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Abstract 

DNA methylation varies across genomic regions, tissues and individuals in a population. 
Altered DNA methylation is common in cancer and often considered an early event in 
tumorigenesis. However, the sources of heterogeneity of DNA methylation among 
tumors remain poorly defined. Here, we capitalize on the availability of multi-platform 
data on thousands of molecularly- and clinically-annotated human tumors to build 
integrative models that identify the determinants of DNA methylation. We quantify the 
relative contribution of clinical and molecular factors in explaining within-cancer (inter-
individual) variability in DNA methylation. We show that the levels of a set of metabolic 
genes involved in the methionine cycle that are constituents of one-carbon metabolism 
are predictive of several features of DNA methylation status in tumors including the 
methylation of genes that are known to drive oncogenesis. Finally, we demonstrate that 
patients whose DNA methylation status can be predicted from the genes in one-carbon 
metabolism exhibited improved survival over cases where this regulation is disrupted. To 
our knowledge, this study is the first comprehensive analysis of the determinants of 
methylation and demonstrates the surprisingly large contribution of metabolism in 
explaining epigenetic variation among individual tumors of the same cancer type. 
Together, our results illustrate links between tumor metabolism and epigenetics and 
outline future clinical implications.    
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Introduction 

DNA methylation is a major epigenetic mechanism that determines cellular outcome by 

regulating gene expression and chromatin organization1 in a fashion more dynamic than 

previously appreciated2.  Altered DNA methylation is frequently observed in cancers 

compared to corresponding normal cells3-7.  For example, global DNA hypomethylation8 

and tumor suppressor silencing by DNA hypermethylation are two of the most well 

characterized cancer associated alterations common across many human malignancies9-11.  

In addition to hypo and hyper methylation, cancer cells exhibit increased variability in 

DNA methylation across large portions of the genome compared to their corresponding 

normal tissues12.  A previous study showed that, for several cancer types, variation in 

methylation levels among tumor samples is significantly higher than normal samples of 

the same tissue of origin4, possibly indicating that deregulated epigenetics provides tumor 

cells with potential proliferative advantages6.  While inter-tissue variability in DNA 

methylation is mainly explained by differentiation and tissue-specific regulatory 

mechanisms13,14, very little is known about the functions and determinants of the high 

inter-individual variation among tumors of the same tissue type.  Notably, a recent twin 

study on the determinants of inter-individual variability in DNA methylation reported 

that genetic difference among individuals account for only 20% of total variance with the 

remaining variance explained by environmental and stochastic factors that are yet to be 

identified15.  

The source of the methyl group for methylation is S-adenosylmethionine (SAM) 

which is generated from the methionine (met) cycle and is coupled to serine, glycine, one 

-carbon (SGOC) metabolism16.  A large body of evidence indicates numerous roles for 
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one-carbon metabolism in proliferation and survival of tumor cells through its roles in 

biosynthesis and redox metabolism16-19.  The met cycle also mediates histone and DNA 

methylation in physiological conditions and provides a link between intermediary 

metabolism and epigenetics20-22.  Although the network contributes methyl units to DNA, 

whether and to what extent this interaction is apparent in tumors and may contribute to 

cancer biology is unknown.     

 We set out to comprehensively quantify the contribution of various factors in 

explaining variation in DNA methylation.  The advent of standardized genomics and 

other high-dimensional multi-platform ‘omics’ data through The Cancer Genome Atlas 

(TCGA) allows for systematic assessments of molecular features across cancers23.  With 

combined statistical analysis, computational modeling, and machine-learning approaches, 

we directly evaluated the quantitative contributions of molecular and clinical variables 

that lead to DNA methylation.  We found a surprisingly large contribution for the 

expression of the methionine cycle and related SGOC network genes in determining 

DNA methylation and identified numerous contexts where this interaction may contribute 

to cancer pathology.         

 

Results  

Integrative modeling allows for quantitation of determinants of variation in DNA 

methylation 

It has been previously proposed that factors normally regulating the epigenome are 

disrupted in cancer, leading to increased variability of the cancer epigenome6. However, 

the nature and contributions of such factors is largely unknown.  Upon analysis of global 
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and local DNA methylation in tumors as measured by the Illumina Infinium 

HumanMethylation450K BeadChip arrays, we indeed found higher variation among 

tumors from the same tissue vs. between different tissue types (Supplementary 

Information; Supplementary Fig. 1a-d; Online Methods). Arrays were used over bisulfite 

sequencing because of the higher availability of these data in a standardized format 

allowing for an integrative analysis.  To establish quantitative relationships between 

DNA methylation and molecular and clinical features of tumors, we developed an 

integrative statistical modeling and machine-learning approach with the goal of 

identifying the relative contributions to within-cancer DNA methylation variation (Online 

Methods).  We incorporated hundreds of variables into comprehensive statistical models 

of DNA methylation (Fig. 1a). Factors with a known role in DNA methylation machinery 

(chromatin remodeling enzymes and transcription factors), as well as factors with a 

potential biochemical link to DNA methylation (SAM-metabolizing enzymes, met cycle 

enzymes, and other serine, glycine, one-carbon (other SGOC) enzymes that are connected 

to the met cycle24) were together considered (Fig. 1a).  We also curated available clinical 

information such as age, gender, and cancer stage in the calculations where appropriate. 

Furthermore, since mutations are known to affect the cancer methylome25, we included 

all recurrent genetic lesions (somatic mutations and copy number alterations) for each 

cancer type in our models.  Together, over 200 variables were collectively analyzed for 

each cancer type (see Supplementary Table 1).  Our models are therefore not completely 

agnostic as we pre-select classes of biological variables that are known to affect DNA 

methylation to avoid loss of statistical power by including too many features (e.g. 

expression of all genes in the genome). Therefore, to test for potential bias, we also 
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considered the expression levels of sets of random genes with functions non-related to 

DNA methylation as additional variables in our models (see Online Methods).  

Subsequently, we incorporated all variables into unbiased selection algorithms suitable 

for dealing with large numbers of prediction variables. For this task, we considered two 

independent approaches: a generalized linear model (Elastic Net)26,27 and a machine-

learning algorithm (Random Forest)28,29.  A distinct computation was carried out for each 

10kilobase (kb) genomic region with variable methylation (sd > 0.2) in each cancer type.  

Samples of each cancer type were divided into three independent test subsets and three 

training subsets and separate models were generated using each subset. The models were 

then combined resulting in a single final model for each 10kb region of DNA methylation 

in each cancer. Model performance was evaluated by measuring mean squared prediction 

error of test samples from Elastic Net and Random Forest separately (Online Methods).   

We observed that our models predicted test set DNA methylation with small mean 

squared error (MSE <0.04) in many regions across the genome (Fig. 1b). Comparison of 

the performances of the two methods showed that Random Forest and Elastic Net 

algorithms were able to predict DNA methylation with comparable MSEs on average 

(Fig. 1c; Supplementary Fig. 2a). In general, predictability of local DNA methylation was 

largely dependent on cancer type as well as chromatin region in each model. For 

example, we observed that local DNA methylation was most predictable in prostate and 

lung cancers and least predictable in liver and bladder cancers (Fig. 1c; Supplementary 

Fig. 2a). Together with the high variation in local DNA methylation levels seen in liver 

and bladder cancers (Supplementary Fig. 1d), these results suggest a higher stochasticity 

in the epigenetic signatures for these two cancer types compared to others in this study. 
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Upon annotating genomic regions where local DNA methylation could be predicted with 

a low error (MSE < 0.04) in each cancer, we found that the majority of the predictable 

regions lie within 20kb of the transcriptional start site (TSS) of a gene (Supplementary 

Fig. 2b), suggesting that regulation of DNA methylation by the factors included in our 

models is stronger at genic regions. 

We next performed a set of tests to evaluate the robustness of our modeling 

approach. To this end, we compared the original gene expression variables included in 

our models, with a group of variance-matched randomly selected genes from the genome 

(see Online Methods) in their ability to predict DNA methylation. In the presence of both 

groups of gene expression variables (original and random), both Elastic Net and Random 

Forest models selected our original variables significantly more frequently than random 

genes (Mann-Whitney p-value= 0.0007 for Elastic Net and <0.0001 for Random Forest) 

(Fig. 1d; see Online Methods). These results validate our models and confirm that the 

Elastic Net and Random Forest algorithms are suitable for quantitation of variable 

contributions in determining DNA methylation.    

 

Metabolism is a major predictor of DNA methylation in human cancers  

Using the results of the integrative modeling, we next quantified the relative contribution 

of different functional classes of variables in explaining DNA methylation variation 

within each cancer type. For this, we measured two independent metrics, one using the 

Random Forest variable importance scores, and the other using a binary score for whether 

or not a variable was selected by the Elastic Net models (non-zero co-efficient). For each 

variable, an overall importance score was calculated by averaging its relative importance 
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across all models of 10kb DNA methylations, and an overall usage score was calculated 

by measuring the fraction of 10kb regions in which Elastic Net models selected the 

variable (Online Methods).  To estimate the contribution of each functional class of 

variables in explaining total variation in DNA methylation, we pooled all variables in the 

same functional category and averaged across their importance and usage scores 

separately (Supplementary Fig. 2c,d).   

Results from both Random Forest and Elastic Net algorithms identified a 

considerable contribution from the variables within the SGOC metabolic network relative 

to other classes of variables (“Other SGOC enzymes” was the 2nd highest scoring among 

all classes, closely following “Transcription factors” according to both methods. 

“Methionine cycle enzymes” was the 3rd and 4th according to Random Forest and Elastic 

Net, respectively) (Fig. 2a).  Previous studies have shown that transcription factor 

abundance and occupancy strongly mediate dynamic DNA methylation turnover in 

regulatory regions30,31.  Consistent with this observation, our results confirm the 

“Transcription factors” class has the highest contribution to predicting DNA methylation 

levels across human tumors.  Notably, even in the presence of most if not all known 

variables that are thought to mediate the status of DNA methylation, metabolic factors 

still uniquely explained a large part of the variability in methylation (Fig. 2a). 

Given the contribution of the methionine cycle and its biochemical link to DNA 

methylation, we further explored the variables within the met cycle class compared to all 

other variables in their ability to predict DNA methylation (Fig. 2b).  Within the met 

cycle class, methionine adenosyltransferase 2 beta (MAT2B) and betaine-homocysteine 

S-methyltransferase 2 (BHMT2) exhibited higher predictive values than methionine 
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synthase (MTR) and adenosylhomocysteinase (AHCY) on average (Supplementary Fig. 

2e,f).  Notably, in the presence of the nearly 200 other variables in the computations, the 

met cycle — especially MAT2B— still contributed substantially to DNA methylation 

prediction (MAT2B was ranked among the top 5% of highly selected variables in 

prostate, breast, liver, lung, and brain cancers) (Fig. 2c). We observed that the levels of 

MAT2B contribute to DNA methylation in nearly half of the variable regions across the 

genome even after accounting for various factors related to DNA methylation (MAT2B 

was selected by 42% of all Elastic Net models with MSE <0.04 on average) 

(Supplementary Fig. 2e). Together, our results confirm that metabolism contributes to 

DNA methylation in many cases of human cancer and the association between 

metabolism and DNA methylation is stronger in some genomic regions than others.  

 

Functional annotation of metabolically regulated regions of DNA methylation  

Results of the integrative modeling across cancers indicate that defined regulation of 

DNA methylation happens in regions where gene expression may be affected, thereby 

suggesting that this regulation could drive essential cancer biology. We next set out to 

characterize all regions across the genome where the association between DNA 

methylation and the met cycle activity is particularly strong. To identify such regions, we 

designed a scanning algorithm to locate genomic regions spanning multiple CpGs with 

significant peaks of correlation of methylation with expression of met cycle enzymes 

(Fig. 3a; Online Methods). We performed this analysis on each of the eight cancer types 

separately and identified distinct peak sets across the genome (Supplementary Table 2). 

To assess potential bias toward highly methylated regions and regions where there is 
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higher probe density, we analyzed the relationship between average absolute methylation 

of individual CpGs and their correlation with met cycle expression, and found no 

significant association (p-value of correlation=0.62), confirming that the identified peaks 

are distinct from highly methylated regions (Fig. 3b; Online methods).  

Density plots of peak distributions relative to the TSS of the nearest gene were 

concentrated around the TSS in all cancers (Supplementary Fig. 3a), as expected given 

the higher density of probes in gene regulatory regions in the Illumina arrays 

(Supplementary Fig. 3b). However, by further visualizing the distribution of the peaks 

immediately surrounding the TSS, we observed that peak distributions are more diffuse 

around the TSS (Supplementary Fig. 3c) compared to the probe density distribution 

control (Supplementary Fig. 3d). This suggests potential enrichment in areas of the 

genome overlapping with gene body regions and CpG island shores where dysregulated 

DNA methylation has previously been observed in human cancers6. The peak distribution 

density plots extended up to a few hundred kilobases in distance from the nearest TSS, 

suggesting that DNA methylation at inter-genic parts of the genome may also be affected 

by the activity of met cycle.  

We next tested the met cycle specificity of the identified peaks by correlating 

them with expression of randomly selected genes in the genome (Online Methods; 

Supplementary Fig. 4a). For the majority (>83%) of the identified peaks, the met cycle’s 

correlation with DNA methylation was significantly non-random (p-value<0.05) 

(Supplementary Fig. 4b). These results show that our approach was able to identify 

genomic regions where DNA methylation levels are specifically affected by the met cycle 

activity.  
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We next set out to identify genes that overlap with the identified peaks in each 

cancer type. Functional annotation of genes overlapping these peaks by means of 

pathway enrichment analyses across a comprehensive collection of more than 70 gene-set 

libraries32 showed enrichment of epigenetic features in these regions consistently across 

all cancers. Strikingly, many of our peaks overlapped with peaks of histone-3 lysine-27 

tri-methylation (H3K27me3) (Fig. 3c-f; Supplementary Fig. 5a-d) as reported by both the 

encyclopedia of DNA elements (ENCODE) human project33 and the RoadMap 

epigenomics project34. In cancers of the lung and bladder, histone-3 lysine-9 tri-

methylation (H3K9me3) peaks were also significantly enriched (Fig. 3f; Supplementary 

Fig. 5c). H3K27me3 and H3K9me3 are both associated with repression of gene 

expression35. Our findings therefore suggest that variation in the met cycle’s activity may 

contribute to aberrant expression from normally silenced loci and heterochromatin 

instability in cancer.  

In addition to histone marks, tissue-specific and cell identity gene sets were also 

enriched in relevant cancer types, including “breast and ovarian cancer genes” in breast 

cancer (Supplementary Fig. 5a); “abnormal nervous system” and “abnormal neuron 

morphology” in brain cancer (Fig. 3d); “asthma” and “lung carcinoma” gene sets in lung 

cancer (Fig. 3f); “kidney-specific” gene set in kidney cancer (Supplementary Fig. 5b); 

and “large intestinal genes”, “inflammatory bowl disease”, and “colorectal carcinoma” 

gene sets in colon cancer (Fig. 3e).  Finally, a number of developmental and signaling 

pathways were among the enriched pathways including “TGF-beta signaling” in kidney 

(Supplementary Fig. 5b), “cell communication” pathway in liver (Fig. 3c), and “G-

protein coupled signaling” in bladder cancer (Supplementary Fig. 5c). Organ and 
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embryonic morphogenesis pathways were enriched in breast (Supplementary Fig. 5a), 

bladder (Supplementary Fig. 5c), and prostate (Supplementary Fig. 5d), all of which are 

hormonally driven cancers. Interestingly, a previous study in breast cancer showed that 

embryonic developmental genes are enriched in regions of DNA hypomethylation 

compared to normal breast36. Together, these results illustrate the functional importance 

of the relationship between met cycle and DNA methylation across cancers.  

 

Contribution of metabolism to DNA methylation at cancer gene loci 

So far, we have shown that there is a surprising enrichment of peak regions of 

metabolically regulated DNA methylation at loci that link to essential aspects of cell 

identity and chromatin structure. We next questioned whether cancer-specific loci may 

also exhibit this interaction. We chose 19 well-characterized cancer-related genes such as 

TP53, PTEN, and ESR1, as well as 4 genes frequently differentially methylated in cancer 

APC, RASSF1, GSTP1, and MGMT (Online Methods). A recent study showed that DNA 

methylation for any given gene has two major principal components: one representing the 

promoter region and the other representing the coding sequence37. Furthermore, CpG 

methylation at promoter regions of genes is typically associated with repression, while 

gene body methylation is thought to increase expression38. We therefore applied our 

integrative modeling to DNA methylation at promoter and gene body regions of each 

cancer gene separately. In addition to the integrative approach, we also generated models 

using only the met cycle genes as prediction variables to quantify the predictive ability of 

met cycle in the absence of other factors.  Thus, each cancer gene locus was analyzed 

once using the integrative approach and once using met cycle alone and 3-fold cross 
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validation was performed in each case as previously described (Online Methods). Model 

performance was evaluated by calculating the error of prediction of test set methylation, 

as shown for two examples in Fig. 4: estrogen receptor (ESR1) promoter in breast cancer 

(MSE=0.004) (Fig. 4a), and androgen receptor (AR) promoter in prostate cancer (MSE= 

0.001) (Fig. 4b). ESR1 promoter methylation in breast cancer and AR promoter 

methylation in prostate cancer are two examples of events that are known to contribute to 

the pathogenesis and prognosis of the corresponding tumor types 39-42. We further 

assessed the integrative models of promoter methylation at these two loci, and found 

many SGOC (including met cycle) variables among the top predictive variables of 

promoter methylation according to the variable importance measures (Fig. 4c,d; Online 

Methods).  

Notably, the models across all cancers in the study were able to predict cancer 

gene methylation with high accuracy even using the met cycle variables in the absence of 

all other variables (85% of the predictions were made with MSE<0.01) (Supplementary 

Fig. 6a,b). As in the case of local methylation, cancer gene methylation was also more 

strongly explained by the expression of MAT2B compared with other met cycle variables 

on average (selected by 24% of all integrative models) (Supplementary Fig. 6c), 

consistent with the function of this enzyme that directly affects SAM levels. Relative 

variable class comparisons confirmed considerable contribution from the “Methionine 

cycle enzymes” and “Other SGOC enzymes” among other classes of variables (highest 

after “Transcription factors” and “Mutations”) (Supplementary Fig. 6d,e).   

We independently evaluated these findings by applying the same models to both 

permuted cancer gene methylation values and also randomly generated methylation 
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values (Supplementary Fig. 7a). In all tests, met cycle contribution was significantly (p-

value< 10e-16) higher when applied to cancer gene methylation vs. permutations or 

random numbers (Online Methods; Supplementary Fig. 7b), confirming the specificity of 

signals contained in the true DNA methylation values at cancer loci. Furthermore, we 

tested the performance of the machine-learning algorithm using randomly generated 

variables for prediction of cancer gene methylation (Online Methods) and found in each 

of the cases tested, that the predictions made with the original variables are uniformly 

more accurate than what is made using simulated random variables (original model MSE 

smaller by 1.4-2 fold than random model MSE on average) (Supplementary Fig. 8a-d). 

We also simulated a dataset where prediction variables and the response are related via 

linear relationships and compared the accuracy of predictions in this simulated linear 

dataset with our original dataset (Online Methods). We saw in all cases that the 

improvement in MSE from our dataset (MSE 1.4-2 fold smaller than random MSE) is 

even more than what we observed with data of the same dimension that have a linear 

relationship (MSE 1.3 fold smaller than random MSE)  (Supplementary Fig. 8e,f). These 

independent tests confirm that machine-learning using the Random Forest algorithm is 

able to identity non-random signals in the data, and also that it can detect non-linear 

relationships between prediction variables and the response.   

Next, we ranked all of the variables based on their overall usage according to the 

integrative models of cancer gene promoter and body methylations (Fig. 4e). Notably, 

many SGOC (including met cycle) enzymes were among the most frequently selected 

variables in all cancers (Fig. 4f,g; Supplementary Fig. 9a-f). Importantly, our models 

highly ranked many clinical and molecular factors previously shown to be associated 
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with DNA methylation in the existing literature (green arrows in Fig. 4f,g and 

Supplementary Fig. 9a-f). Examples of such positive controls include DNA 

methyltransferase (DNMT3A or DNMT3B) enzymes43 that were consistently among the 

top variables in all cancers (Fig. 4f,g; Supplementary Fig. 9a-f ), and patient’s age (or age 

at diagnosis)15,44 that was highly ranked in prostate, colon, breast, kidney, and brain (Fig. 

4f,g; Supplementary Fig. 9a-f ). We also observed ER-status to be one of the most 

important contributors to DNA methylation variation in breast cancer consistent with 

previous publications45 (Supplementary Fig. 9b). Furthermore, we found the mutational 

status of the histone methyltransferase SET-domain containing-2 (SETD-2) as a 

significant contributor in kidney (Supplementary Fig. 9c), smoking in bladder and lung 

(Supplementary Fig. 9d,f), and isocitrate dehydrogenase-1 (IDH1) mutational status in 

brain cancers (Fig. 4g). Each of these findings are in agreement with the current 

knowledge about determinants of DNA methylation15,46-48. These results further validate 

our models and also emphasize the importance of the contribution observed for the 

SGOC variables (including the met cycle).  

Previous work has shown that expression of enzymes across different regions of 

the SGOC network is predictive of metabolic flux through the network24. Notably, we 

observed that several SGOC genes are consistently among the highly ranked variables by 

both Random Forest and Elastic Net models in multiple cancer types. Therefore, to 

understand which features of SGOC metabolism contribute to the interaction with 

methylation, we defined a sub-network that was commonly highly ranked by the models 

in multiple cancer types (Fig. 4h; Online Methods). This SGOC sub-network comprises 

the MAT enzymes in the met cycle (MAT2B and MAT2A), as well as enzymes within 
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serine-glycine metabolism such as phosphoglycerate dehydrogenase (PHGDH) and 

glycine amidinotransferase (GATM) (Fig. 4h). We generally observed negative 

associations between DNA methylation and expression of PHGDH and GATM, but 

positive associations with expression of MAT enzymes. A cautionary note however is 

that in many disease states, levels of particular metabolites in the methionine cycle 

substantially deviate from physiological ranges, thus activating compensatory mechanism 

and leading to correlation with DNA methylation in directions opposite of what would be 

expected from the biochemistry of the reactions49. Therefore, when interpreting the 

direction of correlations between metabolic enzyme levels and DNA methylation, it is 

important to note that they not only depend on the stoichiometry of the corresponding 

enzymatic reactions, but also on endogenous abundance of the related metabolites.  

Together, our results suggest that a particular flux configuration through the SGOC 

metabolic network— which previous studies have shown to be predictable from gene 

expression patterns24—may be important for regulation of DNA methylation.  

 

Cancer pathogenesis of metabolically regulated DNA methylation 

Involvement of the met cycle in promoter and gene body methylation at cancer genes 

suggests a potential implication for this metabolic pathway in explaining part of the 

variability in cancer pathogenesis and patient outcome. To further assess this relationship, 

we divided patients in each cancer type into two groups based on overall predictability of 

their cancer loci methylation by the met cycle (see Online Methods). We then compared 

survival rates between the two groups (“predictable” by met cycle vs. “not predictable” 

by met cycle) in each cancer type using the Kaplan-Meier estimator50 (Fig. 5a-h). An 
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improved overall survival for the “predictable” group was observed, although the 

magnitude of this trend varied depending on cancer type with brain, kidney, liver, and 

colon cancers showing statistically significant differences (log-rank test p-values: brain= 

3.92e-05, liver=0.0048, kidney=0.0085, colon=0.04) (Fig. 5a-d). The difference in 

survival between the predictable and non-predictable groups was not significant in the 

rest of the cancers studied here (Fig. 5e-h), possibly explained by limited power due to 

data censoring at later time points. The overall patterns however suggest that the 

regulation of DNA methylation by the met cycle may be important in maintaining a 

normal epigenome, and disruption of this relationship in specific subtypes of tumors can 

lead to high epigenetic stochasticity in those tumors that correspond to poor clinical 

outcomes. This is consistent with a previous study that showed DNA methylation 

stochasticity increased across samples with increasing malignancy (from normal to 

adenoma to carcinoma)6.  

To validate the results of our survival analyses, we applied multivariate cox 

regression models to account for covariates such as mutations and clinical factors that are 

know to be associated with survival rates (Online Methods). We performed this test in the 

cases of brain, liver, and kidney cancers were the univariate analyses found highly 

significant differences between the predictable and non-predictable groups (Fig. 5a-c). 

The models including covariates still showed a significant difference (p<0.05) between 

the predictable and non-predictable groups of patients even after taking mutational and 

clinical factors into account (see Online Methods for the list of covariates considered in 

each cancer), suggesting that a unique part of variation in survival may be explained by 

epigenetic regulation. We next tried to further validate our results through comparison 
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with independent analyses of the TCGA data by the cBioPortal for Cancer Genomics 

(cBioPortal)51 and Prediction of Clinical Outcome from Genomic profiles (PRECOG)52. 

These analyses found lower survival in prostate cancer patients harboring tumors with 

deep deletions in the met cycle genes (Supplementary Fig. 10a), and higher survival in 

kidney cancer patients where the met cycle enzymes are over-expressed (Supplementary 

Fig. 10b), respectively. These results confirm a relationship between met cycle and 

survival in the same direction as predicted by our hypothesis.  

 

Discussion 

In this study, we conducted a pan-cancer TCGA analysis of the molecular and clinical 

contributions to within-cancer (inter-individual) variation in DNA methylation.  Through 

several lines of integrated analysis, we found the overall expression of both the 

methionine cycle and SGOC network to be strong predictors of multiple aspects of DNA 

methylation and consistently ranked as one of the highest contributing factors to cancer-

associated DNA methylation such as methylation of numerous cancer genes.  Within the 

methionine cycle, we consistently observed a more significant contribution from MAT2B 

and BHMT2, suggesting that the regulation may be occurring at these enzymatic steps. 

MAT2B is the enzyme that converts methionine to SAM, therefore it is expected that this 

enzyme affects SAM levels more directly than other metabolic enzymes.  The 

significance of BHMT2 but not MTR suggests that metabolism of choline and betaine 

may be more prevalent than folates in cases where one-carbon metabolism fuels DNA 

methylation.     
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We introduced a novel approach to identify chromatin regions with strong 

correlations between DNA methylation and metabolic enzyme levels. The identified 

regions for the met cycle enzymes significantly overlapped with histone modifications, 

consistent with enzymatic cross-talk between the two epigenetic processes35. The 

enrichment of gene signatures of repressing histone marks such as H3K27me3 in all 

cancers points to a possible role for the met cycle in maintenance of DNA methylation at 

silenced loci. Previous studies have reported aberrant methylation of transcriptionally 

repressed genes in cancer53. In fact, heterochromatin instability arising from increased 

variability in DNA methylation is a phenomenon observed in many cancers and is 

thought to contribute to epigenetic plasticity and tumor progression4,54. Our results 

provide evidence for this model of dysregulated cancer epigenome and further suggest 

that disruption of the regulation of DNA methylation by the met cycle—which can be a 

cause or consequence of tumorigenesis— may be one of the sources of methylation 

stochasticity leading to higher malignancy. Survival analyses confirm that tumors with a 

weaker association between their cancer gene methylation and the met cycle expression 

are more malignant in comparison to tumors wherein this relationship is closer to normal. 

In addition to epigenetic overlaps, genes with important tissue-specific functions and 

disease states were also found to fall under the metabolism-DNA methylation peaks. 

DNA methylation at cell-type related disease and lineage-specific genes has previously 

been shown to be dynamic and functionally important14. Our results further strengthen the 

idea that met cycle regulation of methylation is strongly associated with normal tissue 

function.   
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Application of the integrative modeling to cancer genes revealed a major role for 

MAT enzymes (MAT2B and MAT2A), as well as PHGDH and GATM— enzymes 

involved in serine and glycine metabolism, respectively. Importantly, MAT2B and 

MAT2A have been shown to co-localize in nuclei and bind DNA through complex 

formation with chromatin binding proteins providing direct evidence for the role of these 

enzymes in regulation of transcription via methylation55. PHGDH diverts the glycolytic 

flux into the de novo serine synthesis pathway that allows glycolysis to provide methyl 

units. GATM diverts glycine into the creatine synthesis pathway in which SAM is 

consumed to produce creatine56. Creatine synthesis is therefore in competition with the 

methionine cycle over cellular pools of SAM, explaining why enzymes within the serine-

glycine metabolism generally tend to be negatively correlated with the met cycle and 

DNA methylation.  

Overall, this study provides the first comprehensive quantification of the 

determinants of inter-individual DNA methylation variation in human cancers. The 

activity of the methionine cycle that emerges in these findings could be either sensed 

directly by the DNA, or indirectly through interplay with dynamic histone methylation, 

which itself is tightly regulated by the status of methionine metabolism21.  Due to 

limitation in the coverage of the DNA methylation arrays, it remains to be determined if 

our findings are generalizable to methylation across the entire genome including all non-

CpG methylation sites as well as hydroxy-methylation sites. Nevertheless these findings 

altogether identify metabolism as a major determinant of DNA methylation status in 

human cancer. It is important to note that the current TCGA dataset contains one sample 

per individual tumor and therefore our conclusions do not necessarily explain the 
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variation in clonal populations within a given tumor.   Future studies using multiple 

samples per tumor or single cell epigenomics are therefore required to characterize the 

determinants of intra-tumor epigenetic heterogeneity. Finally, our study identifies a role 

for altered tumor metabolism in explaining DNA methylation, while the sources of 

alterations in metabolism itself remain to be elucidated but can be addressed using similar 

approaches.  
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Figure Legends 

Figure 1. Integrative modeling of local DNA methylation levels 

a) Schematic summarizing the integrative approach utilized for modeling local DNA 

methylations. DNA methylation at a given 10kb region was predicted by incorporating 

relevant gene expression, somatic mutation, copy number alteration, and clinical 

information into integrative models (see Supplementary Table 1 for the complete list of 

variables included for each cancer type).  

b) An example of an Elastic Net model performance in lung cancer. The x-axis shows 

true values of DNA methylation in each sample, and the y-axis shows the value predicted 

by the integrative modeling in the same sample when it was in the test subset.  

c) Summary of overall model performance. For each cancer, the mean squared errors of 

test set predictions by Elastic Net and Random Forest were averaged across all models of 

local DNA methylation.  

d) Comparison of original gene expression variables with randomly selected variance-

matched genes. The y-axis shows the average rank of each gene expression category 

based on average variable usage score across all Elastic Net models (left) and average 

variable importance score across all Random Forest models (right) of local DNA 

methylation in brain cancer. P-values associated with the Mann-Whitney test between the 

ranks across all models are shown (see Online Methods).   

 

Figure 2. Contribution of different functional classes of variables to DNA 

methylation variation 
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a) Relative contributions of the variable classes according to Random Forest average 

variable importance (left), and Elastic Net average variable usage (right) are shown 

averaged across all cancers (Online Methods). The y-axis shows the average rank of each 

class across cancers (with higher values corresponding to higher contribution).  

b) Diagram summarizing the steps taken toward calculating overall contribution of each 

of the met cycle variables relative to other variables in explaining variability local DNA 

methylations.  

c) Ranking all variables according to their overall selection rate (usage) across all models 

of local DNA methylation in each cancer. The y-axis shows the percent of variables that 

ranked lower than each of the met cycle variables (i.e. made less contribution to DNA 

methylation) in each cancer (BHMT2 was removed from the models of colon and bladder 

cancers due to low expression).  

 

Figure 3. Genome-wide screening for metabolically regulated regions  

a) Schematic describing the algorithm used for finding genomic regions where DNA 

methylation might be regulated by the met cycle (see Online Methods).  

b) Assessment of the relationship between met cycle correlation and absolute 

methylation. The y-axis shows the Spearman rho for correlation of 2000 randomly 

selected probes with the expression of AHCY in colon cancer. The x-axis shows the 

average methylation level of the same probes across the colon cancer samples in the 

study (see Online Methods).  

c-f) Pathway enrichment analyses of genes overlapping peaks. Results are depicted by 

functional annotation of genes located within peaks of correlation between met cycle and 
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DNA methylation (see Online Methods for description of gene sets and enrichment 

scores; see Supplementary Fig. 6 for additional cancer types).  

 

Figure 4.  Contribution of metabolism to DNA methylation at cancer loci 

a) Prediction of ESR1 promoter methylation in test set samples in breast cancer. The x-

axis shows the true methylation value at ESR1 promoter for the test set samples, while 

the y-axis shows the corresponding values as predicted by Elastic Net.  

b) Prediction of AR promoter methylation in test set samples in prostate cancer. The x-

axis shows the true methylation value at AR promoter for the test set samples, while the 

y-axis shows the corresponding values as predicted by Elastic Net.  

c-d) Top 20 variables as ranked based on the variable importance score from Random 

Forest model of ESR1 promoter methylation in breast cancer (c), and AR promoter 

methylation in prostate cancer (d). Variables in the serine, glycine, one-carbon (SGOC) 

network (including the met cycle enzymes and other SGOC enzymes) are shown in red 

and all other variables are shown in black.   

e) Schematic depicting the ranking of all variables based on the combined results from 

promoter and gene body methylation at the 23 cancer loci in the study.      

f-g) Variables that were most predictive of cancer gene methylation on average (top 15%) 

are listed and ranked in order of increasing contribution (variable score= percent variable 

usage by Elastic Net averaged across all models of cancer gene body and promoter 

methylation). Variables in the serine, glycine, one-carbon (SGOC) network (including the 

met cycle genes and other SGOC genes) are shown in red and all other variables are 

shown in black. Green arrows point to previously published factors associated with 
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variations in DNA methylation in each cancer type (positive controls). (Variable names: 

official gene symbols are used to show gene expression variables (including “Methionine 

cycle enzymes”, “Other SGOC enzymes”, “Transcription factors”, “Chromatin 

remodeling factors”, and “ SAM metabolizing enzymes”), while “_mut” and “_cn” 

suffixes following gene symbols denote “Mutations” and “Copy number variations”, 

respectively. For “Clinical factors”, variable names match the descriptors used in the 

TCGA clinical data files) (see Supplementary Fig. 9 for additional cancer types).  

h) Sub-network of SGOC genes contributing to DNA methylation in multiple cancer 

types (at least 4 cancers based on Elastic Net models and at least 3 cancers based on 

Random Forest models). Red nodes represent genes while smaller white nodes represent 

metabolites. Solid edges denote direct biochemical links and dashed edges denote indirect 

biochemical links through enzymatic reactions not shown. Node sizes for the gene nodes 

correspond to the number of cancer types wherein each enzyme contributed significantly 

to cancer gene methylation. (Node size scores: phosphoglycerate dehydrogenase 

(PHGDH)=6, MAT (including MAT2B and MAT2A) =5, glycine amidinotransferase 

(GATM)=5, serine hydroxymethyltransferase 1 and 2 (SHMT)= 4, sarcosine 

dehydrogenase (SARDH)= 4, alanyl aminopeptidase (ANPEP)= 4, L-amino acid oxidase 

(IL4I1)=4, gamma-glutamyl hydrolase (GGH)=4). 

 

Figure 5. Implication of metabolic regulation of methylation in patient survival 

a-d) Kaplan-Meier curves are depicted comparing groups of patients wherein cancer gene 

methylation was predictable (red) or not predictable (black) by the met cycle variables 

(see Online Methods). Overall survival in days is plotted in each case and censored 
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subjects are shown by vertical tick marks (Online Methods). Log-rank test p-value 

between the two groups is reported. Survival analysis results and log-rank test p-values 

are shown for brain, liver, kidney, and colon cancers respectively.  

e-h) Survival analysis results as described above are reported for bladder, breast, lung, 

and prostate cancers, respectively. Log-rank test p-values showed no significant 

difference between the “predictable” and “not predictable” groups (“NS”= not 

significant) (Sample sizes: breast=770, lung=450, liver= 374, brain= 534, bladder= 408, 

kidney=316, prostate= 424, colon= 198). 
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Online Methods 

Data curation  

Publically available genome-wide mRNA expression and DNA methylation data were 

downloaded from the cancer genome atlas (TCGA) portal (https://tcga-

data.nci.nih.gov/tcga/). In order to increase consistency and minimize unwanted 

variations, only samples processed using RNASEQ-V2 with level-3 gene-normalized 

RNA-seq by Expectation Maximization (RSEM) values for gene expression, and level-3 

beta-values from Illumina Infinium HumanMethylation450K BeadChip data for DNA 

methylation were included in the study.  We selected the following 8 cancer types 

wherein the number of available samples analyzed on both platforms was sufficiently 

large for machine-learning calculations: 770 samples of breast invasive carcinoma 

(BRCA), 450 samples of lung adenocarcinoma (LUAD), 374 samples of liver 

hepatocellular carcinoma (LIHC), 534 samples of brain lower grade glioma (LGG), 408 

samples of bladder urothelial carcinoma (BLCA), 316 samples of kidney renal clear cell 

carcinoma (KIRC), 424 samples of prostate adenocarcinoma (PRAD), and 198 samples 

of colon adenocarcinoma (COAD).  Somatic mutations with a frequency of 5% or higher, 

and Genomic Identification of Significant Targets in Cancer (GISTIC) values for copy 

number alterations with a frequency of 15% or higher according to the cBioPortal51 were 

obtained and included in the models. Clinical and follow-up data were downloaded via 

the TCGA-Assembler57 .  

 

Assessment of batch effects  
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We used the TCGA Batch Effects online tool 

(http://bioinformatics.mdanderson.org/tcgabatcheffects) to check for the existence of 

batch effects in the data used in our study. For each cancer types in our study, both the 

DNA methylation and the RNA-seq batch effects were negligible (Dispersion 

Separability Criterion (DSC) score < 0.5 for all sample batches included in the study). 

 

DNA methylation  

The Illumina Infinium Human Methylation450K BeadChip consists of more than 

450,000 probes across the genome covering CpG sites within and outside of CpG islands 

as well as non-CpG methylation sites identified in embryonic stem cells (see: 

http://www.illumina.com/products/methylation_450_beadchip_kits.html). We first 

filtered all probes with more than 80% missing values across each cancer type. Global 

DNA methylation was then defined as the average beta-value across all remaining probes 

for each sample (Supplementary Fig. 1a). Sex chromosomes were also excluded from all 

subsequent analyses of DNA methylation. In order to assess local DNA methylation, we 

divided the genome into 10kb intervals and calculated the average beta value across all 

probes within each bin. We then filtered regions where variation in methylation was 

modest (standard deviation < 0.2 across each dataset). The average beta-value across all 

remaining 10kb regions was then calculated for each sample individually and plotted in 

Supplementary Fig. 1c. In order to study DNA methylation at cancer loci, probes that 

mapped to each gene according to Illumina annotations were identified. Promoter DNA 

methylation was then defined as the average beta value across all probes mapping to a 

given gene and falling within one of the following positional categories based on 
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Illumina chip annotation information: “TSS1500”, “TSS200”, or “5’UTR”.  Gene body 

methylation for each gene was defined as the average beta value across all probes 

mapping to a given gene and falling in “1st exon”, “Body”, or “3’UTR” based on the 

annotation. Promoter and gene body methylation were separately modeled for each of the 

cancer genes in the study (Fig. 4).  

 

Gene expression  

Log-transformed gene normalized RSEM values were used as expression levels and low-

expression genes in each dataset were defined as having less than 70% of the samples 

with a count value larger than 3. Such genes were removed from further analysis.   

 

Gene expression variables included in the integrative models 

In addition to the major enzymes in the met cycle (MAT2B, MTR, BHMT2, AHCY), 

four classes of expression variables with potential links to DNA methylation were also 

included in the integrative models (see Supplementary Table 1 for the complete list of 

variables). The four classes are described in the following: 

“Other SGOC enzymes”: Serine, glycine, one-carbon (SGOC) metabolic genes from our 

previous network reconstruction were included 24. In order to separately assess the effect 

of the met cycle from the rest of the network, we excluded the met cycle enzymes from 

this class and treated them as a separate class (“Methionine cycle enzymes”).   

“Chromatin Remodelers”: A list of human chromatin remodelers and DNA methylation 

machinery was constructed by combining the Gene Ontology (GO) chromatin modifiers 
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list, GO chromatin remodelers list58, and methylated DNA binding proteins and de-

methylases59. 

“Transcription factors”: For each cancer type, transcription factors important in the 

pathogenesis or subtype specification based on previous literature were included60.  

“SAM-metabolizing enzymes”: DNA methyltransferases and other SAM-consuming 

enzymes (except for MAT enzymes already included in the class “Methionine cycle 

enzymes”) according to Human Cyc61 were included in this class.   

 

Mutations included in the integrative models 

For each cancer type, genes with frequent somatic mutations (minimum frequency of 5%) 

among the TCGA cohort according to the cBioPortal51 summary table (TCGA, 

Provisional) were obtained. The transposed matrix of individual barcodes and mutations 

in the selected genes was downloaded from the cBioPortal for each of the 8 cancers in 

this study. See Supplementary Table 1 for a complete list of somatic mutations 

considered in each cancer type.  

 

Copy number alterations included in the integrative models 

For each cancer type, genes with frequent copy number alterations (minimum frequency 

of 15%) among the TCGA cohort according to the cBioPortal51 summary table (TCGA, 

Provisional) were obtained. The transposed matrix of individual barcodes and putative 

copy number alteration calls by GISTIC62 for the selected genes was downloaded from 

the cBioPortal for each of the 8 cancers in this study (Values of putative copy number 

calls determined using GISTIC 2.0 : -2 = homozygous deletion; -1 = hemizygous 
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deletion; 0 = neutral / no change; 1 = gain; 2 = high-level amplification). See 

Supplementary Table 1 for a complete list of copy number alterations considered in each 

cancer type.  

 

Clinical factors included in the integrative models 

For each cancer type, clinical information was downloaded through the TCGA-

Assembler57. All clinical attributes were included for each cancer type with the exception 

of the ones filtered out due to missing data for all samples or factors with the same level 

across all samples. See Supplementary Table 1 for a complete list of clinical attributes 

considered in each cancer type.  

 

Predictive modeling and variable ranking using the Random Forest algorithm 

The Random Forest is a machine-learning algorithm that generates predictions by 

averaging over a collection of randomized decision trees.  Since successive trees are built 

with bootstrap samples, the algorithm is robust to over-fitting, and also those samples that 

are left out (the out-of-bag (OOB) samples) can be used to quantify the contribution that 

prediction variables make to the overall response. The Random Forest method is 

designed to accommodate nonlinearities between the response and prediction variables as 

well as unknown interactions among the variables29,63,64. We used the R package 

“randomForest”65 and performed 3-fold cross validation by manually dividing the 

samples in each cancer type into 3 training and test subsets. To build each forest, tree size 

was set to 500 and the “importance” parameter was set to “TRUE” in the R function 

“randomForest” so as to provide estimates for the importance of prediction variables. 
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Missing data were imputed using the “na.roughfix” function in the “randomForest” 

package. We obtained separate measures of importance for each variable from each 

Random Forest run. These importance scores are calculated as the percent increase in the 

mean squared prediction error on the OOB samples when a given variable is permutated. 

Variables were ranked based on average importance scores across all cross validation 

folds.  Prediction errors were calculated as the mean squared difference between the 

predicted vs. the observed methylation values for the test set samples. The square root of 

the mean squared error (MSE) has the same scale as the response (DNA methylation beta 

values in this case), and is therefore a direct measure of the accuracy with which 

predictions were made.  (Fig. 1c; Supplementary Fig. 6a,b).  

 

Predictive modeling and variable selection using the Elastic Net algorithm 

Elastic Net is a penalized regression approach for variable selection and quantitative 

inference that identifies linear combinations of unique variables that contribute to a 

response variable such as the amount of DNA methylation. The algorithm was developed 

and benchmarked to avoid over-fitting in statistical modeling of high-dimensional data 

containing collinearity27. We applied the Elastic Net algorithm using the R package 

“glmnet”66. Elastic Net performs variable selection by minimizing a regularized cost 

function using the following equation 

𝑚𝑖𝑛!!,!
!
!

𝑤!𝑙(𝑦!!
!!!  β0+𝛽!𝑥!)+ λ [(1−α) ||𝛽||!!/2 + 𝛼||𝛽||!] 

where lambda is the tuning parameter and alpha is the Elastic Net penalty term. For each 

cancer type, the samples were divided into 3 independent test subsets (3-fold cross 

validation), and separate models were generated using each training subset.  Using a grid 
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of different tuning parameter values, we found the lambda that minimized the mean 

squared error using 5-fold cross validation within each training set for each model 

separately. The value of alpha was set to α=0.5 to handle potential correlated variables. 

Finally, for each variable, average coefficient across the 3 independent models was 

calculated for each region and each cancer type. Due to the existence of categorical 

factors among our variables (for which scaling is not appropriate), we also calculated the 

selection rate as an alternative measure of variable importance referred to as “variable 

usage” in the manuscript. Variable usage was measured as the fraction of times across all 

cross validation folds that a variable was selected by the Elastic Net to be included in the 

final model (Supplementary Fig. 6c; Fig.4 f,g; Supplementary Fig. 9a-f). Finally, 

prediction errors were calculated as the squared difference (mean squared error (MSE)) 

between the predicted and measured DNA methylation values for the test sets (Fig. 1c; 

Supplementary Fig. 6a,b).  

 

Variable class contributions to DNA methylation 

Variables were functionally categorized into the following 8 classes: “Methionine cycle 

enzymes”, “Other SGOC enzymes”, “Chromatin remodeling factors”, “Transcription 

factors”, “SAM metabolizing enzymes”, “Clinical factors”, “Copy number variations”, 

and “Mutations”. Results of the integrative modeling were summarized and reported in 

terms of the average contribution from each of the above functional classes in explaining 

DNA methylation variation. Variable importance scores from Random Forest models 

were averaged across all variables within a given class, and an overall class importance 

score was calculated. In the case of Elastic Net models, variable usage as described in the 
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previous section, was averaged across variables in each class and an average percentage 

showing selection rate was calculated. Finally, classes were ranked in each cancer type 

according to their average contribution and the overall class ranks were plotted in Fig. 2a, 

Supplementary Fig. 2c,d, and Supplementary Fig. 6d,e.   

 

Comparison to variance-matched random gene expression controls 

A set of 100 randomly selected genes from the genome with similar cross-sample 

variation in expression as our original gene expression variables (TFs, SGOC, MET-C, 

SAM, and RMs) were considered. We performed this test on local DNA methylations (all 

variable 10kb regions) in brain cancer (LGG) as an example and repeated the integrative 

modeling using this set of randomly selected genes in addition to all other variables 

present in the original models.  All gene expression variables were then ranked using a 

similar approach as described above. To compare our original gene expression variables 

with the variance-matched random genes, the ranks across all models were averaged (Fig. 

1d), and p-values were obtained from one-tailed Mann-Whitney non-parametric test 

between the two groups from Elastic Net and Random Forest. 

 

 Distance to nearest gene transcriptional start site (TSS) 

Selected 10kb regions were converted to genomic range objects using the R package 

“GenomicRanges”67. The distance to single nearest gene’s transcription start site (TSS) 

was found using Genomic Regions Enrichment of Annotations Tools (GREAT)68. 

Genomic regions are associated with nearby genes by first assigning a regulatory domain 

to every gene in the genome, and then finding genes whose regulatory domains overlap 
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with a given genomic region. We set the association rule parameter in GREAT to “Single 

nearest gene” with a maximum extension of 1000kb for definition of regulatory domains. 

Density plots of distance to TSS are depicted in Supplementary Fig. 2b. The same 

approach was used for annotating peaks obtained from Fig. 3 (density plots shown in 

Supplementary Fig. 3a,c). To obtain the distribution of Illumina probe densities around 

the TSS, we randomly selected 10000 probes across the arrays and applied the above-

described approach to measure the distance to nearest gene’s TSS for each probe. Density 

plots were obtained for the purpose of comparison with the distribution of metabolically 

regulated peaks (Supplementary Fig. 3b,d). 

 

Identification of metabolically regulated genomic regions  

To find peaks of strong association between the met cycle and DNA methylation, we 

designed a novel scanning method by applying the idea of Manhattan plots from e-QTL 

analyses69 to DNA methylation data. In each cancer type, we first selected one of the 

major enzymes in the met cycle with the highest overall Spearman correlation with global 

and local DNA methylations (BHMT2 in brain, breast, prostate, and liver; MAT2B in lung 

and bladder; and AHCY in colon and kidney cancers), and calculated the Spearman 

correlation between its expression and the beta value of each individual probe across the 

genome. We then sorted the probes according to genomic coordinates and aligned the –

log10 of the p-values obtained from the Spearman correlations along the chromosomes.  

Next, we applied a sliding window scan for regions of strong association across the 

genome separately in each cancer type (Fig. 3a). For this, probes with the highest 

correlations (top 10% across the genome) were located and a 6kb window  (+3kb and -
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3kb) flanking the genomic coordinate of the original probe was scanned. A region was 

reported as a “peak” if the following criteria were met: 1- Region included at least 3 

probes with a correlation in the same direction as the original probe (positive or 

negative); 2- At least 80% of all probes within the region had a significant (p<0.00001) 

correlations with met cycle expression. After applying these filters, the selected regions 

were annotated and genes overlapping with each of the peaks were used for subsequent 

pathway enrichment analyses. Given the window size and the above criteria, the majority 

of the identified peaks only overlapped with one unique gene (see Supplementary Table 2 

for a complete list of all identified peaks).  

To assess potential bias toward highly methylated regions in the identified regions 

where correlation of methylation with met cycle expression peaks, we tested 2000 

randomly selected probes across the genome. We then evaluated the association between 

methylation of each probe with the value of its Spearman correlation rho with met cycle 

expression— we used AHCY in colon cancer as an example in this test (Fig. 3b).  

Finally, an additional filter was applied to rank the identified peaks according to 

peak shape. For this, the aligned correlation coefficients in each region were assessed 

with respect to whether they formed a peak according to an information theory score 

calculated by the R function “turnpoints” (refer to R package “pastecs”70). This function 

finds all turning points (peaks and pits) in a series of points (in this case, aligned 

correlation coefficients), and calculates the information quantity of each turning point 

using Kendall’s information theory. Finally, it measures a p-value against a random 

distribution of the turning points in a given series, with smaller p-values corresponding to 

less random shape and a higher probability of a turning point corresponding to a real peak 
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or pit.  We selected regions containing turning points with the most significant p-values 

(lowest 20%) in each cancer type and subsequently tested them for specificity for the met 

cycle as described in the following section.   

 

Test of specificity of peaks for the met cycle 

Each of the selected peaks was tested for specificity of their correlations with the met 

cycle expression (vs. gene expression in general). For this, 500 genes were randomly 

selected from the genome in each cancer type, and the Spearman correlation coefficient 

was measured between their expression and the methylation of every probe within a 

given peak. The fraction of significant correlations was calculated for all of the 500 genes 

as well as for the met cycle gene. A randomization q-value was calculated for the met 

cycle gene by comparing it to the distribution of the correlations calculated for the 500 

random genes. This procedure was repeated separately for each peak in each cancer type 

and the results are summarized in Supplementary Fig. 6a,b. 

 

Pathway enrichment analyses 

Peaks were annotated according to Illumina information and UCSC Ref gene names for 

genes overlapping with the identified peaks were extracted. Pathway enrichment analysis 

was performed on the resulting gene list for each cancer type using Enrichr32. Combined 

scores from Enrichr were used to rank pathways. The Combined score “c” is defined as  

 c=log(p)*z where p refers to the p-value from the Fisher’s exact test and z is the z-score 

indicating the deviation from the expected rank. Enrichr first calculates Fisher’s exact p-

values for many random gene sets to generate a distribution of expected p-values for each 
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pathway in their pathway library. The z-score for deviation from this expected rank is 

therefore an alternative ranking score and the combined score is considered a corrected 

form of the enrichment score and p-value, which we used to sort pathways in Fig. 3c-f 

and Supplementary Fig. 5a-d. All gene sets in Fig. 3c-f and Supplementary Fig. 5 had 

Fisher’s exact p-values <0.05, and the most highly enriched sets are shown ranked by the 

combined enrichment scores. Gene set names used in Fig. 3c-f and Supplementary Fig. 5 

follow the convention used and described by Enrichr 

(http://amp.pharm.mssm.edu/Enrichr/#stats). Briefly, gene ontology (GO) sets are shown 

by GO numbers in parenthesis following their name, epigenetic modifications from the 

ENCODE histone modifications 2015 project are shown by “-hg19” following gene set 

names to be distinguished from those from the Epigenomics Roadmap project, gene sets 

from the Cancer Cell line Encyclopedia are shown by cell line names following cancer 

type in upper case, disease signatures from the gene expression omnibus (GEO) are 

shown in upper case followed by GSE accession numbers, KEGG 2015 and the Human 

Gene Atlas gene sets are shown in lower case. Refer to Enrichr for a complete list of all 

gene sets included in more than 70 libraries.   

 

Cancer genes  

A list of 12 cancer drivers common in multiple human cancers was considered71 (tumor 

protein p53 (TP53), phosphate and tensin homolog (PTEN), neuroblastoma RAS viral 

oncogene homolog (NRAS), epidermal growth factor receptor (EGFR), isocitrate 

dehydrogenase 1(IDH1), isocitrate dehydrogenase 2 (IDH2), CCCTC-binding factor 

(CTCF), von Hippel-Lindau tumor suppressor, E3 ubiquitin protein ligase (VHL), catenin 
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beta 1 (CTNNB1), nuclear factor erythroid-2 like 2 (NFE2L2), phosphoinositide-3-kinase, 

regulatory subunit 1 (PIK3R1), and ms-related tyrosine kinase 3 (FLT3)). These genes 

were consistently identified as candidate cancer drivers by 4 independent positive 

selection detection algorithms in a comprehensive pan-cancer analysis of thousands of 

TCGA tumors71. We added to this list, well-known cancer drivers not included in the 

above list (Kirsten rat sarcoma viral oncogene homolog (KRAS), B-Raf proto-oncogene, 

serine/threonine kinase (BRAF), phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic 

subunit alpha (PIK3CA), and breast cancer 1, early onset  (BRCA1)). In addition to these 

common cancer drivers, we also considered a number of cancer type-specific genes 

including receptors important in specific subtypes of cancers (estrogen receptor 1(ESR1), 

androgen receptor (AR), erb-b2 receptor tyrosine kinase 2 (ERBB2)). Finally, cancer 

genes frequently aberrantly methylated in human cancers were also considered42 (RAS 

association domain family member-1 (RASSF1), glutathione S-transferase pi 1 (GSTP1), 

adenomatous polyposis coli (APC), and O-6-methylguanine-DNA methyltransferase 

(MGMT)),  together constructing a list of 23 cancer genes for detailed analysis of DNA 

methylation shown in Fig. 4.  

 

Evaluation of modeling performance using randomized responses 

In order to test the reliability of the variable contribution results obtained from our gene-

specific DNA methylation models, we built two different randomized data sets as control 

responses, each with the same dimensions as the original response dataset (i.e. the cancer 

gene DNA methylations). In the first case, we permuted the DNA methylation values of 

each cancer gene, and repeated the modeling using the met cycle variables. In the second 
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case, we generated random beta-values (from uniform distribution in the range of 0-1) 

and used those as the response variables in the calculations.  We then compared average 

met cycle variable importance (Random Forest) and variable usage (Elastic Net) from 

prediction of true cancer gene methylations vs. permuted methylations and randomly 

generated responses. The Kolmogrov-Smirnov test p-values were calculated between the 

distributions as illustrated in Supplementary Fig. 7b. 

 

Evaluation of modeling performance using randomized prediction variables  

Using prostate cancer as an example, we performed simulation tests to determine whether 

the Random Forest as a methodology is able to utilize the information in the prediction 

variables beyond what could be expected if the predictors were only random noise and 

unrelated to the response. To investigate this, we modeled methylation in the prostate 

cancer dataset at 3 example cancer loci (GSTP1, RASSF1, and PITX2). These genes were 

selected based on previous evidence indicating the critical importance of their aberrant 

methylation in prostate cancer42,72. As controls, we generated 3 additional datasets. For 

the first dataset, we copied the exact response as the GSTP1 methylation, but randomly 

generated a predictor variable set of the same dimensions as the original variable set by 

sampling from a standard normal distribution. That is, each observation on each variable 

is a sample from a normal distribution of unit variance and should therefore have no 

relationship to the response. The other two datasets were generated in the same fashion, 

using RASSF1 and PITX2 methylation as responses and randomly generated variable sets 

as predictors. To assess the performance of the Random Forest computations, we 

compared the mean squared error (MSE) from predictions made using the original data 
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with those made by the datasets consisting of random variables unrelated to the 

responses. For each of the three responses, we randomly divided the data into training 

and test sets, generated a total of 100 simulations consisting of 500 decision trees, and 

compared the resulting MSEs of the predictions made on the test points. Results are 

summarized in Supplementary Fig. 8a-d. 

To quantify the improvement in the Random Forest algorithm by using the 

original variables over the randomly simulated variables, we defined an improvement 

metric (MSE-Imp), describing the relative improvement in prediction accuracy: 

MSE-Imp :=  
!"#!!"#$
!"#!!"#$

 

where MSE-rand is the average MSE calculated using the random simulated variables 

and MSE-orig is the average MSE calculated using the original variables. 

In this test, another simulated dataset of the same dimensions as the original dataset was 

generated where the variables and response were linearly related via the following 

equation: 

Y= 𝛽!𝑋!!
!!! +  𝜀 

To generate this linear dataset, we sampled the value of each prediction variable Xi from 

a standard normal distribution and the noise ε from a normal distribution with mean 0 and 

standard deviation 0.05. The values of the coefficients βi were selected uniformly at 

random from the interval [0,1]. We then measured the MSE improvement (MSE-Imp) for 

the linear dataset using the same approach as MSE improvements for the original datasets 

were calculated (explained in the previous paragraph). This allowed us to compare a 

linearly simulated dataset to our real dataset. Results are shown in Supplementary Fig. 

8e-f. 
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Network construction 

Genes in the serine, glycine, one-carbon (SGOC) network (including the met cycle genes) 

that were among the most highly ranked variables (top 15%) in at least 4 of the cancer 

datasets according to the Elastic Net models and at least 3 of the cancer datasets 

according to the Random Forest models were selected. A metabolic network consisting of 

these enzymes was then constructed using MetScape73  where nodes represent genes and 

metabolites, and edges represent biochemical links. We fixed the node size for 

metabolites but adjusted node sizes for genes to correspond to the number of cancers in 

which each variable was highly ranked (among the top 15% of all variables) (Fig. 4g). 

For nodes not directly connected to the rest of the network, we manually added dashed 

lines where appropriate.  

 

Survival analyses 

In each cancer type, the average error of prediction of DNA methylation at cancer loci 

was measured for each patient across all Elastic Net models using only met cycle 

variables for prediction. Patients were then divided into 2 groups based on predictability 

of their methylation by the met cycle activity (“predictable”= below-median prediction 

error, “not predictable”= above-median prediction error). To estimate overall survival 

time, “days-to-death” was used with vital status information and last follow-up date used 

to right-censor subjects (subjects alive at last follow-up were censored from the analysis 

beyond their last follow up date). The relationship between survival and predictability 

was then analyzed using the “survfit” function in the R package “survival”74 and 
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visualized by Kaplan-Meier curves. Log rank test p-values were calculated by fitting 

models of overall survival to patients’ “predictability” group assignments using the 

“survdiff” function in the survival package for each cancer type separately. Results are 

depicted in Fig. 5. 

 

Multivariate cox regression  

In the three cancer types (brain, liver, and kidney) where univariate analysis showed a 

highly significant difference in survival between the predictable and non-predictable 

groups as described above, and also the sample size allowed for sufficient power to 

perform multivariate analysis, we used relevant clinical and mutational factors as 

covariates and repeated the survival analysis. The following factors were individually 

tested as covariates in separate models of overall survival along with “predictability” 

status as the fixed effect: Brian cancer: all frequent somatic mutations (see 

Supplementary Table 1 for the complete list), histological diagnosis, age, gender, and 

initial weight; Liver cancer: all frequent somatic mutations (see Supplementary Table 1 

for the complete list), tumor stage, history of other malignancies, and residual tumor; 

Kidney cancer: all frequent somatic mutations (see Supplementary Table 1 for the 

complete list), age, and race.  In each case, the results of regression using the “coxph()” 

function in R provided the p-value for the significance of the predictability status when 

modeling overall survival in the presence of covariates.  

 

Software  
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*All computational and statistical analyses were done using R 3.1.2 75. Distribution plots, 

box-plots, scatter-plots, and bar-plots were made in GraphPad Prism version 6 (GraphPad 

Software, San Diego California USA, www.graphpad.com). Circular plots were 

generated using Circos76. 

 

Code availability 

R script is available through the following Github repository 

(https://github.com/mahyam/DNA-methylation-and-metabolism-R-code).  
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