “Solving the Distal Reward Problem through Linkage of STDP and
Dopamine Signaling.” ​Cerebral Cortex ​ 17 (10): 2443–52.

Jaeger, Herbert. 2001. “The ‘echo State’ Approach to Analysing and Training Recurrent Neural
Networks – with an Erratum note1.” GMD 148. German National Research Center for
Information Technology.
http://web.info.uvt.ro/~dzaharie/cne2013/proiecte/tehnici/ReservoirComputing/EchoStatesT
echRep.pdf​.

Jun, Joseph K., Paul Miller, Adrián Hernández, Antonio Zainos, Luis Lemus, Carlos D. Brody,
and Ranulfo Romo. 2010. “Heterogenous Population Coding of a Short-Term Memory and
Decision Task.” ​The Journal of Neuroscience: The Official Journal of the Society for
Neuroscience​ 30 (3): 916–29.

Kober, Jens, J. Andrew Bagnell, and Jan Peters. 2013. “Reinforcement Learning in Robotics: A
Survey.” ​The International Journal of Robotics Research​ , August.
doi:​10.1177/0278364913495721​.

Laje, Rodrigo, and Dean V. Buonomano. 2013. “Robust Timing and Motor Patterns by Taming
Chaos in Recurrent Neural Networks.” ​Nature Neuroscience​ 16 (7): 925–33.

Legenstein, Robert, Steven M. Chase, Andrew B. Schwartz, and Wolfgang Maass. 2010. “A
Reward-Modulated Hebbian Learning Rule Can Explain Experimentally Observed Network
Reorganization in a Brain Control Task.” ​The Journal of Neuroscience: The Official
Journal of the Society for Neuroscience​ 30 (25): 8400–8410.

Maass, Wolfgang, Thomas Natschläger, and Henry Markram. 2002. “Real-Time Computing
without Stable States: A New Framework for Neural Computation Based on Perturbations.”
Neural Computation​ 14 (11): 2531–60.

Mante, Valerio, David Sussillo, Krishna V. Shenoy, and William T. Newsome. 2013.
“Context-Dependent Computation by Recurrent Dynamics in Prefrontal Cortex.” ​Nature
503 (7474): 78–84.

Meyers, Ethan M., David J. Freedman, Gabriel Kreiman, Earl K. Miller, and Tomaso Poggio.
2008. “Dynamic Population Coding of Category Information in Inferior Temporal and
Prefrontal Cortex.” ​Journal of Neurophysiology​ 100 (3): 1407–19.

Mnih, Volodymyr, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. 2014. “Recurrent
Models of Visual Attention.” In ​Advances in Neural Information Processing Systems 27​ ,

32

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

http://paperpile.com/b/3DotEt/L6Vpn
http://paperpile.com/b/3DotEt/L6Vpn
http://paperpile.com/b/3DotEt/L6Vpn
http://paperpile.com/b/3DotEt/L6Vpn
http://paperpile.com/b/3DotEt/KsGIt
http://paperpile.com/b/3DotEt/KsGIt
http://paperpile.com/b/3DotEt/KsGIt
http://paperpile.com/b/3DotEt/KsGIt
http://paperpile.com/b/3DotEt/KsGIt
http://paperpile.com/b/3DotEt/85ioz
http://paperpile.com/b/3DotEt/85ioz
http://paperpile.com/b/3DotEt/85ioz
http://paperpile.com/b/3DotEt/85ioz
http://paperpile.com/b/3DotEt/CtxJS
http://paperpile.com/b/3DotEt/CtxJS
http://paperpile.com/b/3DotEt/CtxJS
http://paperpile.com/b/3DotEt/CtxJS
http://paperpile.com/b/3DotEt/CtxJS
http://paperpile.com/b/3DotEt/LXRxs
http://paperpile.com/b/3DotEt/LXRxs
http://paperpile.com/b/3DotEt/LXRxs
http://paperpile.com/b/3DotEt/LXRxs
http://paperpile.com/b/3DotEt/1BuyJ
http://paperpile.com/b/3DotEt/1BuyJ
http://paperpile.com/b/3DotEt/1BuyJ
http://paperpile.com/b/3DotEt/1BuyJ
http://paperpile.com/b/3DotEt/MRKR8
http://paperpile.com/b/3DotEt/MRKR8
http://paperpile.com/b/3DotEt/MRKR8
http://web.info.uvt.ro/~dzaharie/cne2013/proiecte/tehnici/ReservoirComputing/EchoStatesTechRep.pdf
http://web.info.uvt.ro/~dzaharie/cne2013/proiecte/tehnici/ReservoirComputing/EchoStatesTechRep.pdf
http://paperpile.com/b/3DotEt/MRKR8
http://paperpile.com/b/3DotEt/atJXi
http://paperpile.com/b/3DotEt/atJXi
http://paperpile.com/b/3DotEt/atJXi
http://paperpile.com/b/3DotEt/atJXi
http://paperpile.com/b/3DotEt/atJXi
http://paperpile.com/b/3DotEt/atJXi
http://paperpile.com/b/3DotEt/ILIHO
http://paperpile.com/b/3DotEt/ILIHO
http://paperpile.com/b/3DotEt/ILIHO
http://paperpile.com/b/3DotEt/ILIHO
http://paperpile.com/b/3DotEt/ILIHO
http://dx.doi.org/10.1177/0278364913495721
http://paperpile.com/b/3DotEt/ILIHO
http://paperpile.com/b/3DotEt/5CqY0
http://paperpile.com/b/3DotEt/5CqY0
http://paperpile.com/b/3DotEt/5CqY0
http://paperpile.com/b/3DotEt/5CqY0
http://paperpile.com/b/3DotEt/6G4D2
http://paperpile.com/b/3DotEt/6G4D2
http://paperpile.com/b/3DotEt/6G4D2
http://paperpile.com/b/3DotEt/6G4D2
http://paperpile.com/b/3DotEt/6G4D2
http://paperpile.com/b/3DotEt/6G4D2
http://paperpile.com/b/3DotEt/3yMEE
http://paperpile.com/b/3DotEt/3yMEE
http://paperpile.com/b/3DotEt/3yMEE
http://paperpile.com/b/3DotEt/3yMEE
http://paperpile.com/b/3DotEt/mgW5Y
http://paperpile.com/b/3DotEt/mgW5Y
http://paperpile.com/b/3DotEt/mgW5Y
http://paperpile.com/b/3DotEt/mgW5Y
http://paperpile.com/b/3DotEt/mgW5Y
http://paperpile.com/b/3DotEt/LTBga
http://paperpile.com/b/3DotEt/LTBga
http://paperpile.com/b/3DotEt/LTBga
http://paperpile.com/b/3DotEt/LTBga
http://paperpile.com/b/3DotEt/LTBga
http://paperpile.com/b/3DotEt/xdvrP
http://paperpile.com/b/3DotEt/xdvrP
http://paperpile.com/b/3DotEt/xdvrP
http://paperpile.com/b/3DotEt/xdvrP
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

edited by Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
2204–12. Curran Associates, Inc.

Pearlmutter, B. A. 1995. “Gradient Calculations for Dynamic Recurrent Neural Networks: A
Survey.” ​IEEE Transactions on Neural Networks / a Publication of the IEEE Neural
Networks Council​ 6 (5): 1212–28.

Peters, Jan, and Stefan Schaal. 2008. “Reinforcement Learning of Motor Skills with Policy
Gradients.” ​Neural Networks: The Official Journal of the International Neural Network
Society​ 21 (4): 682–97.

Rajan, Kanaka, Christopher D. Harvey, and David W. Tank. 2016. “Recurrent Network Models
of Sequence Generation and Memory.” ​Neuron​ 90 (1): 128–42.

Raposo, David, Matthew T. Kaufman, and Anne K. Churchland. 2014. “A Category-Free Neural
Population Supports Evolving Demands during Decision-Making.” ​Nature Neuroscience​ 17
(12): 1784–92.

Rigotti, Mattia, Omri Barak, Melissa R. Warden, Xiao-Jing Wang, Nathaniel D. Daw, Earl K.
Miller, and Stefano Fusi. 2013. “The Importance of Mixed Selectivity in Complex
Cognitive Tasks.” ​Nature​ 497 (7451): 585–90.

Saul, Katherine R., Xiao Hu, Craig M. Goehler, Meghan E. Vidt, Melissa Daly, Anca Velisar,
and Wendy M. Murray. 2015. “Benchmarking of Dynamic Simulation Predictions in Two
Software Platforms Using an Upper Limb Musculoskeletal Model.” ​Computer Methods in
Biomechanics and Biomedical Engineering​ 18 (13): 1445–58.

Soltoggio, Andrea, and Jochen J. Steil. 2013. “Solving the Distal Reward Problem with Rare
Correlations.” ​Neural Computation​ 25 (4): 940–78.

Sompolinsky, Haim, A. Crisanti, and H. J. Sommers. 1988. “Chaos in Random Neural
Networks.” ​Physical Review Letters​ 61 (3): 259.

Song, H. Francis, Guangyu R. Yang, and Xiao-Jing Wang. 2016. “Training Excitatory-Inhibitory
Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.” ​PLoS
Computational Biology​ 12 (2): e1004792.

Stokes, Mark G. 2015. “‘Activity-Silent’ Working Memory in Prefrontal Cortex: A Dynamic
Coding Framework.” ​Trends in Cognitive Sciences​ 19 (7). Elsevier: 394–405.

Stokes, Mark G., Makoto Kusunoki, Natasha Sigala, Hamed Nili, David Gaffan, and John
Duncan. 2013. “Dynamic Coding for Cognitive Control in Prefrontal Cortex.” ​Neuron​ 78
(2): 364–75.

Sussillo, David, and L. F. Abbott. 2009. “Generating Coherent Patterns of Activity from Chaotic
Neural Networks.” ​Neuron​ 63 (4): 544–57.

Sussillo, David, Mark M. Churchland, Matthew T. Kaufman, and Krishna V. Shenoy. 2015. “A
Neural Network That Finds a Naturalistic Solution for the Production of Muscle Activity.”
Nature Neuroscience​ 18 (7): 1025–33.

Thelen, Darryl G. 2003. “Adjustment of Muscle Mechanics Model Parameters to Simulate
Dynamic Contractions in Older Adults.” ​Journal of Biomechanical Engineering​ 125 (1):
70–77.

Williams, Ronald J. 1992. “Simple Statistical Gradient-Following Algorithms for Connectionist
Reinforcement Learning.” ​Machine Learning​ 8 (3-4). Kluwer Academic Publishers:
229–56.

33

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

http://paperpile.com/b/3DotEt/xdvrP
http://paperpile.com/b/3DotEt/xdvrP
http://paperpile.com/b/3DotEt/20YOy
http://paperpile.com/b/3DotEt/20YOy
http://paperpile.com/b/3DotEt/20YOy
http://paperpile.com/b/3DotEt/20YOy
http://paperpile.com/b/3DotEt/20YOy
http://paperpile.com/b/3DotEt/G6ycs
http://paperpile.com/b/3DotEt/G6ycs
http://paperpile.com/b/3DotEt/G6ycs
http://paperpile.com/b/3DotEt/G6ycs
http://paperpile.com/b/3DotEt/G6ycs
http://paperpile.com/b/3DotEt/vhWhb
http://paperpile.com/b/3DotEt/vhWhb
http://paperpile.com/b/3DotEt/vhWhb
http://paperpile.com/b/3DotEt/vhWhb
http://paperpile.com/b/3DotEt/zbYGQ
http://paperpile.com/b/3DotEt/zbYGQ
http://paperpile.com/b/3DotEt/zbYGQ
http://paperpile.com/b/3DotEt/zbYGQ
http://paperpile.com/b/3DotEt/zbYGQ
http://paperpile.com/b/3DotEt/VejMm
http://paperpile.com/b/3DotEt/VejMm
http://paperpile.com/b/3DotEt/VejMm
http://paperpile.com/b/3DotEt/VejMm
http://paperpile.com/b/3DotEt/VejMm
http://paperpile.com/b/3DotEt/8iDFH
http://paperpile.com/b/3DotEt/8iDFH
http://paperpile.com/b/3DotEt/8iDFH
http://paperpile.com/b/3DotEt/8iDFH
http://paperpile.com/b/3DotEt/8iDFH
http://paperpile.com/b/3DotEt/8iDFH
http://paperpile.com/b/3DotEt/iL61a
http://paperpile.com/b/3DotEt/iL61a
http://paperpile.com/b/3DotEt/iL61a
http://paperpile.com/b/3DotEt/iL61a
http://paperpile.com/b/3DotEt/hg7Uz
http://paperpile.com/b/3DotEt/hg7Uz
http://paperpile.com/b/3DotEt/hg7Uz
http://paperpile.com/b/3DotEt/hg7Uz
http://paperpile.com/b/3DotEt/ZES25
http://paperpile.com/b/3DotEt/ZES25
http://paperpile.com/b/3DotEt/ZES25
http://paperpile.com/b/3DotEt/ZES25
http://paperpile.com/b/3DotEt/ZES25
http://paperpile.com/b/3DotEt/REofr
http://paperpile.com/b/3DotEt/REofr
http://paperpile.com/b/3DotEt/REofr
http://paperpile.com/b/3DotEt/REofr
http://paperpile.com/b/3DotEt/qR80Y
http://paperpile.com/b/3DotEt/qR80Y
http://paperpile.com/b/3DotEt/qR80Y
http://paperpile.com/b/3DotEt/qR80Y
http://paperpile.com/b/3DotEt/qR80Y
http://paperpile.com/b/3DotEt/oVk8t
http://paperpile.com/b/3DotEt/oVk8t
http://paperpile.com/b/3DotEt/oVk8t
http://paperpile.com/b/3DotEt/oVk8t
http://paperpile.com/b/3DotEt/PtFdr
http://paperpile.com/b/3DotEt/PtFdr
http://paperpile.com/b/3DotEt/PtFdr
http://paperpile.com/b/3DotEt/PtFdr
http://paperpile.com/b/3DotEt/bqaRE
http://paperpile.com/b/3DotEt/bqaRE
http://paperpile.com/b/3DotEt/bqaRE
http://paperpile.com/b/3DotEt/bqaRE
http://paperpile.com/b/3DotEt/bqaRE
http://paperpile.com/b/3DotEt/FRIx
http://paperpile.com/b/3DotEt/FRIx
http://paperpile.com/b/3DotEt/FRIx
http://paperpile.com/b/3DotEt/FRIx
http://paperpile.com/b/3DotEt/FRIx
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

Supplementary Text

Appendix

Discussion of learning algorithms in recurrent neural networks

Here we attempt to provide a more intuitive explanation of how the learning rule actually works.

We also discuss existing learning algorithms for strongly connected RNNs, including the

node-perturbation method ​(Fiete and Seung 2006)​ and the Hoerzer-Legenstein-Maas method

(Hoerzer, Legenstein, and Maass 2014)​.

Why does node-perturbation / REINFORCE work?

Node-perturbation consists in applying perturbations to the outputs of neurons, then computing

an eligibility trace equal to the accumulated product of the (non-perturbative, “normal”) inputs

by the perturbations, and multiplying this eligibility trace by a baseline-subtracted reward signal

to obtain the actual synaptic modifications. Fiete and Seung ​(Fiete and Seung 2006; Fiete, Fee,

and Seung 2007)​ showed formally that this method descends the gradient of error over the

weights.

Interestingly, this method is largely equivalent to the classical REINFORCE algorithm (see in

particular Equation 11 in ​(Williams 1992)​, and discussion in ​(Fiete and Seung 2006) ​), which is

widely used in reinforcement learning. This method can also be shown to descent the gradient of

error over the weights with a very different approach ​(Kober, Bagnell, and Peters 2013; Peters

and Schaal 2008)​. As such, node-perturbation essentially a form of policy gradient search, to use

the terminology of reinforcement learning ​(Kober, Bagnell, and Peters 2013; Peters and Schaal

2008) ​.

34

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/Kb6nqv/WegP2
https://paperpile.com/c/Kb6nqv/7UE7H
https://paperpile.com/c/Kb6nqv/WegP2+mtYzm
https://paperpile.com/c/Kb6nqv/WegP2+mtYzm
https://paperpile.com/c/Kb6nqv/HQfPN
https://paperpile.com/c/Kb6nqv/WegP2
https://paperpile.com/c/Kb6nqv/d4QKO+Gr4MC
https://paperpile.com/c/Kb6nqv/d4QKO+Gr4MC
https://paperpile.com/c/Kb6nqv/d4QKO+Gr4MC
https://paperpile.com/c/Kb6nqv/d4QKO+Gr4MC
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

Our previous experiments showed that the node-perturbation method can successfully learn

complex tasks in strongly-connected, chaotic RNN (see T. Miconi, arXiv:1507.08973

[q-bio.NC]). The plasticity rule described in this paper is largely an attempt at implementing this

method with biologically plausible mechanisms, without requiring an instantaneous, real-time

reward signal (as in ​(Hoerzer, Legenstein, and Maass 2014)​ - see below).

Why is node-perturbation learning so efficient in learning correct trajectories? While the

mathematical derivation of node-perturbation and REINFORCE are well established ​(Fiete and

Seung 2006; Peters and Schaal 2008)​, here we seek a more intuitive understanding of how this

method works.

Briefly, node-perturbation learning imposes a phasic perturbation on the network, then

“incorporates” the effect of this perturbation into the network weights if the resulting trajectory

turns out to produce a higher reward than expected - or conversely, incorporates the “opposite”

of this perturbation if the resulting trajectory turned out to produce lower reward than expected.

The effect of the weight modification is to ensure that, next time the same input is presented, the

neurons will respond in a way that will be a bit more similar to what the perturbed response was.

Conversely, if the trajectory turned out to lead to a lower reward, the weight modification will be

“anti-incorporated” into the weights, making sure that the next presentation of the same inputs

will be nudged away from the direction of the perturbation.

Consider what happens when a single perturbation z(t) is applied to neuron j at time t. Under

node-perturbation, the weight modification dW at a given incoming synapse of neuron j is equal

to x(t) * z(t) * DR, where x(t) is the current pre-synaptic input at the synapse, z(t) the

perturbation received by the neuron, and DR the “net” reward received at the end of the trial

(centered to mean zero over many trials). Suppose that DR is positive (the effect of the

perturbation was “good”) and z was positive (the neuron received a positive perturbation). The

effect of this dW will then be to add a positive multiple of x(t) to the weight Wj,i. As a result, the

input weight vector of neuron j will become more correlated with the current population response

35

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/Kb6nqv/7UE7H
https://paperpile.com/c/Kb6nqv/WegP2+Gr4MC
https://paperpile.com/c/Kb6nqv/WegP2+Gr4MC
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

vector X(t); this will result in a higher response of j next time the input X(t) is presented. Since

the perturbation z(t) was positive, this is exactly what is needed to replicate the effect of the

perturbation, that is, increase the firing of j. Conversely, if z(t) was negative, the effect would be

to subtract a multiple of X(t) from the input weight vector of neuron j, which would reduce the

correlation between X(t) and its weight vector (possibly making it more negative if it already

was), and therefore reduce the response of j next time input X(t) is presented - again, mimicking

the effect of the (negative) perturbation.

The converse applies when DR is negative (that is, when the resulting trajectory was “bad”): the

resulting modification will lead to incorporating the opposite of the received perturbation into the

incoming weight vector.

Thus, node-perturbation “translates” the trajectory perturbation into a weight modification that

would reproduce this perturbed trajectory, then incorporates this modification if the perturbation

was “good”, or its opposite if the perturbation turned out to be “bad”.

Why does simple reward-modulated Hebbian learning ​ not​ work (for strongly-connected

recurrent networks)?

Node-perturbation is not Hebbian. In reward-modulated Hebbian learning (RMHL), weight

modifications are proportional to the product of pre- and post-synaptic activities, later multiplied

by a reward signal. However, node-perturbation computes the product of pre-synaptic activity by

perturbations​ , rather than the full post-synaptic activity. As explained above, this allows the

synaptic change to “incorporate” the effect of the perturbation if this perturbation led to a higher

reward, or incorporate its opposite if the perturbation led to a lower reward.

The problem is that there is no obvious biological mechanism by which the synapse can

somehow isolate the “perturbation” inputs from the “normal” inputs. Furthermore, synaptic

36

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

plasticity is thought to result from a product of inputs and outputs (Hebbian), but

node-perturbation requires it to be computed by a product between two inputs (“normal” and

“perturbative”). This leads to the question of how node-perturbation could be approximated in a

biologically plausible, Hebbian manner - a question to which the present paper attempts to

provide a plausible answer.

At first sight it might seem that the two are easily reconciled. Let us write the total

reward-modulated Hebbian synaptic weight change after a trial as x * (y + z) * DR, where x is

pre-synaptic activity, y is pre-perturbation post-synaptic activity, z is the perturbation and DR is

the zero-mean reward signal. In the limit of slow weight modifications, for successive

presentations of a same input, the total weight change will be ∑ x * (y + z) * DR = ∑ (x*y*DR +

x*z*DR) (where summation is taken across successive trials). Because xy is roughly constant

across successive presentations of the same input (for slow weight modification) and DR is

centered to have zero mean, the first term vanishes, leaving only the second term x*z*DR. But

this remaining term is exactly equal to the equation for node-perturbation learning, as described

above. Thus, intuitively, the bulk of the post-synaptic response should “cancel out” due to the

zero-mean centering of the reward signal, leaving only the perturbation-proportional term: the

only change between RMHL and node-perturbation should thus be a change in variance, rather

than in the asymptotic weight value.

However, while the foregoing is valid when inputs and outputs are constant for a given trial (e.g.

for very short trials), it does not hold for temporally extended trials in which the input and/or

outputs are highly dynamic. This is especially the case when the outputs at time t influence the

inputs at times t’>t, as is the case in strongly recurrent networks of the type studied above. In this

case, x*y is not constant over successive presentations of the same trial; indeed, a small

perturbation may lead to a drastic, unpredictable change in future activity y within the trial.

Therefore, the x*y*DR term does not vanish from the summation, despite the fact that DR is

zero-centered.

37

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

Under node-perturbation learning, these potentially large trial-to-trial fluctuations in intrinsic

activity are ignored, because only the perturbation itself is used in the plasticity rule, which

allows its incorporation in the weights. But in reward-modulated Hebbian learning, these

fluctuations between successive presentations of the same input will typically dwarf the

perturbations and thus dominate the synaptic changes, creating unpredictable weight changes that

are unrelated to the direction of the perturbation (a related point is made by Legenstein and

colleagues ​(Legenstein et al. 2010)​).

Why does our Hebbian learning rule work with sparse, delayed rewards?

In the present article, we first compute fluctuations of post-synaptic activity by subtracting a very

short-term running average (trace) of ongoing activity (Eq. 3). This idea was introduced by

Legenstein and colleagues ​(Legenstein et al. 2010)​ and applied to recurrent neural networks by

Hoerzer and colleagues ​(Hoerzer, Legenstein, and Maass 2014)​.

The rationale of this method is that, under reasonable assumptions, fast fluctuations of output

activity should be dominated by the exploratory perturbations; thus, by positing that Hebbian

plasticity is based on these fluctuations of post-synaptic outputs rather than the full post-synaptic

outputs, we can re-create node-perturbation in a purely Hebbian manner.

However, a difficulty of this method is that it requires a continuous, instantaneous reward signal

at each point in time ​(Hoerzer, Legenstein, and Maass 2014)​. This eliminates a major advantage

of reinforcement learning, namely, the ability to learn from sparse, delayed rewards.

The reason why real-time reward signals are needed is that simply subtracting a running average

from ongoing activity does not perfectly isolate external perturbations, due to spurious relaxation

effects. For example, after a single positive perturbation is applied, the running average is now

elevated, and the difference between ongoing activity will now be negative, until the average

38

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/Kb6nqv/eJcod
https://paperpile.com/c/Kb6nqv/eJcod
https://paperpile.com/c/Kb6nqv/7UE7H
https://paperpile.com/c/Kb6nqv/7UE7H
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

decays down to the ongoing value. These negative relaxation terms will be accumulated into the

Hebbian product and cancel the positive, perturbation-related initial term.

To take a simple example, suppose we apply a single positive perturbation to a flat signal. The

perturbation itself cause a sharp positive deviation from the previous activity. Thus, as expected,

subtracting ongoing activity from recent average correctly isolates the received perturbation. But

after the perturbation has occurred, the running average (which includes the recent perturbation)

is now elevated, and thus the next few time steps of (unperturbed) activity will be lower than the

trace, creating spurious negative deviations. If the signal remains flat, the sum of negative

deviations will in fact equal and fully cancel out the positive deviation caused by the perturbation

itself, causing spurious weight changes in the opposite direction of the ones created by the

perturbation (assuming slowly changing inputs in comparison to the perturbations).

In the Legenstein / Hoerzer method, this problem is addressed by the assumption of a

continuous, real-time reward signal, which ​also​ undergoes subtraction of a short-term running

average. Because the same effect will occur in both the activity trace and the continuous reward

trace, the negative “spurious” relaxation deviations in both traces, multiplied with each other,

will produce a ​positive​ addition to the synaptic changes, reinforcing the one created by the

perturbation rather than cancelling it. Thus, in the Legenstein/Hoerzer method, an instantaneous

real-time reward signal allows learning to occur based on fluctuations of post-synaptic activity.

By contrast, the learning rule described in this paper does not require a continuous, real time

reward signal. As shown above, it can learn from sparse, delayed rewards at the end of each trial.

The crucial hypothesis in our learning rule is that weight increments are accumulated

supralinearly (the S function in Equation 3), essentially positing that synaptic plasticity amplifies

larger events and ignores smaller ones.

The reason this hypothesis permits learning with delayed rewards is as follows. First, suppose

that we apply a supralinear amplification to the post-synaptic fluctuations themselves (i.e. the

39

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

running-average-subtracted post-synaptic outputs), rather than to the overall eligibility trace. By

positing a supralinear amplification of the post-synaptic fluctuations, we magnify the large

deviations from the running average caused by the actual perturbations, and suppress the smaller,

countering relaxation deviations that accumulate as the running average falls back towards the

underlying signal value. As a result, the perturbation itself is successfully isolated from ongoing

activity, without requiring either an explicit separation between “normal” and “perturbative”

inputs or a continuous, real-time reward signal; while the spurious relaxation effects are

suppressed. The product of perturbations by incoming pre-synaptic activities can now be

accumulated over the course of a trial, and multiplied by a single overall reward value at the end

of each trial, reproducing the effect of node-perturbation learning in a purely Hebbian manner,

and without requiring an instantaneous reward signal at each point in time.

However, it is not easy to see how a biological plasticity mechanism could selectively apply a

nonlinear transformation to the fluctuations of post-synaptic outputs. It seems less onerous to

assume that the supralinear amplification applies directly to the plasticity increments themselves,

which is equivalent to positing that plasticity is dominated by larger Hebbian events and

minimizes small ones. This results in the plasticity rule proposed here (Equations 3 and 4). This

plausible approximation turns out to produce successful learning, as described above.

 Note that this is very similar to recently-proposed thresholded Hebbian rules, whereby plasticity

is only triggered by events in which the Hebbian product reaches a certain threshold ​(Soltoggio

and Steil 2013)​. A supralinear amplification offers a smoother amplification of larger Hebbian

events, by comparison to the all-or-nothing effect of a threshold; however, the overall effect is

similar: ignore small, possibly incidental correlations of input and output, but retain the larger

ones, which are more likely to be informative.

References

Fiete, Ila R., Michale S. Fee, and H. Sebastian Seung. 2007. “Model of Birdsong Learning Based
on Gradient Estimation by Dynamic Perturbation of Neural Conductances.” ​Journal of

40

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

https://paperpile.com/c/Kb6nqv/ZA27J
https://paperpile.com/c/Kb6nqv/ZA27J
http://paperpile.com/b/Kb6nqv/mtYzm
http://paperpile.com/b/Kb6nqv/mtYzm
http://paperpile.com/b/Kb6nqv/mtYzm
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

Neurophysiology​ 98 (4): 2038–57.
Fiete, Ila R., and H. Sebastian Seung. 2006. “Gradient Learning in Spiking Neural Networks by

Dynamic Perturbation of Conductances.” ​Physical Review Letters​ 97 (4): 048104.
Hoerzer, Gregor M., Robert Legenstein, and Wolfgang Maass. 2014. “Emergence of Complex

Computational Structures from Chaotic Neural Networks through Reward-Modulated
Hebbian Learning.” ​Cerebral Cortex ​ 24 (3): 677–90.

Kober, Jens, J. Andrew Bagnell, and Jan Peters. 2013. “Reinforcement Learning in Robotics: A
Survey.” ​The International Journal of Robotics Research​ , August.
doi:​10.1177/0278364913495721​.

Legenstein, Robert, Steven M. Chase, Andrew B. Schwartz, and Wolfgang Maass. 2010. “A
Reward-Modulated Hebbian Learning Rule Can Explain Experimentally Observed Network
Reorganization in a Brain Control Task.” ​The Journal of Neuroscience: The Official
Journal of the Society for Neuroscience​ 30 (25): 8400–8410.

Peters, Jan, and Stefan Schaal. 2008. “Reinforcement Learning of Motor Skills with Policy
Gradients.” ​Neural Networks: The Official Journal of the International Neural Network
Society​ 21 (4): 682–97.

Soltoggio, Andrea, and Jochen J. Steil. 2013. “Solving the Distal Reward Problem with Rare
Correlations.” ​Neural Computation​ 25 (4): 940–78.

Williams, Ronald J. 1992. “Simple Statistical Gradient-Following Algorithms for Connectionist
Reinforcement Learning.” ​Machine Learning​ 8 (3-4). Kluwer Academic Publishers:
229–56.

41

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/057729doi: bioRxiv preprint

http://paperpile.com/b/Kb6nqv/mtYzm
http://paperpile.com/b/Kb6nqv/mtYzm
http://paperpile.com/b/Kb6nqv/WegP2
http://paperpile.com/b/Kb6nqv/WegP2
http://paperpile.com/b/Kb6nqv/WegP2
http://paperpile.com/b/Kb6nqv/WegP2
http://paperpile.com/b/Kb6nqv/7UE7H
http://paperpile.com/b/Kb6nqv/7UE7H
http://paperpile.com/b/Kb6nqv/7UE7H
http://paperpile.com/b/Kb6nqv/7UE7H
http://paperpile.com/b/Kb6nqv/7UE7H
http://paperpile.com/b/Kb6nqv/d4QKO
http://paperpile.com/b/Kb6nqv/d4QKO
http://paperpile.com/b/Kb6nqv/d4QKO
http://paperpile.com/b/Kb6nqv/d4QKO
http://paperpile.com/b/Kb6nqv/d4QKO
http://dx.doi.org/10.1177/0278364913495721
http://paperpile.com/b/Kb6nqv/d4QKO
http://paperpile.com/b/Kb6nqv/eJcod
http://paperpile.com/b/Kb6nqv/eJcod
http://paperpile.com/b/Kb6nqv/eJcod
http://paperpile.com/b/Kb6nqv/eJcod
http://paperpile.com/b/Kb6nqv/eJcod
http://paperpile.com/b/Kb6nqv/eJcod
http://paperpile.com/b/Kb6nqv/Gr4MC
http://paperpile.com/b/Kb6nqv/Gr4MC
http://paperpile.com/b/Kb6nqv/Gr4MC
http://paperpile.com/b/Kb6nqv/Gr4MC
http://paperpile.com/b/Kb6nqv/Gr4MC
http://paperpile.com/b/Kb6nqv/ZA27J
http://paperpile.com/b/Kb6nqv/ZA27J
http://paperpile.com/b/Kb6nqv/ZA27J
http://paperpile.com/b/Kb6nqv/ZA27J
http://paperpile.com/b/Kb6nqv/HQfPN
http://paperpile.com/b/Kb6nqv/HQfPN
http://paperpile.com/b/Kb6nqv/HQfPN
http://paperpile.com/b/Kb6nqv/HQfPN
http://paperpile.com/b/Kb6nqv/HQfPN
https://doi.org/10.1101/057729
http://creativecommons.org/licenses/by-nc/4.0/

