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Abstract

For a long time, neuroscientists have studied the human brain functions un-

der an assumption that brain mechanisms are similar across a group of subjects

under study. In real life, however, individuals process information more or less

differently. To facilitate understanding of complex, natural processing of the

brain, we present an exploratory data analysis approach called functional seg-

mentation inter-subject correlation analysis (FuSeISC). The method provides a

new type of functional segmentation of the brain characterizing not only brain

areas with similar processing across subjects but also areas in which process-

ing across subjects is different. We tested FuSeISC using functional magnetic

resonance imaging (fMRI) data sets collected during traditional block-design

stimuli (37 subjects) as well as naturalistic auditory narrative stimuli (19 sub-

jects). The method identified spatially coherent clusters in various cortical areas

with neuroscientifically plausible interpretations. Our results suggest FuSeISC

as an interesting approach for exploratory analysis of human brain fMRI.
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1. Introduction1

Traditionally, neuroimaging studies have utilized highly controlled experi-2

mental stimuli to study human brain functions. While these studies have been3

useful in providing answers for certain key functions of the brain, these studies4

do not resemble natural processing of the brain in daily life situations, where5

the brain continuously processes massive amounts of rich input information col-6

lected through different senses. In recent years, there has been a paradigm shift7

in neuroscience to conduct more naturalistic experiments better mimicking daily8

life situations to better understand complex processes of the brain.9

While the amount of complex neuroimaging data sets collected in natural-10

istic experiments is increasing, a major bottleneck in these studies is the lack11

of proper analysis methods. So far, one of the most promising approaches to12

analyze complex functional magnetic resonance imaging (fMRI) data sets col-13

lected under naturalistic experiments has been so called inter-subject correlation14

(ISC) analysis [1]. ISC analysis has been used in many fMRI studies using nat-15

uralistic stimuli, such as movies/video [1, 2, 3, 4] and music [5, 6]. ISC-based16

analysis approach is conceptually simple, involving voxel-wise computation of17

correlation coefficients between time series of all subjects. Once the correlation18

coefficients have been computed across all participants exposed to an identical19

time-varying stimulus sequence, subject-pairwise correlation coefficients for each20

voxel can be averaged and subsequently thresholded to obtain brain maps indi-21

cating which regions exhibit ISC during the stimulus [7, 8]. A major strength22

of the ISC-based analysis is that the method can detect activated brain areas23

without modeling the expected hemodynamic response elicited by the stimuli24

[9].25

Despite its benefits, the current ISC-based analysis techniques have several26

limitations. For example, similarly to model-based brain-mapping methods,27

such as those based on a general linear model (GLM; [10]), a conventional ISC-28

based mapping assumes that brain mechanisms are similar across subjects. In29

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2016. ; https://doi.org/10.1101/057620doi: bioRxiv preprint 

https://doi.org/10.1101/057620
http://creativecommons.org/licenses/by-nc-nd/4.0/


real life, however, individuals process identical sensory information more or less30

differently. It is likely that processes supporting higher-order brain functions31

are more variable than certain mechanisms of low-level sensory processing [11].32

Therefore, a conventional ISC approach based on the averaging of correlation33

coefficients across all pairs of subjects finds high ISC values in sensory projection34

areas but may completely lose ISC in higher-order brain areas due to high inter-35

subject variability [12]. Such areas may contain active processing in different36

individuals, but these areas remain undetected due to averaging.37

To better understand brain functions in areas where processing across sub-38

jects is variable (and average ISC may be low), improved analysis methods are39

needed. To this end, we propose analyzing the extent of variation in ISCs in40

addition to average ISCs: high variation in subject-pairwise correlation values41

is interesting because it suggests that some subjects share similar brain activity42

(high correlation) whereas some subjects do not (low or negative correlation).43

Instead, low variation in ISCs in the areas of low average ISC probably re-44

flects noise since all subject-pairwise correlation values are close to zero in this45

case. This interpretation of ISC-based variability differs from traditional inter-46

pretation of variability in neuroimaging studies, where inter-subject variation is47

considered as noise. However, recent studies suggest that individual variability48

provides meaningful information that can help understanding complex processes49

and development of the brain [13, 14, 15, 16].50

Another limitation of the conventional ISC approach is that it is univariate,51

meaning that it provides only voxel-wise information about the extent of the52

ISCs during a single fMRI time series. Multivariate methods, which are capable53

of integrating information across multiple voxels and consider several fMRI time54

series acquired during distinct stimuli, thus dividing the brain into functionally55

distinct segments1, would be highly useful to provide additional insights into56

the spatial organization of the ISC.57

We propose a multivariate approach to analyze the extent and variability of58

1We use terms “cluster” and “functional segment” interchangeably.
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ISCs across the brain. The method is called functional segmentation ISC analy-59

sis (FuSeISC).2 FuSeISC combines cluster analysis with ISC features extracted60

from multiple fMRI time series of multiple subjects, providing novel functional61

segmentation of the human brain. The fMRI time series can be either from sepa-62

rate experiments, separate runs within the same experiments, or extracted from63

selected time intervals of a longer fMRI experiment (for example, corresponding64

the scenes of a movie or an audio drama). FuSeISC takes both the extent and65

variability of the ISCs within the time series into account and performs the seg-66

mentation without a priori knowledge of the expected hemodynamic response67

due to stimulus. Moreover, FuSeISC does not constrain segmentation by any68

anatomic brain subdivision, allowing finding simultaneously both small clusters69

as well as anatomically dispersed larger functional network-like clusters. Finally,70

unlike many other segmentation/clustering methods, FuSeISC does not depend71

on selection of ad hoc user parameters, thereby making the method easy and72

straightforward to use.73

The FuSeISC method described in this paper won the Study Forrest Real74

Life Cognition Challenge3 [17] where the goal was to propose novel ways of ana-75

lyzing complex fMRI data sets acquired under naturalistic stimulation. Here, we76

present the details of the algorithm and validate the technique more thoroughly77

with different data sets. FuseISC has been integrated to the ISC toolbox [18]78

and is freely available at https://www.nitrc.org/projects/isc-toolbox/.79

2. Materials80

2.1. ICBM Functional Reference Battery data81

The fMRI data collected during Functional Reference Battery (FRB) tasks82

developed by the International Consortium for Human Brain Mapping (ICBM)83

[19] was used for the evaluation of the method and for the construction of84

2In addition to the term “functional segmentation”, the term “functional parcellation” is
often used for division of the brain into functionally distinct areas.

3http://studyforrest.org/pages/challenge.html,http://studyforrest.org/contest_
fuseisc.html
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the simulated dataset described in the next subsection. The block-design FRB85

tasks are a set of behavioral tasks designed to reliably produce functional land-86

marks across subjects and as such they are ideal for the validation of functional87

segmentation methods. We have previously used the same data for other exper-88

iments and details of the data and experiments are provided in [9, 20], but, for89

convenience, we provide a short description here.90

The FRB fMRI data were obtained from the ICBM database in the Image91

Data Archive of the Laboratory of Neuro Imaging. The ICBM project (Princi-92

pal Investigator John Mazziotta, M.D., University of California, Los Angeles)93

is supported by the National Institute of Biomedical Imaging and BioEngineer-94

ing. ICBM is the result of efforts of co-investigators from UCLA, Montreal95

Neurological Institute, University of Texas at San Antonio, and the Institute of96

Medicine, Jülich/Heinrich Heine University, Düsseldorf, Germany.97

We extracted from the database the images of 41 right-handed subjects98

who had fMRI measurements for five FRB tasks: (1) auditory naming (AN)99

task, where the subject silently named objects that were verbally described;100

external ordering (EO) task, where the subject after a delay period (and thus101

relying on working memory) kept track of the abstract designs on the screen;102

(3) hand imitation (HA) task where the subject had to out his own hand into103

postures presented in pictures; (4) oculomotor (OM) task where the subject104

made saccades to target locations; and (5) verb generation (VG) task where105

the subject generated a verb that corresponded to an object presented on the106

screen. The detailed definitions of the five FRB tasks are available in the FRB107

software package4 and in [9].108

We discarded four subjects in a pre-screening phase because of poor data109

quality for at least one task in the battery. Thus, our final data set consisted of110

measurements from 37 healthy right-handed subjects (19 men and 18 women;111

mean age was 28.2 years and the age range 20–36 years). The functional fMRI112

data were collected with a 3 T Siemens Allegra FMRI scanner and the anatom-113

4http://www.loni.usc.edu/ICBM/Downloads/Downloads_FRB.shtml

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2016. ; https://doi.org/10.1101/057620doi: bioRxiv preprint 

https://doi.org/10.1101/057620
http://creativecommons.org/licenses/by-nc-nd/4.0/


ical T1 weighted MRI data with a 1.5 T Siemens Sonata scanner. The TR/TE114

times for the functional data were 4 s/32 ms, flip angle 90 ◦, pixel spacing 2 mm115

and slice thickness 2 mm. The acquisition parameters for the anatomical T1116

data were 1.1 s/4.38 ms, 15 ◦, 1 mm and 1 mm, correspondingly. Preprocessing117

was performed by a standard FSL preprocessing pipeline including Gaussian 5118

mm full width at half maximum (FWHM) spatial filtering. For more details,119

see [9].120

2.2. Simulated data121

We generated synthetic fMRI data sets based on the ICBM data described122

above. Similarly to the experimental ICBM data, the simulated data consisted123

of five FRB tasks (AN, EO, HA, OM, and VG) from 37 subjects. The purpose124

of simulated data was to validate the functional segmentation method quanti-125

tatively when the true functional segmentation is fully known.126

In the simulated data sets and for each task separately, every voxel was de-127

fined either as “activated” or “non-activated”. Thus, any voxel was character-128

ized by a 5-element binary vector creating 25 = 32 distinct functional segments.129

Voxels were selected as “activated” according to the binarized statistical maps130

of the GLM analysis performed for the empirical ICBM data sets in [9] (thresh-131

olded at voxel-wise false discovery rate (FDR) corrected threshold q = 0.001). A132

simulated hemodynamic signal was included in the time series of the activated133

voxels. The signal was identical to the one used as a model in the GLM analysis134

of the data (see [9]), i.e., a boxcar convolved with a canonical hemodynamic135

response function (HRF). These signals were then corrupted by pink 1/f noise136

which was generated according to [21]. Signal-to-noise-ratio (SNR) was 0.02,137

which was quantified on the basis of the boxcar function before the convolution138

with the canonical HRF. All brain areas outside the activated regions contained139

only noise.140

The simulation procedure was identical for every 37 simulated data sets141

and FRB tasks. We ignored anatomical and effect size variations between the142

subjects. Moreover, since the original empirical data sets were registered to the143
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MNI-152 coordinate space, we did not perform registration or motion correction144

as preprocessing. The preprocessing only included Gaussian 5 mm FWHM145

spatial filtering.146

2.3. StudyForrest data147

To demonstrate FuSeISC method with naturalistic stimulation, we analyzed148

fMRI data sets of 19 subjects provided by the organization committee of the149

StudyForrest project and data challenge. The details of the experiment, data150

collection and preprocessing are provided by [17]. In brief, the participants151

listened to a German sound track (Koop, Michalski, Beckmann, Meinhardt &152

Benecke, produced by Bayrischer Rundfunk, 2009) of the movie “Forrest Gump”153

(R. Zemeckis, Paramount Pictures, 1994) as broadcast as an additional audio154

track for visually impaired listeners on Swiss public television.155

The audio content was largely identical to the dubbed German sound track156

of the movie, including the original dialogues and environmental sounds, but157

then added by interspersed narrations by a male speaker who described the158

visual contents of the scenes. As detailed by [17], the participants listened to159

the movie sounds using custom-built in-ear headphones designed to maximize160

comfort during the scanning. T2-weighted echo-planar images (gradient-echo, 2s161

TR, 22 ms echo time 0.78 ms echo spacing, generalized autocalibrating partially162

parallel acquisition (GRAPPA)) were acquired during stimulation using a whole-163

body 7T Siemens MAGNETOM scanner. 36 axial slices (thickness 1.4 mm 1.4164

x 1.4 mm in-plane resolution 224 mm field-of-view, anterior-to-posterior phase165

encoding direction) with 10% interslice gap were recorded in ascending order.166

Slices were oriented to include the ventral portions of frontal and occipital cortex167

while minimizing the intersection with the eyballs.168

The entire data set consisted of 8 runs (about 15 min each) for each subject169

from which we selected five highly attractive audio segments for our analysis.170

We ranked the attractiveness of the clips based on an simple internet survey171

of the corresponding video clips (that the subjects did not see) on online video172

services such as YouTube and movie discussion forums. The time points used173
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to create the five clips are listed in supplementary material (Section 1, Table174

S1). The exact data set for the analysis was extracted from the original pre-175

processed linear anatomical alignment set of the StudyForrest data. In addition176

to preprocessing performed by [17], we included Gaussian spatial filtering with177

isotropic 3 mm FWHM.178

3. Methods179

The FuSeISC method consists of two main steps:180

1. Feature extraction (Section 3.1): Given M fMRI time series of N sub-181

jects, 2M ISC-based features are extracted for each voxel as illustrated in182

Fig. 1.183

2. Clustering (Section 3.2): Feature vectors of the voxels are clustered to184

form the functional segmentation of the brain.185

These steps together with the performance evaluation metrics used will be de-186

scribed next.187

3.1. Feature extraction188

Functional segmentation has been typically performed individually for each189

subject based on the individual fMRI time series, and the individual clustering190

results have been combined in a subsequent stage to form group-level cluster191

maps (see, e.g., [22]). We propose a different approach in which we directly in-192

tegrate information across subjects by computing subject-pairwise ISCs from193

multiple temporally distinct time series and extracting features from them.194

Two types of ISC statistic/features are extracted from selected time-series: 1)195

mean and 2) variability of subject-pairwise correlations. The use of both mean196

and variability features is useful because they provide complementary informa-197

tion about processing in different brain regions during selected time-series (e.g.198

video/audio clips) of interest. For instance, high mean ISC alone suggests that199

processing is coherent among subjects (subject-pairwise correlations have sys-200

tematically high values) whereas low mean and low variability in ISCs (subject201
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Figure 1: Illustration of the feature extraction in FuSeISC for one arbitrary voxel located
at a coordinate (x,y,z). At first, M ISC matrices are independently computed based on the
fMRI time series of N subjects. In our study, the total number of time series was M = 5,
corresponding to the total number of tasks (ICBM data) or movie clips (StudyForrest data) of
interest. From each N×N ISC matrix, two features, mean and variability, are extracted using
the Jackknife procedure. These features are stacked into a single feature vector fxyz , whose
dimension is 2M . This procedure is repeated for each brain voxel to obtain altogether 228,483
and 449,612 feature vectors for cluster analysis, corresponding to the ICBM and StudyForrest
data, respectively.
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pairwise correlation values are likely close to zero) is less interesting and may202

simply indicate noise. On the other hand, low mean and high variability in203

ISCs (both high and low subject-pairwise correlations are present) suggests ac-204

tive processing together with high inter-individual differences. This information205

cannot be discovered using traditional ISC methods relying on mean informa-206

tion.207

In more detail, feature extraction was performed separately for each voxel208

across the brain using the ISC toolbox [18] as described in Figure 1. For each of209

M time series, we computed correlation coefficients between the time series of all210

subject pairs, leading to N ×N ISC matrix for each time series, where N is the211

number of subjects. For instance, the fMRI data sets of the Forrest study were212

divided in M = 5 distinct time series, corresponding to the five scenes of interest213

(see Section 2.3 on how the most interesting scenes were selected). The ISC214

features were computed based on the ISC matrices. First, the means of subject-215

pair-wise correlation coefficients, i.e., mean ISC features, were computed:216

r̄(m) =
1

N(N − 1)/2

N∑
i=1

N−1∑
j=2,j>i

rij(m), (1)

where r(m) denotes a group-level ISC in a given voxel (a voxel index is omitted217

for clarity) for time series m and rij(m) is the correlation coefficient between218

mth fMRI time-courses of subjects i and j. Note that because rii(m) = 1219

and rij(m) = rji(m), it is sufficient to compute correlation coefficients across220

N(N − 1)/2 subject pairs (instead of N2 pairs). Such pairwise averaged ISC221

is a common way to represent ISC maps [18]. We computed variability ISC222

features using a leave-one-subject-out Jackknife procedure similar to that ap-223

plied by [20]. More specifically, we first computed mean ISC values so that each224

subject was left out from the original sample one at a time. This procedure225

corresponds to the computation of the N mean ISC values, termed pseudoval-226

ues, for i=1,2,. . . ,N , so that ith row and ith column in the ISC matrix are left227

out one at a time. The Jackknife standard error estimate was then computed228

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2016. ; https://doi.org/10.1101/057620doi: bioRxiv preprint 

https://doi.org/10.1101/057620
http://creativecommons.org/licenses/by-nc-nd/4.0/


as standard deviation of the pseudovalues multiplied by
√
N − 1. With sim-229

ple algebraic manipulation, it can be shown that this procedure corresponds to230

computing231

r̂J(m) =
2

(N − 2)

√√√√N − 1

N

N∑
i=1

(r̄i(m)− r̄(m))2, (2)

where ri(m) = 1
N−1

∑
j 6=i rij(m). Finally, the mean and variability features were

combined into the feature vector

f = [r̄(1), r̂J(1), . . . , r̄(M), r̂J(M)]T .

Our approach does not only reduce the dimension of the original data set232

drastically but allows for novel interpretation of group fMRI data sets. The sup-233

porting idea is that the voxels showing similar mean and variability statistics in234

ISCs for each time-series of interest belong to the same functional segment. This235

way, the brain can be divided in different regions such as in those having high236

mean and high variability in ISCs, and those having low mean and high vari-237

ability in ISCs. Because time-series of interest have different characteristics in238

ISCs, it is likely that clustering based on all the continuous-valued ISC features239

reveals multiple brain areas with specific ISC characteristics. It is insightful to240

analyze these found segments together with their specific ISC characteristics.241

3.2. Robust functional segmentation algorithm242

Gaussian mixture model243

After the feature extraction, we learned a Gaussian mixture model (GMM)244

to cluster the ISC features. GMM provides a principled way of performing245

the functional segmentation under the assumption that the ISC features form246

clusters which follow a Gaussian distribution. Importantly, we did not impose247

any spatial constraints on our model, meaning that functional segments need not248

be spatially contiguous but can consist of several spatially disjoint “subclusters”.249

The model is given by [23]:250
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p (f |θ) =
C∑
i=1

w(i)g
(
f |µ(i),Σ(i)

)
, (3)

where C is the total number of clusters, f ∈ R2M feature vector described in251

the previous section, θ denotes all the parameters of the model, w(i) ∈ [0, 1],252 ∑
i w

(i) = 1 are mixture weight parameters, and g
(
f |µ(i),Σ(i)

)
are multi-253

variate Gaussian component densities with the mean µ(i) and the covariance254

Σ(i). Because a multivariate Gaussian distribution can be fully described by255

its mean and covariance matrix, the unknown parameters of the GMM are256

θ =
{
w(i),µ(i),Σ(i)

}
, for i = 1, 2, . . . , C. The elements of µ(i) ∈ R2M are given257

by µ
(i)
j and the elements of Σ(i) ∈ R2M×2M are given by σ

(i)
j . We estimated258

the maximum likelihood solutions for these parameters using the expectation259

maximization (EM) algorithm [24, 23] implemented in the Statistics Toolbox of260

the Matlab.261

Finding initial model262

A major difficulty with the GMM-based clustering is that the quality of the263

clustering is highly dependent on a selected initial model [25, 26]: if the mean264

vectors of the Gaussian components are not initially near true cluster mean265

values, the EM algorithm converges towards a suboptimal solution and easily266

misses interesting clusters in the data5. Another problem is that the total267

number of clusters C in the GMM is hard to determine because well-known268

model selection criteria, such as the Bayesian information criterion (BIC), tend269

to overestimate the total number of clusters in complex fMRI data sets [27].270

To overcome these problems, we propose restricting a set of initial candidate271

models a priori to meaningful ones based on local structures in the data. Be-272

sides accuracy, prerequisites for the algorithm are computational and memory273

efficiency, because we run segmentation across all the brain voxels (the number274

5This difficulty follows from the non-convexity of the maximum likelihood cost function to
be minimized and every local optimization algorithm (including gradient methods) have this
problem.
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of brain voxels was 228,483 for the ICBM data and 449,612 for the StudyForrest275

data). Here is a summary of the algorithm:276

• Compute a k-nearest neighbor (k-NN) list for each data point.277

• Compute a weighted shared nearest neighbor (SNN) graph [28] of the data278

based on the k-NN list. In the SNN graph, two data points are connected279

only if they belong to each others’ nearest neighbor lists.280

• From this graph, extract a high number of subgraphs by sparsification.281

• Compute mean vectors of the connected components in each subgraph.282

This leads to multiple sets of GMM mean vector candidates.283

• Choose a best set of initial mean vectors and estimate corresponding co-284

variance matrices according to a minimum distance rule.285

See Appendix A.1 for more details. The method was validated against state-286

of-the-art-algorithms, such as Ward’s method [29], K-means [30], K-means++287

[31] and Affinity propagation [32]. The validation results are presented in sup-288

plementary material (Section 3).289

The proposed method is dependent on a single user parameter: a neighbor-290

hood size k. This parameter describes how many neighboring feature vectors291

(voxels) are used to form the SNN graphs.6 A choice of k affects the total292

number of clusters indirectly: Smaller values of k lead to large number of small293

clusters and thus can describe fine details in the original data. However, too294

detailed segmentation is difficult to analyze visually. Larger values of k lead to295

a lower number of clusters but more details in the data are lost. Thus, a choice296

of k is a compromise between fine-graininess and interpretability of the findings.297

In this sense, k is not an ad hoc parameter but rather determines granularity298

level of the analysis.299

We selected k based on the following analysis: at first, we run FuSeISC for300

several values of k. Then, we plotted the total number clusters as a function301

6It is important to note that the connected components of the SNN graph are found in a
feature space and not in a spatial domain and this way a single cluster may consist of multiple
spatially connected components (subclusters).
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of k and select a value from the region where the number of clusters remains302

relatively constant (see Section 4 in supplementary material for validity of this303

approach using synthetic data). To confirm that the selected k value was appro-304

priate, we also computed the similarity (using the adjusted rand index ARI; see305

Section 1 in supplementary material) between all FuSeISC solutions constructed306

from different values of k. In the constructed “stability matrix”, we looked for307

stable region of high ARI values, because in this region the segmentation results308

were similar irrespective of the choice of k. As a final solution, we picked k from309

the region which shows stability in terms of both the total number of clusters310

and ARI.311

3.3. Code availability312

FuseISC has been integrated to the ISC toolbox [18] and is freely available313

at https://www.nitrc.org/projects/isc-toolbox/.314

4. Results315

4.1. Spatial organization of the clusters316

It is insightful to compare FuSeISC results with “conventional” univariate317

ISC results. For this purpose, we computed conventional ISC maps across each318

five clip of interest for the StudyForrest data using the ISC toolbox [18]. Thresh-319

olds for statistical significance were determined using a resampling procedure320

implemented in the toolbox. The thresholds were multiple comparison cor-321

rected across the voxels using the FDR (q < 0.001). Figure 2(A) shows three322

axial slices of the ISC map computed across the Clip0. Here, a colormap denotes323

an average ISC computed across all subject-pairwise ISCs. The highest ISC is324

visible in the auditory cortex, which is natural because the stimuli was pro-325

vided auditorily. Interestingly, however, also frontal cortex shows statistically326

significant ISC. Figure 2(B) provides an overview of the ISCs elicited by all the327

five clips. In this representation, red color denotes statistically significant ISC328

during Clip0, green color shows statistically significant ISC during Clip1, and329
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so on. (When several clips elicited significant ISC in the same voxel, the color330

code corresponding to the clip with the highest ISC is shown.) All the clips331

revealed statistically significant ISC in the auditory cortex, but spatial location332

of ISCs also partly varied depending on the clip. For instance, Clip0 showed333

ISC in frontal regions whereas Clip2 showed ISCs in the visual cortex.334

Figure 2(C) shows a FuSeISC map of the same data using a neighborhood335

size parameter k=230 after discarding irrelevant clusters (see Section 4.3 how we336

selected neighborhood sizes for the StudyForrest and ICBM data and discarded337

irrelevant clusters). As conventional ISC mapping simply provides information338

which voxels show statistically significant average ISC across subject pairs for339

different clips, FuSeISC segments the brain into functionally distinct clusters.340

These clusters are formed on the basis of both average and variability features341

of the subject-pairwise ISCs extracted from each clip. Each cluster is shown in342

different color, and the names of the brain regions corresponding to the center343

of mass of the clusters are listed next to the colorbar. Clusters are organized in344

the decreasing order of the overall ISC of the clips. The names of the largest345

and the second largest subclusters are provided.7 For a more comprehensive346

listing of brain regions for each cluster, see supplementary material (Section 1,347

Table S4).348

FuSeISC provided physiologically feasible functional division, with clusters349

in auditory and visual cortices. Many of the clusters were spatially contiguous350

and/or symmetric between the hemispheres, suggesting that clusters charac-351

terize neuroscientifically plausible information instead of noise. Interestingly,352

FuSeISC revealed brain areas that remained undetected by the conventional353

ISC. For instance, a frontal region covered by cluster #13 was not covered by354

ISC maps of the individual clips in Fig. 2(B). Thus FuSeISC seemed to be more355

7Because spatial constraints are not used in FuSeISC, each found cluster in a feature space
can consist of more than one spatially disjoint subclusters. The name of the second largest
subcluster is reported only when the actual cluster consists of at least two spatially disjoint
subclusters whose sizes are greater than 100 voxels. Moreover, if the center of mass is located
in white matter or non-specified brain area, the largest cortical brain region intersecting with
the cluster is reported instead of the location of the center of mass.
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sensitive than the conventional ISC mapping for detecting activated brain areas.356

Moreover, FuSeISC finds these areas in a fully data-driven manner without the357

requirement for selecting a threshold value for statistical significance.358

Figure 3 provides a more comprehensive view of the FuSeISC results. Figure359

3(A) shows the clusters of the ICBM data. Visual cortices were segmented to360

multiple areas, similarly as by applying independent component analysis (ICA)361

to fMRI data obtained during natural viewing [33], with different segments for362

foveal and peripheral vision, for example. Separate clusters also covered the363

intraparietal sulcus bilaterally, V5, extrastriatal body area, and parahippocam-364

pal space area. Interestingly, the segmentation also seemed to delineate parts365

of the resting-state network (with the nodes of the “default-mode network” in366

posterior parietal cortex and medial prefrontal cortex).367

Figure 3 (B) shows the clusters of the StudyForrest data. Interestingly, the368

clustering along the perisylvian region showed subsegmentation of the segmen-369

tation using ICBM data. For example, the supratemporal auditory cortex was370

separated from the larger perisylvian cluster, as well as from a cluster in the371

temporoparietal junction. Even in these data, the reactivity of mesial “default-372

mode network” showed up (see also [34]).373

In general, the found patterns in both the ICBM and StudyForrest data374

covered large parts of both the convexial and mesial cortex. The clusters375

seemed physiologically feasible, crudely resembling, e.g., the patterns previ-376

ously seen with ICA of various tasks. Many clusters were bilaterally sym-377

metric. As the StudyForrest data was of higher resolution and smoothing378

kernel had smaller FWHM than with ICBM data, some of the clusters were379

more fragmented spatially than the clusters of the ICBM data, but the clus-380

ters still formed clear spatial patterns in the cortex. The complete 3D spa-381

tial maps of clustering results are available in the NeuroVault service [35] at382

http://www.neurovault.org/collections//PXNGFJTL/.383
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Figure 2: Comparison between conventional ISC and FuSeISC results for the StudyForrest
data: (A) ISC map of the Clip0, (B) Integrated ISC map of the five clips, and (C) FuSeISC
map of the five clips. The axial slices are presented in millimeters in the MNI coordinates. The
ISC maps were FDR corrected at q < 0.001 across all the voxels. FuSeISC does not require
threshold selection, but clusters located dominantly over cerebral white matter, brain-stem, or
ventricular areas were discarded. Note how FuSeISC found spatially meaningful segmentation
and revealed more brain areas than conventional univariate ISC mapping.
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Figure 3: Functional segmentation of the (A) ICBM and (B) StudyForrest data by FuSeISC.
The axial slices are presented and labeled with millimeters in the MNI coordinates. For the
abbreviations of the brain region names and the spatial coordinates of the cluster centers, see
supplementary material (Section 1, Tables S2-S4).
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4.2. ISC information of the clusters384

Figure 4 shows cluster-specific ISC information (mean and across subject385

pair variability) obtained by the FuSeISC. Figure 4(A) shows the values of386

mean ISCs feature (cluster average vectors) µ
(i)
j , j = 1, 3, 5, 7, 9, for each cluster387

i as colored bar plots for the ICBM data. Specific colors in the bar graphs388

correspond to different tasks (AN, EO, HA, OM, VG) and the heights of the389

bars correspond to the values of the mean ISC features. Error bars denote the390

standard deviations σ
(i)
jj of the clusters obtained from the learned covariance391

matrices (these should not be confused with the variance ISC features). The392

clusters with the highest mean ISC were located around the occipital cortex.393

Note how the AN (red color) task elicited less ISC than the other tasks in nearly394

all clusters. The major exception is the cluster located in auditory regions (#12395

PTemporal.L, STGpos.R), where ISCs of the AN task were dominant in contrast396

to the other tasks. This is physiologically plausible because AN was the only task397

in which the stimuli were presented auditorily. In a similar fashion, the HA (blue398

color) task exhibited dominant ISCs in the cluster #10 (PoG.L, PrG.R). This is399

physiologically plausible, because the cluster is located around the sensorimotor400

strip. Figure 4(B) shows the corresponding plot for the StudyForrest data for401

the five clips of interest. The clusters with the highest mean ISC were located402

in the auditory cortex.403

Figures 4(C) and 4(D) show the corresponding bar graphs for the ISC vari-404

ability features: µ
(i)
j , j = 2, 4, 6, 8, 10. Clearly, for the ICBM data, variability in405

ISC (see Fig. 4(C)) decreased together with the mean ISC (see Fig. 4(A)). In406

fact, the correlation coefficient between the mean and variability feature across407

clusters was very high (0.94), indicating that the variability features did not408

add important information to mean ISC features for simple block design data.409

For the StudyForrest data, situation is different: variability in ISCs was con-410

siderably higher and the correlation between ISC variability and mean feature411

values was much lower (0.75) than in the case of ICBM data. These findings are412

interesting, suggesting that variability in ISCs contain meaningful information413

in fMRI data sets collected in naturalistic experiments.414
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Figure 4: Cluster-specific information extracted from the estimated distribution parameters
of the GMM: (A) ISC mean of the ICBM data, (B) ISC mean of the StudyForrest data, (C)
ISC variability of the ICBM data, and (D) ISC variability of the StudyForrest data. See Table
S2 in supplementary material for the abbreviations of the brain region names. The values of
the model parameters are stacked on top of each other with different colors corresponding to
tasks/clips of interest. Clusters are organized in the decreasing order of the mean ISC and
their names and colors corresponds to Fig. 3. Both data sets contain clusters with widely
different mean ISCs. For the ICBM data, ISC variability is low and highly correlated with the
mean ISC data across clusters. For the StudyForrest data, ISC variability is much higher and
provides complementary information for ISC mean. This underlines the usefulness of FuSeISC
in the analysis of fMRI data collected in naturalistic experiments.
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4.3. Selection of final segmentations415

We describe how we selected k to obtain the final FuSeISC maps shown in416

the previous section. First, we ran FuSeISC for several values of k and plotted417

the total number clusters for each result. Then, we found the range of stable418

values of k leading to a constant number of clusters. Figure 5(A) shows the419

total number of clusters found for real ICBM and StudyForrest data sets as a420

function of a neighborhood size k. Interestingly, the curves were highly similar421

to each other. With small k-values the number of clusters was high but the422

number decreases rapidly as k became larger. When k ≥ 230, the number of423

clusters in the ICBM data stabilized around 20. For the StudyForrest data, the424

number of clusters in a stable region was approximately the same.425

Figure 5: The effect of neighborhood size for the clustering results of the fMRI data: A) Total
number of clusters of the ICBM and StudyForrest data, B) ARI stability matrix of the ICBM
data, and C) ARI stability matrix of the StudyForrest data.
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In addition, we computed ARI between results obtained for different values426

of k. In the resulting stability matrix, a high ARI value indicates that the seg-427

mentation result is stable, i.e., similar for two different choices of k. Figures 5(B)428

and (C) show the ARI stability matrices for the ICBM data and StudyForrest429

data, respectively. For both data sets, highest similarities were found between430

solutions where k was relatively large. The ARI values of the StudyForrest data431

were slightly lower than those of the ICBM data, but this is natural because432

the spatial resolution (and the total number of voxels) in the StudyForrest data433

was notably higher.434

Based on the above findings, we selected one of the stable solutions from435

both data sets for closer inspection (k=250 for the ICBM data and k=230 for436

the StudyForrest data). In these solutions, the exact number of clusters were437

19 for the ICBM data and 21 for the StydyForrest data. Out of these clusters,438

we discarded clusters dominantly located over cerebral white matter, brain-439

stem, or ventricular areas (the rejection thresholds were 5,000 voxels and 10,000440

voxels for the ICBM and StudyForrest data, respectively). The purpose of this441

procedure was to make the visual investigation of more interesting clustering442

easier. After this post-processing, the total number of clusters were 14 for the443

ICBM data and 13 for the StudyForrest data.444

4.4. Simulation data445

To validate our approach, we analyzed the simulated ICBM data and com-446

pared its results with the ground truth as well as with the real data sets. Figure447

6(A) presents the performance of the functional segmentation for the simulated448

ICBM data against the ground truth as a function of the neighborhood size k.449

For a wide range of parameters, ARI values resulted in “moderate agreement”450

(ARI between 0.4–0.6) between the ground truth and the estimated cluster la-451

beling computed across the 72,577 voxels that were activated in the ground452

truth for at least one task. However, FuSeISC was run across the entire brain453

involving 449,612 voxels to make the clustering task realistic.454

Figure 6(B) shows the total number of clusters as a function of k. Clearly, the455
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Figure 6: Results of the FuSeISC for the simulated ICBM data: A) clustering quality, B)
total number of clusters, C) stability of the results, and D) an example slice showing spatial
organization of the clusters (both ground truth and estimated clusters are shown).

curve shows a region of constant number of clusters (20) when 200 ≤ k ≤ 250.456

This corresponded well with the real data results (see Fig. 5B), where the stable457

regions also consisted of about 20 clusters.458

Figure 6(C) shows an ARI stability matrix of the solutions. This matrix459

shows the similarity between segmentation results computed for different values460

of k. Clearly, segmentation results were stable within the aforementioned con-461

stant region, since the ARI values were high (red color in the stability matrix462

indicates high similarity between results).463

Figure 6(D) shows a spatial organization of the clusters for one stable result464

(k = 225) and one axial slice (z = −4.0 mm in MNI). The ground truth segmen-465

tation (left) and the estimated segmentation (right) are shown side by side to466

allow comparison between the maps. Based on visual inspection, the estimated467

segmentation resembles the true segmentation in most regions very well8.468

8Note that the spatial organization of the colors across the two maps is arbitrary — only
differences and similarities in the actual segmentation should be compared.
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5. Discussion469

5.1. Functional feasibility of the segmentation470

The examination of the analysis results for the real fMRI data results in a471

couple of observations. First, the clusters for the 5-task ICBM dataset covered472

most of the convexial and mesial cortex, thereby clearly extending the typical473

ISC maps that tend to concentrate on early sensory processing areas because the474

correlations between the subjects’ fMRI time series are strongest there [12]. The475

decrease of ISC in the higher levels of the processing hierarchy is evident also in476

group-ICA results of fMRI obtained during natural viewing: the reconstruction477

of individual time courses shows considerably more inter-individual variability478

at, e.g., parieto-occipital sulcus than at early visual cortices [36].479

Second, the segmentation gives an impression of a division that could be480

physiologically feasible, with clusters in auditory and visual cortices. Many of481

the clusters are symmetric between the hemispheres. The segmentation also482

seems to delineate parts of the resting-state network. Although this network is483

considered to be highly “intrinsic” [2], it likely reacts synchronously in different484

subjects to the task demands.485

The same 5-task ICBM dataset as used in this work has been analyzed pre-486

viously task-by-task for comparing the GLM and the conventional ISC [9] for487

the purpose of the ISC method validation. The analysis demonstrated that the488

activation areas detected by the ISC (with no knowledge of the reference time489

course for the stimuli) and GLM (with a reference time course) were highly over-490

lapping. In this work, all the tasks were analyzed jointly and one may thus ask491

whether the results would differ from just a combination of task-wise analysis.492

In this sense, the visually most apparent difference was that the FuSeISC al-493

lowed the segmentation of visual cortex into multiple areas, as described above,494

whereas in the conventional analysis all the tasks with the visual input (VG,495

OM, HA, EO) activated a large part of the visual cortex and there was a little496

difference in the activation regions between the tasks.497
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5.2. Variability ISC features498

A common practice in neuroimaging studies is to improve SNR by averaging499

results across subjects [37]. Such an approach is based on a restrictive assump-500

tion that subjects process information similarly. Although this approach has in-501

creased our understanding in brain processes which are similar across subjects,502

it cannot help us to understand individual brain processing because this type503

of group-averaging does not only remove noise but also information regarding504

inter-subject variability [14, 38]. FuSeISC allows detection of brain regions on505

the basis of both group-average (mean ISC features) and inter-subject variabil-506

ity (variability ISC features) information and, in this way, inherently assumes507

inter-individual variation between subjects.508

High mean ISC features are interesting because they indicate that processing509

is similar across subjects on average. But also brain regions eliciting high vari-510

ability in subject-pairwise ISCs is interesting, because this indicates similarity511

in processing between some subject pairs and dissimilarity between others (this512

is because high variability is only achieved when both high and low pairwise513

ISCs are present). FuSeISC can reveal these regions and may this way open up514

new possibilities to understand complex human brain functions, e.g., related to515

decision-making or emotions.516

In the StudyForrest data, we found brain regions with relatively low mean517

ISCs but relatively high variability of ISCs (see Figs. 3(B), 4(B) and 4(D)).518

This indicates similar brain processing across some of the subjects but not the519

majority of them. Interestingly, these clusters were spatially contiguous and lo-520

cated in meaningful cortical brain areas, suggesting that the revealed clusters did521

characterize brain-activity-related information instead of noise. The fact that522

many clusters were bilaterally symmetric also supports this view. Yet another523

indication of brain-activity-related processing in these regions is high variability524

in ISCs, because it means that there must be both high (positive and/or nega-525

tive) and low (close to zero) pairwise correlation values present. Noise would be526

rather reflected by both low mean and low variability in ISCs, which is the case527

when most pairwise ISC values are close to zero. Our findings are supported528

25

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2016. ; https://doi.org/10.1101/057620doi: bioRxiv preprint 

https://doi.org/10.1101/057620
http://creativecommons.org/licenses/by-nc-nd/4.0/


by recent functional connectivity studies which indicate that functional/spatial529

variability in the brain connectivity between individuals characterizes meaning-530

ful information [39, 38, 13, 16, 15].531

Clusters characterized by low mean ISC but high variability were mainly532

found in the StudyForrest data set and not in the ICBM data set (see Fig. 4).533

Moreover, FuSeISC revealed brain areas in the StudyForrest data that were not534

detected by a conventional ISC analysis (see Fig. 2). These facts and spatial535

locations of the found clusters in the StudyForrest data set suggest that FuSeISC536

is capable of characterizing brain areas involved in higher-order processing.537

5.3. Methodological considerations538

Although many cluster analysis techniques have been previously proposed539

for the functional segmentation of the human brain from fMRI data [40, 41, 42,540

43, 44, 45], they have certain limitations when analyzing complex group fMRI541

data collected under diverse stimuli. Our method was particularly designed542

to address some of the key problems. For instance, conventional functional543

segmentation methods construct group-level segmentations by averaging results544

across individual subjects, ignoring inherent variability in brain functions across545

subjects. FuSeISC inherently constructs group-level ISC maps using statistical546

information of the ISC and this way accounts both for similarity and variability547

in hemodynamic responses across subjects.548

Recently, a group-level model-based cluster analysis framework has been549

presented that accounts for inter-subject variability [46, 27]. However, this ap-550

proach requires the model of the experimental paradigm and is therefore not ap-551

plicable for fMRI data sets collected under naturalistic stimuli. [47] constructed552

functional segmentations separately for individuals using an iterative algorithm553

starting from the solution of the population atlas. While this approach takes554

individual differences into account, visual inspection of brain maps for each indi-555

vidual separately is a tedious task and makes large-scale neuroscientific analysis556

difficult. FuSeISC integrates data across all subjects and time-series of interest557

into a single brain map and this way summarizes heterogeneous data into a558
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meaningful amount of information for visual inspection.559

Many existing functional segmentation methods constrain segmentation into560

spatially local neighborhood (see e.g. [45, 41]). FuSeISC does not assume that561

the clusters are spatially connected, but it is completely data-driven in this562

sense; the voxels are clustered without any knowledge about their spatial lo-563

cation. This is plausible from neuroscientific perspective, as it allows for the564

detection of spatially distributed clusters as well as clusters with heavily dif-565

ferent sizes. Moreover, since spatial information is not used in the clustering566

process itself, visual inspection of the spatial locations of the clusters as well as567

spatial compactness of the clusters serves as a useful validation of the cluster-568

ing outcome. We found spatially compact clusters from the fMRI data sets in569

our analyses (differently colored areas in Fig. 3), indicating that the obtained570

segmentations reflect inherent structures of the data sets and not noise.571

Another great benefit of the FuseISC is that it is a non-parametric method572

in the sense that no ad hoc parameters need to be selected to perform functional573

segmentation. The method contains one user definable parameter k which con-574

trols the coarseness of segmentation, but we proposed a selection of this pa-575

rameter based on stability plots of the segmentations (see Figs. 5 and 6(B-C)).576

Technically, k is used to decide the number of neighbors in k-NN lists and the577

subsequent optimally sparsified SNN graph. The graph, in turn, was used as578

a basis to initialize the GMM to improve its estimation accuracy. This way, k579

is only indirectly related the number of clusters that the clustering algorithm580

produces. Based on our simulations with synthetic data, the value of k can be581

approximately interpreted as the number of voxels that each cluster should min-582

imally contain (see Section 4 in supplementary material). Due to complexity583

of fMRI data, we proposed a systematic way to choose k based on the stability584

analysis of the number of clusters and similarity of the segmentation solutions.585

For the tested data sets, the number of clusters stabilized close to 20 (irre-586

spective of the dataset) and these main clusters were analyzed in this work.587

Interestingly, the number of found clusters approximately coincides with the588

number of functional networks used in a recent study in which individual-level589
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functional parcellations were constructed [47]. A population atlas used in that590

study was constructed in a previous study [48] and involved 18 networks.591

The usage of smaller k values resulted in more functional segments as illus-592

trated in Fig. 5(A). For more detailed parcellations, a smaller k could be used.593

The smaller k values can be useful also to investigate some dedicated region of594

interest, either defined based on neuroanatomy or by a more coarse functional595

segmentation.596

Due to complex structure of the fMRI data, it is difficult to build an ap-597

propriate functional segmentation model in a general case. To alleviate the598

particular problems associated with the learning of the cluster model and selec-599

tion of the number of clusters, we proposed a new method based on SNN graph600

construction to initialize the GMM (see Appendix A.1). The method was suc-601

cessfully validated against the well-known methods K-means [30], K-means++602

[31], Farthest first traversal algorithm [49, 50], Affinity propagation [32], and603

Ward’s minimum variance method [29] using simulated data sets containing604

Gaussian clusters and outliers (see Section 3 in supplementary material). These605

techniques were selected as they have been previously reported as useful in the606

initialization of the GMM, see for instance [51, 52, 25, 53]. Moreover, all these607

methods can be conveniently controlled with a single user parameter, making608

them well-comparable against the proposed method. Although derived from a609

different point of view, we found a very close correspondence in the clustering610

quality between our method and AP. This was a surprising finding which de-611

serves further investigation in future. In any case, the benefit of our method612

over AP (as well as Ward’s minimum variance method) is that the full distance613

matrix needs not to be saved in the memory, allowing a large-scale segmentation614

across the whole-brain without the need for imposing any spatial constraints for615

the clustering process.616

Although FuSeISC is geared towards naturalistic stimulation studies, noth-617

ing prevents its application to traditional fMRI studies with strictly controlled618

stimulus. The application of FuSeISC to these kinds of studies is partially619

supported by the finding that within these setups activations detected by ISC620
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match well with those detected by the standard GLM analysis [9, 20]. However,621

it should be noted that the ISC method expects that the subjects experience622

the same stimulus and therefore, FuSeISC is not useful to segment resting-state623

fMRI data as done for example by using group-ICA [54, 55].624

5.4. Applications625

In addition to being a tool for the spatial exploration of large fMRI datasets626

obtained using naturalistic stimuli (such as the StudyForrest data [17] in this627

work), FuSeISC has other potential applications. For example, FuSeISC could628

be used to generate a functional atlas, either from a certain region of interest629

or from the whole brain, based on task-related fMRI by choosing functionally630

specific time series for the analysis. This approach would be rather different631

than constructing atlases based on resting-state fMRI (see [41] and references632

therein) as one needs to constrain the brain functions to be represented by the633

atlas. As can be seen in Fig. 3, to achieve a resolution level of the currently634

commonly used resting-state fMRI atlases, a whole brain atlas would require635

larger and more diverse datasets than the ones applied in this work. However,636

combined with a high-resolution fMRI of naturalistic experiments, our approach637

represents an interesting line for future research. In principle, FuSeISC is not638

sensitive to the type of the stimulus, meaning that block-design, event-related,639

and naturalistic experiments could be combined together (at least when fMRI of640

the same set of subjects is acquired using the same scanner), partly facilitating641

atlas construction. Studying to what extent data combination is possible in642

practice is left for future research.643

Also, as demonstrated in Fig. 4, FuSeISC provides specific information about644

the ISC statistics of the time series of interest for each cluster, which can be645

used to trace clusters back to stimulus features. The prerequisite is that the646

time series were selected intelligibly so that the whole time series is meaningful647

for the interpretation. However, in combination with naturalistic stimulation,648

rich annotations of the stimulus sequence can be used to divide the data into649

meaningful time series that can then be analysed using FuSeISC.650
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6. Conclusions651

We have proposed a new data-driven method called FuSeISC to analyze652

fMRI data sets collected from a group of subjects experiencing variety of stimu-653

lus. Unlike conventional ISC analysis, FuSeISC segregates different brain areas654

based on the ISC statistics of the stimuli of interest and thus segments the hu-655

man brain into functional segments. FuSeISC performs clustering directly on656

the basis of individual data of a group of subjects without the requirement for657

averaging information across subjects, making it rather different from conven-658

tional functional segmentation algorithms designed for the fMRI data sets. In659

addition to spatial information, FuSeISC provides specific information about the660

ISC statistics of the time series of interest for each cluster as well as information661

how the ISC statistics differs between clusters.662
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Appendix A. Construction of initial Gaussian mixture model663

Appendix A.1. Generation of candidate models664

Here we describe a simple but efficient technique for restricting a set of initial665

Gaussian mixture model (GMM) candidates a priori. To find good candidate666

models, we capture intrinsic structure of the data by shared nearest neighbor667

(SNN) graphs [28] (also called mutual nearest neighbor graphs). In the SNN668

graph, two data points are connected only if they belong to each other’s k-669

nearest neighbor sets. More formally, let us denote the set of L data points in a670

d-dimensional feature space as D = {x1,x2, ...,xL} ⊂ Rd, and let the set of the671

k-nearest neighbors9 of an arbitrary data point xm be Nm. In the SNN graph672

G (D,E), the vertex set D contains all the data points and the edge set E is673

given as follows [28]:674

E =
{

(xm,xn)
∣∣xm ∈ Nn ∧ xn ∈ Nm

}
. (A.1)

Furthermore, we weight every edge in E of the SNN graph by counting the total675

number of intersecting data points of the two nearest neighbor sets:676

w (xm,xn) = |Nn ∩Nm|. (A.2)

Note that by using this weighting scheme, the similarity between two connected677

data points does not depend on their absolute distance but the similarity be-678

tween data points is determined by the similarity of the k-nearest neighbor sets679

of these data points. This desirable property allows detection of clusters with680

varying densities even in a high-dimensional feature space [56, 57, 58]. We also681

compute a degree for each data point xm as the sum of the weights of edges682

connecting xm and its nearest neighbors:683

deg (xm) =
∑

xn∈Nm

w (xm,xn) . (A.3)

9A point is not its own neighbor, i.e. xm 6∈ Nm.
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Next, we form multiple candidate (sub)graphs through sparsification of the684

weighted SNN graph. More specifically, to form a single candidate, we remove685

all the edges associated with data points xm whose degree values are below a686

selected threshold Tj . Several candidates are formed using multiple thresholds687

Tj , for j = 1, 2, . . . , q.10 Thus, a final set of candidate graphs is:688

AG̃ =
{
G̃1

(
D, Ẽ1

)
, G̃2

(
D, Ẽ2

)
, ..., G̃q

(
D, Ẽq

)}
,

where the edge sets of the candidate graphs are:689

Ẽj =
{

(xm,xn) ∈ E
∣∣deg (xm) , deg (xn) ≥ Tj

}
, (A.4)

for j = 1, 2, . . . , q. Finally, we locate the centers of the connected components690

in each candidate graph:691

µ̃i,j = f (Pi,j) , (A.5)

for i = 1, 2, ..., hj . In this expression, µ̃i,j denotes the center of the ith con-692

nected component in the jth graph G̃j , the set Pi,j contains all the data points693

associated with that component, and hj is the total number of connected com-694

ponents in that graph. The function f (·) summarizes the connected component695

in a meaningful way. Our default choice for f (·) is the mean of the data points696

of the Pi,j .697

Appendix A.2. Choice of initial GMM698

Given the candidate sets C1, C2, ..., Cq of the mean vectors, the next task699

is to choose one set Cj =
{
µ̃1,j , µ̃2,j , ..., µ̃hj ,j

}
that represents all clusters in700

data. Different criteria can be used for this purpose, including well-known701

Bayesian information criterion (BIC) [59] or simple minimum sum-of-squared702

error (SSE) criterion (minimum distance rule). In our tests with synthetic noisy703

10A most systematic approach is to construct as many candidates as there are distinct degree
values. Note that degree values are integers and the maximum possible value is k (k − 1).
Therefore, the number of distinct candidate graphs is q ≤ k (k − 1)).
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fMRI data, we found slightly more stable clustering results with the SSE than704

BIC (see Section 5 in supplementary material) and therefore we used SSE as705

the criterion in this paper.11706

After selecting the best candidate set of mean vectors, we use a minimum707

distance rule to assign data points to clusters, and estimate corresponding co-708

variance matrices. The obtained mean vectors and covariance matrices form709

our initial GMM.710
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B. Ludäscher (Eds.), Scientific and Statistical Database Management, vol-901

ume 6187 of Lecture Notes in Computer Science, Springer Berlin / Heidel-902

berg, Berlin, Heidelberg, 2010, pp. 482–500.903

[59] G. Schwarz, et al., Estimating the dimension of a model, The annals of904

statistics 6 (1978) 461–464.905

40

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2016. ; https://doi.org/10.1101/057620doi: bioRxiv preprint 

https://doi.org/10.1101/057620
http://creativecommons.org/licenses/by-nc-nd/4.0/

