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Abstract:	An	increasing	body	of	evidence	suggests	an	important	role	of	the	human	microbiome	

in	 health	 and	 disease.	We	 propose	 a	 ‘lost	 and	 found’	 pipeline,	 which	 examines	 high	 quality	

unmapped	 sequence	 reads	 for	microbial	 taxonomic	 classification.	Using	 this	 pipeline,	we	 are	

able	 to	 detect	 bacterial	 and	 archaeal	 phyla	 in	 blood	 using	 RNA	 sequencing	 (RNA-Seq)	 data.	

Careful	analyses,	including	the	use	of	positive	and	negative	control	datasets,	suggest	that	these	

detected	 phyla	 represent	 true	 microbial	 communities	 in	 whole	 blood	 and	 are	 not	 due	 to	

contaminants.	 We	 applied	 our	 pipeline	 to	 study	 the	 composition	 of	 microbial	 communities	

present	 in	 blood	 across	 192	 individuals	 from	 four	 subject	 groups:	 schizophrenia	 (n=48),	

amyotrophic	 lateral	 sclerosis	 (n=47),	 bipolar	disorder	 (n=48)	 and	healthy	 controls	 (n=49).	We	

observe	 a	 significantly	 increased	microbial	 diversity	 in	 schizophrenia	 compared	 to	 the	 three	

other	groups	and	replicate	this	finding	in	an	independent	schizophrenia	case-control	study.	Our	

results	demonstrate	the	potential	use	of	total	RNA	to	study	microbes	that	 inhabit	 the	human	

body.		
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Main	text:	

Introduction	

Microbial	 communities	 in	 and	 on	 the	 human	 body	 represent	 a	 complex	 mixture	 of	

eukaryotes,	 bacteria,	 archaea	 and	 viruses.	 High-throughput	 sequencing	 offers	 a	 powerful	

culture-independent	 approach	 to	 study	 the	 underlying	 diversity	 of	microbial	 communities	 in	

their	 natural	 habits	 across	 different	 human	 tissues	 and	 diseases.	 Increasing	 numbers	 of	

sequence-based	 studies	 investigate	 the	 role	 of	 the	 human	 microbiome	 in	 health	 (Human	

Microbiome	Project	2012),	disease	(Turnbaugh	et	al.	2006;	Turnbaugh	et	al.	2009;	Abu-Shanab	

and	 Quigley	 2010;	 Cho	 and	 Blaser	 2012;	 Greenblum	 et	 al.	 2012),	 and	 behavior	 (Hsiao	 et	 al.	

2013).	Advancing	methods	to	study	microbial	communities	is	therefore	important	in	aiding	our	

understanding	of	the	human	microbiome.	

Little	 is	known	about	the	human	microbiome	in	the	blood	of	donors	 in	the	absence	of	

sepsis,	 as	 blood	 has	 been	 generally	 considered	 a	 sterile	 environment	 lacking	 proliferating	

microbes	 (Drennan	 1942).	 However,	 over	 the	 last	 few	 decades,	 this	 assumption	 has	 been	

challenged	(Nikkari	et	al.	2001;	McLaughlin	et	al.	2002),	and	the	presence	of	a	microbiome	in	

the	 blood	has	 received	 increasing	 attention	 (Amar	 et	 al.	 2011;	 Sato	 et	 al.	 2014;	 Paisse	 et	 al.	

2016).	

The	majority	of	 the	current	studies	of	 the	microbiome	use	 fecal	samples	and	targeted	

16S	 ribosomal	 RNA	 gene	 sequencing	 (de	 Vos	 and	 de	 Vos	 2012).	 	 With	 the	 availability	 of	

comprehensive	 compendia	 of	 reference	 microbial	 genomes	 and	 phylogenetic	 marker	 genes	

(Darling	et	al.	2014),	it	has	become	feasible	to	use	non-targeted	sequencing	data	to	identify	the	
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microbial	 species	 across	 different	 human	 tissues	 and	diseases	 in	 a	 relatively	 inexpensive	 and	

easy	way.			

Here,	 we	 use	 whole	 blood	 RNA	 sequencing	 (RNA-Seq)	 reads	 to	 detect	 a	 variety	 of	

microbial	organisms.	Our	‘lost	and	found’	pipeline	utilizes	high	quality	reads	that	fail	to	map	to	

the	 human	 genome	 as	 candidate	microbial	 reads.	 Since	 RNA-Seq	 has	 become	 a	widely	 used	

technology	in	recent	years	with	many	large	datasets	available,	we	believe	that	our	pipeline	has	

great	potential	for	application	across	tissues	and	disease	types.		

	 We	applied	our	‘lost	and	found’	pipeline	to	study	the	blood	microbiome	in	almost	two	

hundred	 individuals	 including	 patients	 with	 schizophrenia,	 bipolar	 disorder	 and	 amyotrophic	

lateral	 sclerosis.	 There	 is	 evidence	 of	 involvement	 of	 the	 microbiome	 in	 brain	 function	 and	

disease	 including	 schizophrenia	 (Foster	 and	McVey	 Neufeld	 2013;	 Hsiao	 et	 al.	 2013;	 Castro-

Nallar	 et	 al.	 2015;	 Erny	 et	 al.	 2015).	 These	 three	 disease	 groups	 represent	 complex	 traits	

affecting	 the	 central	 nervous	 system	with	 both	 genetic	 and	 non-genetic	 components	 whose	

etiology	remains	largely	elusive.	Samples	have	been	collected	and	processed	using	standardized	

lab	 procedures	 and	 thus	 allow	 us	 to	 explore	 the	 connection	 between	 the	 microbiome	 and	

diseases	 of	 the	 brain	 using	 our	 pipeline.	 	 We	 observed	 an	 increased	 diversity	 of	 microbial	

communities	in	schizophrenia	patients,	and	replicate	this	finding	in	an	independent	dataset.	
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Results		

Studying	blood	microbiome	using	RNA-Seq	data	

To	 study	 the	 composition	 of	 the	 active	microbial	 communities,	we	determined	 the	microbial	

meta-transcriptome	present	 in	the	blood	of	unaffected	controls	 (Controls,	n=49)	and	patients	

with	 three	 brain-related	 disorders:	 schizophrenia	 (SCZ,	 n=48),	 amyotrophic	 lateral	 sclerosis	

(ALS,	n=47)	and	bipolar	disorder	(BPD,	n=48).	Peripheral	blood	was	collected	from	all	samples,	

and	RNAseq	libraries	were	prepared	from	total	RNA	after	using	ribo-depletion	protocol	(Ribo-

Zero).	(Figure	1A-1C,	Table	1	and	Table	S1A).		

We	separated	human	and	non-human	reads,	and	use	the	latter	as	candidate	microbial	

reads	for	taxonomic	profiling	of	microbial	communities.	To	identify	potentially	microbial	reads	

we	 developed	 the	 ‘lost	 and	 found’	 pipeline.	 First,	we	 filtered	 read	 pairs	 and	 singleton	 reads	

mapped	 to	 the	 human	 genome	 or	 transcriptome	 (Figure	 1.D).	 For	 normalization	 purposes,	

unmapped	reads	were	then	sub-sampled	to	100,000	reads	 for	each	sample.	Next,	we	filtered	

out	 low-quality	 and	 low-complexity	 reads	 using	 FASTX	 and	 SEQCLEAN	 (see	 urls).	 Finally,	 the	

remaining	reads	were	realigned	to	the	human	references	using	the	Megablast	aligner	(Camacho	

et	al.	2009)	to	exclude	any	potentially	human	reads.	The	remaining	33,546	of	100,000	reads	are	

high-quality,	unique,	non-host	reads	used	as	candidate	microbial	reads	in	subsequent	analyses	

to	determine	the	taxonomic	composition	and	diversity	of	 the	microbial	communities	 in	blood	

(Figure	1.E).		
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Figure	1.Framework	of	blood	microbiome	profiling	using	the	‘lost	and	found’	pipeline.	(A)	We	

analyzed	a	cohort	of	192	individuals	from	four	subject	groups,	i.e.	Schizophrenia	(SCZ,	n=48),	

amyotrophic	lateral	sclerosis	(ALS	n=47),	bipolar	disorder	(BPD	n=48),	unaffected	control	

subjects	(Controls	n=49).	(B)	Peripheral	blood	was	collected	for	RNA	collection.	(C)	RNAseq	

libraries	were	prepared	from	total	RNA	using	ribo-depletion	protocol.	(D)	Reads	that	failed	to	

map	to	the	human	reference	genome	and	transcriptome	were	sub-sampled	and	further	filtered	

to	exclude	low-quality,	low	complexity,	and	remaining	potentially	human	reads.	(E)	High	

quality,	unique,	non-host	reads	are	used	to	determine	the	taxonomic	composition	and	diversity	

of	the	blood	microbiome	communities.	See	also	Table	S1.		
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Table	1.	Sample	Description	

	

Disease	Status	 Control	 SCZ	 BPD	 ALS	

N	 49	 48	 48	 47	

Age	Mean	(SD)	 41.1	(10.7)	 29.9	(5.8)	 46.5	(9.9)	 56.4	(10.3)	

Age	Range	 [21	–	60]	 [22-46]	 [26-71]	 [35-76]	

Male/Female	 38/11	 39/9	 20/28	 29/18	

	

	

Assembly	and	richness	of	the	blood	microbiome		

To	 access	 the	 assembly	 and	 richness	 of	 the	 blood	microbiome	we	used	phylogenetic	marker	

genes	 to	 assign	 the	 candidate	 microbial	 reads	 to	 the	 bacterial	 and	 archaeal	 taxa.	 We	 used	

Phylosift	 (Darling	 et	 al.	 2014)	 to	 perform	 phylogenetic	 and	 taxonomic	 analyses	 of	 the	whole	

blood	samples	and	compare	across	 individuals.	Phylosift	makes	use	of	a	set	of	protein	coding	

genes	found	to	be	relatively	universal	(in	nearly	all	bacterial	and	archaeal	taxa)	and	having	low	

variation	in	copy	number	between	taxa.	Homologs	of	these	genes	in	new	sequence	data	(e.g.,	

the	 transcriptomes	 used	 here)	 are	 identified	 and	 then	 placed	 into	 a	 phylogenetic	 and	

taxonomic	 context	 by	 comparison	 to	 references	 from	 sequenced	 genomes.	We	were	 able	 to	

assign	1235	reads	 	 (1.24%	±	0.41%)	on	average	to	the	bacterial	and	archaeal	gene	families.	A	

total	of	 1,880	 taxa	were	assigned	with	Phylosift,	with	23	 taxa	at	 the	phylum	 level	 (Figure	2).	

Most	 of	 the	 taxa	 we	 observed	 derived	 from	 bacteria	 (relative	 genomic	 abundance	 89.8%	 ±	
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7.4%),	 and	 a	 smaller	 portion	 from	 archea	 (relative	 genomic	 abundance	 12.28%	 ±6.4%).	 We	

observed	no	evidence	of	the	presence	of	nonhuman	eukaryotes	or	viruses.		

	

	
	

Figure	2.	Genomic	abundances	of	microbial	taxa	at	phylum	level	of	classification.	Phylogenetic	

classification	is	performed	using	Phylosift	able	to	assign	the	filtered	candidate	microbial	reads	

to	the	microbial	genes	from	23	distinct	taxa	on	the	phylum	level.		

	

In	 total,	we	 observed	 23	 distinct	microbial	 phyla	with	 on	 average	 4.1	 ±	 2.0	 phyla	 per	

individual.	 The	 large	 majority	 of	 taxa	 that	 were	 observed	 in	 our	 sample	 are	 not	 universally	
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present	in	all	individuals,	except	for	Proteobacteria	that	are	dominating	all	samples	with	73.4%	

±	18.3%	relative	abundance	 (Figure	2	dark	green	color).	Several	bacterial	phyla	show	a	broad	

prevalence	 across	 individuals	 and	 disorders	 (present	 in	 1/4	 of	 the	 samples	 of	 each	 subject	

group).	 Those	 phyla	 include	 the	 Proteobacteria,	 Firmicutes,	 and	 Cyanobacteria	with	 relative	

abundance	73.4%	±	18.3%,	14.9	±10.9%,	and	11.0%	±	8.9%	(Table	S2).	This	is	in	line	with	recent	

published	 work	 on	 the	 blood	 microbiome	 using	 16S	 targeted	 metagenomic	 sequencing	

reporting	between	80.4-87.4%	and	3.0-6.4%	 for	Proteobacteria	 and	Firmicutes	 at	 the	phylum	

level,	 respectively	 (Païssé	 et	 al.	 2016).	 	 	 Although	 Proteobacteria	 and	 Firmicutes,	 are	 are	

commonly	 associated	 with	 the	 human	 microbiome	 (Consortium	 and	 others	 2012),	 some	

members	 of	 these	 phyla	might	 be	 associated	with	 reagent	 and	 environmental	 contaminants	

(Salter	et	al.	2014)	(See	also	Validation	and	potential	contamination).		

	

To	 compare	 the	 inferred	blood	microbial	 composition	with	 that	 in	other	body	 sites,	we	used	

taxonomic	composition	of	499	metagenomic	samples	from	Human	Microbiome	Project	(HMP)	

obtained	 by	MetaPHlAn	 (v	 1.1.0)(Segata	 et	 al.	 2012)	 for	 five	major	 body	 habitats	 (gut,	 oral,	

airways,	and	skin)	(Human	Microbiome	Project	2012)	(see	urls).	Of	the	23	phyla	discovered	in	

our	 sample,	 15	were	 also	 found	 in	HMP	 samples,	 of	which	 13	 are	 confirmed	 by	 at	 least	 ten	

samples.	 Our	 data	 suggest	 that	 the	 predominant	 phyla	 of	 the	 blood	 microbiome	 are	 most	

closely	related	with	the	known	oral	and	gut	microbiome	(Table	S2).	
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Validation	and	potential	contamination	

To	 investigate	 the	 possibility	 of	 DNA	 contamination	 introduced	 during	 RNA	 isolation,	 library	

preparation,	and	sequencing	steps,	we	performed	 the	 following	negative	control	experiment.	

We	 applied	 our	 ‘lost	 and	 found’	 pipeline	 to	 RNA-Seq	 reads	 from	 six	 B-lymphoblast	 cell	 line	

(LCLs)	samples	that	are	expected	to	be	sterile	and	lack	any	traces	of	microbial	species.	Neither	

Phylosift	 	 nor	MetaPHlAn	detected	bacterial	 or	 archaeal	microorganisms	 in	 the	 LCLs	 samples	

(See	Table	S1.C).	This	experiment	also	 serves	as	a	positive	control,	 as	 the	only	virus	Phylosift	

does	detect	is	the	Epstein-Barr	virus,	used	for	transfection	and	transformation	of	lymphocytes	

to	lymphoblasts	(Santpere	et	al.	2014).		

We	used	a	more	direct	positive	control	dataset	to	validate	the	feasibility	of	using	human	

RNA-Seq	 to	detect	microbial	 organisms	and	applied	 the	 ‘lost	 and	 found’	pipeline	 to	RNA-Seq	

data	collected	from	epithelial	cells	infected	with	Chlamydia	(Humphrys	et	al.	2013).	The	authors	

collected	 data	 using	 ribo-depletion	 and	 polyA	 selection	 protocols	 at	 1	 and	 24	 hours	 post	

infection.	 Phylosift	 was	 able	 to	 detect	 the	 Chlamydia	 phylum	 in	 100,000	 reads	 randomly	

subsampled	from	unmapped	reads,	confirming,	as	with	above	mentioned	Epstein-Barr	virus	in	

LCLS,	the	validity	of	the	bioinformatic	pipeline	used	(Table	S3).	

The	 design	 of	 experimental	 procedures	 such	 as	 blood	 draw	 and	 subsequent	

downstream	 lab	 procedures	may	 lead	 to	 global	 contamination	 effects.	 	 In	 our	 data,	 there	 is	

minimal	evidence	that	the	detected	microbial	communities	are	confounded	by	contamination	

due	 to	 experimental	 procedures.	 	 First,	 all	 RNA	 samples	 were	 subjected	 to	 the	 same	

standardized	RNA	isolation	protocols,	library	preparation,	and	sequencing	procedures.	With	the	

exception	 of	 Proteobacteria,	 which	 has	 been	 reported	 to	 be	 the	 most	 abundant	 phylum	 in	
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whole	blood	 (Paisse	et	al.	2016),	we	observe	no	phylum	present	 in	all	 individuals,	 suggesting	

absence	of	a	uniform	contaminator	due	to	experimental	procedures	applied	across	all	samples.	

Second,	we	collected	two	blood	tubes	per	 individual	of	which	one	 is	 randomly	chosen	

for	 subsequent	 RNA	 sequencing.	 If	 skin	 contamination	 upon	 first	 blood	 draw	 occurs,	 due	 to	

contact	with	the	needle,	its	effect	will	be	randomly	distributed	across	half	of	individuals	in	our	

cohort	and	should	therefore	not	affect	downstream	between-group	analyses.		

Third,	 it	 is	 vital	 to	 scrutinize	 the	 potential	 impact	 of	 parameters	 that	 are	 variable	

between	 samples,	 such	 as	 experimenter	 (i.e.	 lab	 technician	 who	 extracted	 RNA	 from	 blood	

collections)	 (Weiss	et	al.	2014).	To	 investigate	these	potential	effects	we	grouped	samples	by	

various	 experimental	 variables,	 including	 sequencing	 run	 and	 experimenter.	 We	 observe	 no	

evidence	that	the	detected	microbial	communities	are	confounded	by	contamination,	which	is	

in	 agreement	 with	 previously	 reported	 low	 background	 signal	 introduced	 by	 such	 variables	

(Paisse	et	al.	2016)	 (See	also	Figure	S1	and	S2).	 In	addition,	we	 include	all	available	 technical	

covariates	such	as	RNA	integrity	number	(RIN),	batch,	flow	cell	lane	and	RNA	concentration,	in	

our	disease	specific	analyses.	

	

	 Finally,	 an	 independent	 technology	 was	 used	 to	 validate	 the	 detected	 microbial	

composition	in	our	RNA-Seq	cohort.	We	used	available	blood	whole	exome	sequence	data	from	

two	individuals	from	the	cohort	(See	Table	S1.B).	We	applied	the	‘lost	and	found’	pipeline	and	

compared	 results	 from	 both	 technologies.	 Despite	 the	 use	 of	 different	 technologies	 and	

reagents,	 microbiome	 profiles	 from	 both	 sequencing	 procedures	 were	 found	 to	 be	 in	 close	

agreement.	For	both	 individuals,	we	were	able	 to	detect	 several	microbial	phyla,	all	of	which	
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were	 also	 identified	 using	 RNAseq.	 Conversely,	 RNAseq	was	 able	 to	 detect	 several	microbial	

phyla	not	detected	using	exome	sequencing	(Table	S4).	Taken	together,	 these	results	confirm	

the	validity	and	potential	of	our	‘lost	and	found’	pipeline.	

	

Increased	microbial	diversity	in	schizophrenia	samples	

To	evaluate	potential	differences	in	microbial	profiles	of	individuals	with	the	different	disorders	

(SCZ,	 BPD,	 ALS)	 and	 unaffected	 controls,	 we	 explored	 the	 composition	 and	 richness	 of	 the	

microbial	 communities	 across	 the	 groups.	We	 focused	 on	 alpha	 diversity	 to	 study	microbial	

differences	at	a	personal	level.	To	compute	alpha	diversity,	we	used	the	inverse	Simpson	index	

which	simultaneously	assesses	both	richness	(corresponding	to	the	number	of	distinct	taxa)	and	

relative	 abundance	 of	 the	 microbial	 communities	 within	 each	 sample	 (Simpson	 1949).	 In	

particular,	 this	 index	 allows	 to	 effectively	 distinguish	 between	 the	 microbial	 communities	

shaped	 by	 the	 dominant	 taxa	 and	 the	 communities	 with	 many	 taxa	 with	 even	 abundances	

(Whittaker	1972).	

We	observed	increased	alpha	diversity	 in	schizophrenia	samples	compared	to	all	other	

groups	 (Table	2).	These	differences	are	statistically	significant	after	adjusting	 for	sex	and	age,	

and	 technical	 covariates	 (RIN	 value,	 batch,	 flow	 cell	 lane	 and	 RNA	 concentration)	 using	

normalized	values	of	alpha	(Figure	3a)	(ANCOVA	P	<	0.005	for	all	groups	Table	2	and	Table	S5),	

and	 survive	Bonferroni	 correction	 for	multiple	 testing.	 These	 differences	 are	 independent	 of	

potential	confounders,	such	as	experimenter	and	RNA	extraction	run	(Figure	S1	and	S2)	and	are	

not	 the	 consequence	 of	 a	 different	 number	 of	 reads	 being	 detected	 as	 microbial	 in	
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schizophrenia	 samples	 (see	Supplementary	Results).	No	significant	differences	were	observed	

between	 the	 three	 remaining	groups	 (BPD,	ALS,	Controls).	 In	our	 sample,	alpha	diversity	was	

found	to	be	a	significant	predictor	of	schizophrenia	status	and	explained	5.0%	of	the	variation	

as	measured	by	reduction	in	Nagelkerke’s	R2	from	logistic	regression.	To	investigate	a	potential	

relation	between	genetic	load	of	schizophrenia	susceptibility	alleles	and	microbial	diversity,	we	

tested	 for	 a	 correlation	 between	 polygenic	 risk	 scores	 (Schizophrenia	Working	 Group	 of	 the	

Psychiatric	Genomics	Consortium	2014)	and	alpha	diversity	in	samples	for	which	both	RNA-Seq	

and	 genotyping	 data	 was	 available.	 No	 such	 correlation	 was	 observed	 in	 our	 schizophrenia	

sample	 (n=	32,	Kendall’s	 tau=	0.008,	P	=	0.96	 ).	We	also	did	not	observe	differences	 in	alpha	

diversity	between	sexes	or	across	ages.	Alpha	diversity	at	other	main	taxonomic	ranks	yields	a	

similar	pattern	of	increased	diversity	in	Schizophrenia	(Figure	S3).		

The	increased	diversity	observed	in	schizophrenia	patients	may	be	due	to	specific	phyla	

characteristic	to	schizophrenia,	or	due	to	a	more	general	increased	microbial	diversity	in	people	

affected	by	the	disease.	To	investigate	this,	we	compared	diversity	across	individuals	within	the	

schizophrenia	 group	 to	 control	 samples.	 We	 used	 the	 Bray-Curtis	 beta	 diversity	 metric	 to	

measure	the	respective	notions	of	internal	beta	diversity	(within	samples	from	the	same	group)	

and	external	beta	diversity	(across	samples	from	different	groups).	Beta	diversity	measures	the	

turnover	of	taxa	between	two	samples	in	terms	of	gain	or	loss	of	taxa,	as	well	as	the	differences	

in	abundances	between	the	shared	taxa.		

	In	our	data,	we	compared	beta	diversity	across	pairs	of	samples	with	schizophrenia	and	

controls,	resulting	in	three	subject	groups:	SCZ_Controls,	SCZ_SCZ,	and	Controls_Controls.	The	

lowest	 diversity	 was	 observed	 in	 the	 Controls_Controls	 group	 (0.43	 ±	 0.21),	 followed	 by	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2016. ; https://doi.org/10.1101/057570doi: bioRxiv preprint 

https://doi.org/10.1101/057570
http://creativecommons.org/licenses/by-nc-nd/4.0/


SCZ_SCZ	(0.50	±	0.14),	and	the	highest	beta	diversity	values	for	SCZ_Controls	(0.51	±	0.17)	(P<	

0.05	 for	 each	 comparison,	 by	 ANCOVA	 after	 correcting	 for	 three	 tests).	 Thus,	 the	 observed	

increased	 alpha	 diversity	 in	 schizophrenia	 is	 not	 caused	 by	 a	 particular	microbial	 profile,	 but	

most	likely	represents	a	non-specific	overall	increased	microbial	burden	(see	also	Figure	S4	and	

Supplementary	Results).		

		 In	 addition	 to	measuring	 individual	microbial	 diversity	 (alpha),	 and	 diversity	 between	

individuals	(beta),	we	measure	the	total	richness	of	blood	microbiome	by	the	total	number	of	

distinct	 taxa	of	 the	microbiome	community	observed	within	an	entire	 subject	 group	 (gamma	

diversity	 (Jost	 2007)).	We	 observed	 that	 all	 23	 distinct	 phyla	 are	 observed	 in	 schizophrenia:	

gamma(SCZ)=23	compared	to	gamma(Controls)=20,	gamma(ALS)=16	and	gamma(BPD)=18.		
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Figure.	3.	Increased	diversity	of	human	blood	microbiome	among	schizophrenia	samples.	(A)	

Alpha	diversity	per	sample	for	four	subject	groups	(Controls,	ALS,	BPD,	SCZ),	measured	using	

the	inverse	Simpson	index	on	the	phylum	level	of	classification.	Schizophrenia	samples	show	

increased	diversity	compared	to	all	three	other	groups	(ANCOVA	P	<	0.005	for	all	groups,	after	

adjustment	of	covariates,	see	also	Methods,	Table	S5	and	Figure	S3).	(B)	Alpha	diversity	per	

sample	of	schizophrenia	cases	and	controls,	measured	using	the	inverse	Simpson	index	on	the	

genus	level	of	classification.	Schizophrenia	samples	show	increased	within-subject	diversity	

compared	to	Controls	(P	=	0.003	after	adjustment	of	covariates).	
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Table	2.	Microbial	Diversity	measures	

	

Disease	Status	 Control	 SCZ	 BPD	 ALS	

N	 49	 48	 48	 47	

Alpha	diversity	Mean	(SD)	 1.77	(0.74)	 2.50	(0.79)	 1.55	(0.66)	 1.65	(0.86)	

Beta	diversity	Mean	(SD)	 0.43	(0.21)	 0.50	(0.14)	 0.31	(0.17)	 0.38	(0.22)	

Gamma	diversity	(Per	group)	 20	 23	 18	 16	

	

	

	

Reference-free	microbiome	analysis	

Reference-based	methods	(Phylosift	and	MetaPhlan)	were	complemented	with	the	reference-

independent	 method	 EMDeBruijn	 (see	 url).	 By	 this	 method,	 candidate	 microbial	 reads	 are	

condensed	 into	 a	 DeBruijn	 graph,	 and	 differences	 between	 samples	 are	 measured	 by	

quantifying	 how	 to	 transform	 one	 individual	 graph	 into	 the	 other.	 Using	 the	 resulting	

dissimilarities	between	the	samples,	principal	coordinates	are	obtained	by	principal	coordinates	

analysis	(PCoA)	(Cox	and	Cox	2000).	

	 We	 observe	 that	 the	 EMDeBruijn	 results	 were	 in	 close	 agreement	 with	 the	 results	

obtained	 from	 Phylosift.	 EMDeBruin	 distances	 measured	 between	 samples	 correlated	

significantly	 with	 beta	 diversity	 (spearman	 rank	 P	 <	 2.2e-16,	 rho	 =	 0.37,	 including	 SCZ	 and	

Controls).	 Also,	 EMDeBruijn	 PCs	 significantly	 correlated	 with	 principal	 components	 obtained	

from	 edge	 PCA	 based	 on	 the	 Phylosift	 taxonomic	 classification	 (Correlation	 between	
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EMDeBruijn	PC1,	and	Phylosift	PC1	is	P	=	1.824e-09,	rho	=	-0.42,	Spearman	rank	correlation,	see	

also	Figure	S5).	The	first	three	EMDeBruijn	PCs	are	significant	predictors	of	schizophrenia	status	

after	 correcting	 covariates,	 and	 jointly	 explained	 7.1%	 of	 the	 variance	 as	 measured	 by	

Nagelkerke	R-squared	(P<	0.05	for	each	PC).		

	

Replication	

We	performed	a	replication	study	using	peripheral	blood	from	two	independent	subject	groups:	

schizophrenia	 (SCZ	 n=91)	 and	 healthy	 controls	 (Controls	 n=88)	 (See	 Table	 S1.D).	 RNAseq	

libraries	for	the	replication	sample	were	prepared	from	total	RNA	using	poly(A)	enrichment	of	

the	mRNA,	 a	 more	 selective	 procedure	 than	 the	 total	 RNA	 that	 was	 used	 for	 the	 discovery	

sample.	Microbial	profiling	was	performed	using	MetaPHlAn	(Segata	et	al.	2012).		 	

	 In	 these	 samples,	 we	 replicated	 our	 main	 finding	 of	 increased	 microbial	 diversity	 in	

patients	 with	 schizophrenia.	 In	 particular,	 schizophrenia	 samples	 showed	 increased	 alpha	

diversity	on	genus	 level	 (2.73	±	0.77	 for	 cases,	 versus	2.32	±	0.57	 for	 controls,	 corrected	P	=	

0.003	Figure	3b),	and	explained	2.5%	of	variance	as	measured	by	reduction	 in	Nagelkerke	R2.	

While	 our	 original	 analysis	 was	 performed	 on	 the	 phylum	 level,	 in	 our	 discovery	 sample	we	

observe	a	similar	increase	of	diversity	at	the	genus	level	(see	Figure	S3).	Just	as	in	our	discovery	

cohort,	we	observed	no	significant	correlation	between	alpha	diversity	and	age	or	differences	

across	gender.		

	 For	beta	diversity,	the	pattern	we	observed	slightly	diverged	from	the	results	obtained	

from	our	discovery	cohort:	while	Controls_Controls	still	has	the	lowest	average	beta	diversity,	
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we	observed	increased	beta	diversity	in	SCZ_SCZ	group	versus	SCZ_Controls	(P	<	0.0001	Figure	

S4).	 One	 potential	 explanation	 for	 this	 discrepancy	 is	 that	 beta	 diversity	 in	 the	 replication	

sample	 was	 computed	 at	 the	 genus	 rather	 than	 phylum	 level,	 making	 slight	 mismatches	

between	 individuals	more	 likely,	 and	 distances	 between	 samples	 hard	 to	 compute	 based	 on	

present	microbial	taxa.	This	is	expected	to	be	more	likely	if	both	samples	have	a	large	microbial	

diversity.	In	relation	to	this,	contrary	to	what	we	observed	in	the	discovery	sample,	we	did	not	

observe	a	correlation	between	EMdeBruijn	distances	and	Beta	diversity	in	this	sample.		

However,	 as	 in	 our	 discovery	 sample,	 EMDeBruijn	 PCs	 significantly	 correlated	 with	

principal	 components	 obtained	 from	 edge	 PCA	 based	 on	 the	 MetaPHlAn	 taxonomic	

classification	(Correlation	between	EMDeBruijn	PC1,	and	MetaPHlAn	PC1	is	P	=	6.091e-06,	rho	=	

-0.32	 Spearman	 rank	 correlation,	 see	 also	 Figure	 S5).	 Finally,	 as	 in	 our	 discovery	 sample,	 the	

first	three	EMDeBruijn	principal	components	adjusted	for	covariates	were	significant	predictors	

of	status	and	together	explain	7.8%	of	the	variance.		

	

Cell	type	composition	and	diversity	

We	hypothesized	that	differences	in	microbial	diversity	may	be	linked	to	whole	blood	cell	type	

composition.	Since	the	actual	cell	counts	were	not	available	for	these	individuals,	we	used	cell-

proportion	 estimates	 derived	 from	 available	 DNA	 methylation	 data	 to	 test	 this	 hypothesis	

(Houseman	et	al.	2012;	Aryee	et	al.	2014;	Horvath	and	Levine	2015).	

We	 assessed	methylation	 data	 from	 65	 controls	 from	 our	 replication	 sample,	 and	 compared	

methylation-derived	blood	 cell	 proportions	 to	 alpha	diversity	 after	 adjusting	 for	 age,	 gender,	
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RIN,	and	all	 technical	parameters.	We	 tested	whether	alpha	diversity	 levels	are	associated	 to	

cell	 type	abundance	estimates.	Our	analysis	shows	one	cell	 type,	CD8+	CD28-	CD45RA-	cells,	 to	

be	significantly	negatively	correlated	with	alpha	diversity	after	correction	for	all	other	cell-count	

estimates	 (correlation	=	 -0.41,	P=7.3e-4,	 Figure	S6,	Table	S6).	 These	cells	 are	T	 cells	 that	 lack	

CD8+	 naïve	 cell	markers	 CD28	 and	 CD45RA	 and	 are	 thought	 to	 represent	 a	 subpopulation	 of	

differentiated	CD8+	T	cells	(Koch	et	al.	2008;	Horvath	and	Levine	2015).	We	observed	that	low	

alpha	diversity	correlates	with	high	levels	of	this	population	of	T	cells	cell	abundance.	

	

Discussion	

We	used	high	throughput	RNA	sequencing	from	whole	blood	to	perform	microbiome	profiling	

of	active	microbial	communities	and	identified	an	increased	diversity	in	schizophrenia	patients.	

Using	our	‘lost	and	found’	pipeline,	we	consistently	detected	a	wide	range	of	microbial	phyla	in	

blood.	The	detection	of	microbial	RNA	transcripts	 in	blood	is	consistent	with	the	possibility	of	

microbial	activity	in	blood	and	with	the	possible	role	of	such	microbes	in	health	and	disease.	

While	other	studies	of	human	microbiome	using	RNA-Seq	have	been	conducted	(Croucher	and	

Thomson	 2010)(McClure	 et	 al.	 2013),	 this	 is	 the	 first	 study	 assessing	 the	 microbiome	 from	

whole	 blood	 by	 using	 unmapped	 non-human	 total	 RNA-Seq	 reads	 as	 microbial	 candidates.	

Despite	 the	 fact	 that	 transcripts	 are	 present	 at	much	 lower	 fractions	 than	 human	 reads,	we	

were	able	to	detect	microbial	transcripts	from	bacteria	and	archaea	in	almost	all	samples.	The	

microbes	 found	 in	 blood	 are	 thought	 to	 be	 originating	 from	 the	 gut	 as	 well	 as	 oral	 cavities	

(Potgieter	et	al.	2015;	Spadoni	et	al.	2015),	which	is	in	line	with	our	finding	that	the	microbial	
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profiles	 found	 in	our	study	most	closely	resemble	the	gut	and	oral	microbiome	as	profiled	by	

the	 HMP	 (Human	 Microbiome	 Project	 2012).	 The	 taxonomic	 profile	 of	 the	 cohort	 samples	

suggests	 the	 prevalence	 of	 the	 several	 phyla,	 Proteobacteria,	 Firmicutes	 and	 Cyanobacteria,	

across	 individuals	 and	different	 disorders	 included	 in	 our	 study.	 	 This	 is	 in	 line	with	 a	 recent	

study	 using	 16S	 targeted	 metagenomic	 sequencing,	 which	 reported	 Proteobacteria	 and	

Firmicutes	among	the	most	abundant	phyla	detected	in	blood	(Païssé	et	al.	2016).				

Our	 study	demonstrates	 the	value	of	 analyzing	non-human	 reads	present	 in	 the	RNA-

Seq	data	to	study	the	microbial	composition	of	a	tissue	of	interest	(Kostic	et	al.	2011;	Jorth	et	al.	

2014).	The	RNA-Seq	approach	avoids	biases	introduced	by	primers	in	16S	ribosomal	RNA	gene	

profiling.	 In	 addition,	 compared	 to	 genome	 sequencing,	 RNA-Seq	 might	 offer	 a	 potential	

advantage	 of	 avoiding	 contamination	 of	 genomic	 DNA	 by	 dead	 cells	 (Ben-Amor	 et	 al.	 2005).		

Given	 the	 many	 large-scale	 RNA-Seq	 datasets	 that	 are	 already	 available	 or	 currently	 being	

generated,	we	anticipate	that	high-throughput	metatranscriptome-based	microbiome	profiling	

will	find	broader	applications	in	studies	across	different	tissues	and	disease	types.		

Rigorous	 quality	 control	 is	 critically	 important	 for	 any	 high-throughput	 sequencing	

project,	especially	in	the	context	of	studying	the	microbiome	(Salter	et	al.	2014).	To	this	end,	we	

only	 considered	 high	 quality	 non-human	 reads	 and	 map	 them	 to	 genes	 that	 allow	 for	

differentiation	 between	 taxa.	 In	 our	 study	 we	 carefully	 evaluated	 possible	 contamination	

effects	 introduced	during	the	experiments,	and	accounted	 for	potential	bias	of	 relevant	RNA-

Seq	technical	aspects	in	all	our	analyses.	In	addition,	we	performed	both	negative	and	positive	

control	experiments	to	test	the	feasibility	and	applicability	of	our	pipeline.	To	address	potential	

contamination,	 we	 performed	 our	 pipeline	 on	 sterile	 microbiome-free	 B-lymphoblastoid	 cell	
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lines	and	detected	no	microbiome	other	than	the	Epstein	Barr	virus	used	to	transfect	the	cells.	

As	a	positive	control,	we	used	RNA-Seq	data	from	cells	infected	with	Chlamydia	and	were	able	

to	detect	the	Chlamydia	phylum.	By	comparing	results	from	RNA-Seq	and	exome	sequencing	of	

two	 individuals	 from	 our	 cohort,	 we	 also	 tested	 robustness	 with	 respect	 to	 sequencing	

technique.	These	 findings	validate	our	 ‘lost	and	 found’	bioinformatics	pipeline	 in	 its	ability	 to	

detect	microbial	communities	using	unmapped	non-human	reads	derived	from	total	RNA-Seq.		

The	 most	 striking	 finding	 of	 our	 study	 relating	 to	 brain-related	 diseases	 is	 that	

schizophrenia	patients	have	an	increased	microbial	alpha	diversity	compared	to	controls	as	well	

as	to	the	other	two	disease	groups	(ALS,	bipolar	disorder).	This	observation	is	replicated	in	an	

independent	sample	of	schizophrenia	cases	and	controls.	The	discovery	sample	was	based	on	

total	RNA	sequencing	after	depletion	of	ribosomal	transcripts	while	the	replication	sample	was	

based	on	polyA	selected	RNA.	We	estimate	that	total	RNA	may	be	better	equipped	to	study	the	

metagenome	 in	 whole	 blood.	 Despite	 these	 differences	 in	 methods,	 the	 replication	 sample	

provides	 strong	 evidence	 for	 a	 schizophrenia-specific	 increased	 alpha	 diversity	 of	 the	 blood	

microbiome,	explaining	roughly	5%	of	disease	variation.	We	do	not	only	observe	an	increased	

individual	 microbial	 diversity,	 but	 also	 an	 increased	 diversity	 between	 individuals	 (Beta	

diversity)	with	schizophrenia	compared	to	controls,	rendering	it	unlikely	that	a	single	phylum	or	

microbial	profile	is	causing	the	disease-specific	increase	in	diversity.		

For	the	study	of	microbiome	diversity	we	employed	reference-based	methods	(Phylosift	

and	MethPhlan)	as	well	as	the	EMDebruin	method,	a	purely	reference-agnostic	approach.	The	

latter	showed	strong	correspondence	to	both	reference-based	methods,	highlighting	the	value	

of	this	unbiased	sequence-based	analysis	for	investigating	microbial	differences	across	groups.	
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We	recognize,	however,	that	the	EMDebruin	captures	variation	in	sequence	data	that	may	not	

only	 depend	 on	 differences	 in	 distribution	 of	 microbial	 transcripts	 but	 also	 of	 transcripts	 of	

other	yet	unknown	origin.		

	 The	increased	microbial	diversity	observed	in	schizophrenia	could	be	part	of	the	disease	

etiology	 (i.e.	 causing	 schizophrenia)	 or	 may	 be	 a	 secondary	 effect	 of	 disease	 status.	 In	 our	

sample,	we	observed	no	correlation	between	increased	microbial	diversity	and	genetic	risk	for	

schizophrenia	 as	 measured	 by	 polygenic	 risk	 scores	 (Ripke	 et	 al.	 2013a).	 In	 addition,	 it	 is	

remarkable	 that	 bipolar	 disorder,	 which	 is	 genetically	 and	 clinically	 related	 to	 schizophrenia	

(Bulik-Sullivan	 et	 al.	 2015),	 does	 not	 show	 a	 similar	 increased	 diversity.	 We	 did	 observe	

however,	 a	 strong	 inverse	 correlation	 between	 increased	 diversity	 and	 estimated	 cell	

abundance	of	a	population	of	T-cells	in	healthy	controls.		Even	though	this	finding	is	based	on	

indirect	 cell	 count	 measures	 using	 DNA	 methylation	 data	 (Horvath	 and	 Levine	 2015),	 the	

significant	correlation	highlights	a	likely	close	connection	between	the	immune	system	and	the	

active	blood	microbiome,	a	relationship	that	has	been	documented	before	(Belkaid	and	Hand	

2014).	 In	 the	absence	of	a	direct	 link	with	genetic	 susceptibility	and	 the	 reported	correlation	

with	 the	 immune	 system,	 we	 hypothesize	 that	 the	 observed	 effect	 in	 schizophrenia	 is	

secondary	 to	 disease.	 This	 may	 be	 a	 consequence	 of	 lifestyle	 differences	 of	 schizophrenia	

patients	 including	 smoking,	 drug	 use,	 or	 other	 environmental	 exposures.	 Future	 targeted	

and/or	longitudinal	studies	with	larger	sample	sizes,	detailed	clinical	phenotypes,	and	more	in-

depth	sequencing	are	needed	to	corroborate	this	hypothesis.		

We	hope	that	our	finding	of	increased	diversity	in	schizophrenia	will	ultimately	lead	to	a	better	

understanding	 of	 the	 functional	 mechanisms	 underlying	 the	 connection	 between	 immune	
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system,	blood	microbiome,	and	disease	etiology.	With	the	increasing	availability	of	large	scale	

RNA-Seq	datasets	collected	from	different	phenotypes	and	tissue	types,	we	anticipate	that	the	

application	 of	 our	 ‘lost	 and	 found’	 pipeline	 will	 lead	 to	 the	 generation	 of	 a	 range	 of	 novel	

hypotheses,	ultimately	aiding	our	understanding	of	 the	 role	of	 the	microbiome	 in	health	and	

disease.	

	

Methods	

Sample	Description	

Schizophrenia,	bipolar	patients	and	control	subjects	included	in	this	study	were	recruited	at	the	

University	Medical	Center	Utrecht,	The	Netherlands.	Detailed	medical	and	psychiatric	histories	

were	collected,	and	only	patients	with	a	DSM-IV	diagnosis	of	schizophrenia	or	bipolar	disorder	

were	included	as	cases;	controls	were	neurologically	healthy	individuals,	free	of	any	psychiatric	

history	(Buizer-Voskamp	et	al.	2011;	Ripke	et	al.	2013b;	Loohuis	et	al.	2015).	ALS	patients	were	

recruited	from	ALS	clinics	at	UCLA	and	UCSF.	Whole	blood	was	collected	in	PAXgene	Blood	RNA	

tubes	and	 total	RNA	was	 isolated	using	 the	PAXgene	extraction	kit	 (Qiagen).	 For	DNA,	whole	

blood	was	collected	in	EDTA	tubes	and	the	extraction	performed	using	the	Kleargene	XL	blood	

DNA	extraction	kit.	HapMap	B-lymphoblast	cell	 lines	(n=3)	were	cultured	up	to	5	days.	All	cell	

lines	 were	 grown	 in	 RPMI	 1640	 (Sigma-Aldrich)	 supplemented	 with	 15%	 fetal	 bovine	 serum	

(Fisher	 Scientific)	 and	 2mM	 L-glutamine	 (Fisher	 Scientific)	 	at	 37C	 and	 5%	 (vol/vol)	 CO2	 in	 a	

humidified	incubator.	Cell	pellets	were	lysed	with	Buffer	RLT	and	RNA	was	extracted	using	the	

RNeasy	Mini	Kit	(Qiagen).	All	study	methods	were	approved	by	the	institutional	review	board	of	
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the	 University	 of	 California	 at	 Los	 Angeles,	 San	 Francisco	 or	 the	 Medical	 Research	 Ethics	

Committee	of	the	university	Medical	Center	Utrecht	at	The	Netherlands.	All	individuals	enrolled	

in	these	studies	provided	written	informed	consent.	

	

Sample	sequencing		

	

Discovery	sample		

RNAseq	 libraries	 were	 prepared	 using	 Illumina’s	 TruSeq	 RNA	 v2	 protocol,	 including	 ribo-

depletion	 protocol	 (Ribo-Zero	 Gold).	 Sequencing	 was	 performed	 by	 UCLA	 Sequencing	 Core	

using	 the	 Illumina	Hiseq	2000	platform.	 In	 total	we	obtained	6.8	billions	2x100bp	paired-end	

reads	(1355	Gbp)	of	paired-end	reads	for	the	primary	study(35.3	±	6.0	million	paired-end	reads	

per	sample).	

Replication	sample		

For	 the	 replication	 sample,	 RNAseq	 libraries	 were	 prepared	 using	 Illumina’s	 TruSeq	 RNA	 v2	

protocol,	with	poly(A)	enrichment.		A	total	of	3.8	billion	reads	(760	Gbp)	were	obtained	(26.3	±	

12.0	million	paired-end	reads	per	sample).	

RNASeq	of	B-lymphoblast	cell	lines		
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Just	as	our	discovery	samples,	we	used	the	TruSeq	RNA	v2	library	preparation,	including	Ribo-

Zero	Gold	 rRNA	depletion.	 	 Samples	were	 collected	 from	a	 trio	 (father,	mother,	 offspring)	 in	

duplicate.	We	obtained	144.6	million	2x69bp	paired-end	reads	(Rapid	run).	

Whole	Blood	Exome	Sequencing		

DNAseq	 libraries	 were	 prepared	 using	 Illumina’s	 TruSeq	 protocol,	 using	 the	 TruSeq	 Exome	

enrichment	kit.		

For	 all	 samples,	 RIN	 values	 were	 obtained	 using	 Agilent’s	 RNA	 6000	 Nano	 kit	 and	 2100	

Bioanalyzer	and	measures	for	RNA	concentration	were	obtained	using	the	Quant-iT	RiboGreen	

RNA	Assay	Kit.		

	

Sequence	Analysis:	“Lost	and	found	pipeline”	

Candidate	microbial	reads	were	obtained	as	follows.	We	filtered	reads	mapped	to	the	human	

reference	 genome	 and	 transcriptome	 (tophat	 v.	 2.0.12	 with	 default	 parameters,	 ENSEMBL	

GRCh37	 transcriptome	and	ENSEMBL	hg19	build).	 Tophat2	was	 supplied	with	a	 set	of	 known	

transcripts	 (as	 a	 GTF	 formatted	 file,	 Ensembl	 GRCh37)	 using	 –G	 option.	 	 .	 	 Unmapped	 reads	

were	sub-sampled	to	0.1	million	reads	file,	Ensembl	GRCh37)	using	–G	option.		We	used	a	multi-

stage	procedure	to	filter	out	non-microbial	reads.	First,	to	reduce	bias	of	coverage,	unmapped	

reads	 were	 sub-sampled	 to	 0.1	 million	 reads	 for	 the	 taxonomic	 survey	 of	 the	 microbial	

communities.	Then,	we	filtered	out	low-quality	and	low-complexity	reads,	that	is	reads	with	at	

least	 75%	 of	 their	 base	 pairs	 with	 quality	 lower	 then	 30	 (FASTX,	
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http://hannonlab.cshl.edu/fastx_toolkit/)	 and	 reads	with	 sequences	 of	 consecutive	 repetitive	

nucleotides	 (SEQCLEAN,	 http://sourceforge.net/projects/seqclean/),	 respectively.	 Next,	 the	

remaining	reads	were	realigned	to	the	reference	human	genome	and	transcriptome	(ENSEMBL	

GRCh37	 transcripome	 and	 ENSEMBL	hg19	build)	 using	 the	Megablast	 aligner	 (BLAST+	 2.2.30,	

edit	distance	6)	(Camacho	et	al.	2009)	to	filter	out	any	remaining	potentially	human	reads.		We	

prepared	 the	 index	 from	 each	 reference	 sequence	 using	 makembindex	 from	 BLAST+.	 The	

following	parameters	were	used	for	makembindex:	 	 iformat	=	blastdb.	 	The	following	options	

were	used	to	map	the	reads	using	Megablast:	for	each	reference:	task	=	megablast,	use_index	=	

true,		 perc_identity	 =	 94,	 outfmt	 =6,	max_target_seqs	 =1.	We	 consider	 only	 entirely	mapped	

reads.	 Reads	mapped	 to	 the	human	 reference	 genome	and	 transcriptome	were	 identified	 as	

‘unmapped	 human	 reads’	 and	 filtered	 out.	 The	 remaining	 unmapped	 reads	 were	 used	 in	

subsequent	analyses.	

Taxonomic	profiling		

We	 used	 Phylosift	 	 to	 perform	 taxonomic	 profiling	 of	 the	 whole	 blood	 samples	 (v	 1.0.1,	

https://phylosift.wordpress.com/).	Phylosift	makes	use	of	a	set	of	protein	coding	genes	found	

to	be	relatively	universal	(in	nearly	all	bacterial	and	archaeal	taxa)	and	having	low	variation	in	

copy	 number	 between	 taxa.	 Homologs	 of	 these	 genes	 in	 new	 sequence	 data	 (e.g.,	 the	

transcriptomes	used	here)	 are	 identified	 and	 then	placed	 into	 a	 phylogenetic	 and	 taxonomic	

context	 by	 comparison	 to	 references	 from	 sequenced	 genomes.	 Phylosift	was	 run	 as	 follows	

with	default	parameters:	$phylosift	all	--output=results	input.fastq	
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For	 our	 replication	 study,	 we	 used	 MetaPhlAn	 for	 microbial	 profiling	 (Metagenomic	

Phylogenetic	Analysis,	v	1.7.7,	http://huttenhower.sph.harvard.edu/metaphlan).	The	database	

of	 the	microbial	 marker	 genes	 is	 provided	 with	 the	 tool.	MetaPhlAn	was	 run	 in	 2	 stages	 as	

follows,	the	first	stage	identifies	the	candidate	microbial	reads	(i.e.	reads	hitting	a	marker)	and	

the	second	stage	profiles	a	metagenomes	in	terms	of	relative	abundances.	

	

1. $metaphlan.py	 <fastq>	 <map>	 --input_type	multifastq	 --bowtie2db	 bowtie2db/mpa	 -t	

reads_map	--nproc	8	--bowtie2out		

2. $metaphlan.py	--input_type	blastout	<bowtie2out.txt>	-t	rel_ab	<tsv>	

The	 reason	 for	 using	MetaPHlAn	 rather	 that	 Phylosift	 was	 that	 due	 to	 differences	 in	 library	

preparation	 and	 sequence	 procedure,	 there	 were	 not	 sufficiently	 many	 reads	 matching	 the	

database	of	the	marker	genes	curated	by	Phylosift	for	adequate	microbial	profiling.	

	

	

Estimating	Microbial	Diversity		

	

Microbial	 diversity	 within	 a	 sample	 was	 determined	 using	 the	 richness	 and	 alpha	 diversity	

indices.	Richness	was	defined	as	the	total	number	of	distinct	taxa	in	a	sample.	We	use	Inverse	

Simpson's	formula	incorporating	richness	and	evenness	components	to	compute	alpha	diversity	

𝟏
𝛌
= 𝟏

𝚺𝒑𝒊
𝟐	(R	 package	 asbio,	 http://www.inside-r.org/packages/cran/asbio).	 To	measure	 sample-

to-sample	 dissimilarities	 between	 microbial	 communities	 we	 use	 Bray-Curtis	 beta	 diversity	

index	accounting	for	both	changes	in	the	abundances	of	the	shared	taxa	and	account	for	taxa	
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uniquely	 present	 in	 one	 of	 the	 samples.	 Higher	 beta	 diversity	 indicates	 higher	 level	 of	

dissimilarity	between	microbial	communities,	providing	a	link	between	diversity	at	local	scales	

(alpha	diversity)	and	the	diversity	corresponding	to	total	microbial	richness	of	the	subject	group	

(gamma	diversity	(Koleff	et	al.	2003)).	We	calculate	beta	diversity	per	each	combination	of	the	

samples	 resulting	 in	 a	matrix	 of	 all	 pair-wise	 sample	 dissimilarities.	 Bray-Curtis	 beta	 diversity	

index	 is	measured	 taxonomically	 as	𝟏 − 𝟐𝑱
𝑨,𝑩

,	 where	 J	 is	 the	 sum	 of	 the	 lesser	 values	 for	 the	

shared	taxa,	A	and	B	are	the	sum	of	the	total	values	for	all	taxa	for	each	sample	respectively.	

Beta	 diversity	 was	 computed	 using	 ‘vegan’	 R	 package	 (https://cran.r-

project.org/web/packages/vegan/index.html).	 Total	 diversity	 of	 the	 groups	 is	 estimated	 as	 a	

function	of	 the	 total	number	of	 taxa	 (gamma	diversity).	We	use	gamma	diversity	 to	estimate	

diversity	of	the	group	as	well	as	total	diversity	of	the	study.		

	

Statistical	analysis	of	microbiome	diversity	

Alpha	diversity	

To	test	for	differences	in	alpha	diversity	between	disease	groups,	we	fit	the	following	analysis	of	

covariance	(ancova)	model		

𝑎𝑙𝑝ℎ𝑎_𝑛𝑜𝑟𝑚	~	𝑆𝑒𝑥	 + 	𝐴𝑔𝑒	 + 	𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙	𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠	 + 	𝐷𝑖𝑠𝑒𝑎𝑠𝑒	𝑠𝑡𝑎𝑡𝑢𝑠	

Where	Alpha_norm	=	alpha	values	after	inverse	normal	transformation,	and	Age	=	Individual’s	

age	at	blood	draw.		Technical	covariates	include:	RIN,	Batch	(Plate_number),	Concentration,	and	
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Flow	cell	lane,	where	RIN	=	RNA	integrity	value,	a	measure	for	RNA	quality	and	Concentration	=	

RNA	concentration	prior	to	normalization	at	the	genotyping	core.	

The	effect	of	disease	 status	was	estimated	by	 first	 regressing	out	 the	effects	of	 the	 included	

covariates.	 Adjustment	 for	 pairwise	 comparisons	 for	 all	 possible	 disease	 status	 pairs	 (6	

comparisons)	is	performed	using	Bonferroni	correction	for	multiple	testing.		

Because	of	 the	 large	age	differences	within	 the	 included	groups,	we	 tested	 for	differences	 in	

alpha	by	sex	or	age	directly	within	each	group	separately	by	correlating	normalized	alpha	values	

with	 sex/age,	 using	 spearman	 rank	 correlation.	We	 also	 repeated	 the	 above	 ancova	 analysis	

using	 only	 younger	 samples	 (with	 Age<47,	 the	 maximum	 age	 in	 the	 schizophrenia	 cohort,	

resulting	 in	 n=107	 samples),	 and	 obtained	 similar	 results	 (i.e.	 ANCOVA	 P	 <	 0.007	 between	

schizophrenia	 and	 all	 other	 and	 no	 significant	 differences	 observed	 between	 BPD,	 ALS	 and	

Controls).	To	determine	the	relative	effect	size	of	alpha	diversity	on	schizophrenia	status,	we	fit	

the	following	logistic	regression	model:	

𝑆𝐶𝑍	~	𝑆𝑒𝑥	 + 	𝐴𝑔𝑒	 + 	𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙	𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠	 + 	𝑎𝑙𝑝ℎ𝑎_𝑛𝑜𝑟𝑚	

Where	SCZ	is	a	binary	variable,	which	is	coded	as	true	if	the	sample	belongs	to	the	SCZ	cohort.		

Variation	 explained	 is	 by	 alpha_norm	 is	measured	 by	 the	 reduction	 in	 R2	comparing	 the	 full	

logistic	regression	model	versus	a	reduced	model	with	alpha_norm	removed.		

		Beta	diversity	
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To	assess	difference	 in	Beta	diversity	we	fit	a	similar	model	as	above,	now	correcting	for	Sex,	

Age	and	technical	covariates	for	each	individual:		

𝑏𝑒𝑡𝑎_𝑛𝑜𝑟𝑚	~	𝑆𝑒𝑥1	 + 	𝑆𝑒𝑥2 + 	𝐴𝑔𝑒1	 + 	𝐴𝑔𝑒2	 + 	𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙	𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠1	

+ 	𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙	𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠2	 + 	𝐺𝑟𝑜𝑢𝑝	

where	 beta_norm	 =	 beta	 values	 for	 each	 pair	 of	 individuals	 after	 inverse	 normal	

transformation,	and	Group	contains	set	SCZ_SCZ	(both	individuals	from	SCZ),	SCZ_Control	(one	

SCZ,	one	control),	Control_Control	(both	controls).		

	Adjustment	 for	 pairwise	 comparisons	 for	 all	 possible	 disease	 status	 pairs	 (3	 comparisons)	 is	

performed	 using	 Bonferroni	 correction	 for	 multiple	 testing.	 	We	 also	 determined	 a	 possible	

effect	 of	 alpha	 diversity	 on	 the	 above	 model	 by	 adding	 normalized	 values	 of	 alpha	 as	 a	

covariate	to	the	model.		

	

Reference-free	microbiome	analysis		

	

We	 complement	 the	 reference-based	 taxonomic	 analysis	 with	 a	 reference	 independent	

analysis.	 We	 use	 EMDeBruijn	 (https://github.com/dkoslicki/EMDeBruijn)	 a	 reference-free	

approach	 able	 to	 quantify	 differences	 in	 microbiome	 composition	 between	 the	 samples.	

EMDeBruijn	compresses	the	k-mer	counts	of	two	given	samples	onto	de	Bruijn	graphs	and	then	

measures	the	minimal	cost	of	transforming	one	of	these	graphs	into	the	other	(in	terms	of	how	

many	k-mers	moved	how	far).	This	direct	comparison	of	samples	allows	one	to	circumvent	the	
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many	 issues	 involved	 with	 selecting	 a	 phylogenetic	 classification	 algorithm,	 choosing	 which	

training	database	to	use,	and	deciding	how	to	compare	two	classifications.	

	

Other	 reference-free	 comparison	 metrics	 have	 been	 used	 before	 (such	 as	 treating	 k-mer	

frequencies	 as	 vectors	 in	ℝM 	and	 then	 using	 the	 Euclidean	 distance,	 Jensen-Shannon	

divergence,	 Kullback-Liebler	 divergence,	 cosine	 similarity,	 etc.).	 However,	 treating	 k-mer	

frequencies	 as	 vectors	 in	ℝM	ignores	 the	 dependencies	 induced	 by	 the	 amount	 of	 overlap	

between	 two	 given	 k-mers.	 Instead	 of	 Euclidean	 space,	 EMDeBruijn	 considers	 k-mer	

frequencies	as	existing	on	an	underlying	de	Bruijn	graph,	a	structures	that	naturally	takes	into	

consideration	such	overlap-induced	dependencies.	

	

Fixing	a	k-mer	size,	we	first	form	the	undirected	de	Bruijn	graph,	with	vertices	given	by	k-mers,	

and	an	edge	between	two	k-mers	if	the	first	(or	last)	k-1	nucleotides	of	one	k-mer	overlaps	with	

the	 last	 (or	 first)	 k-1	 nucleotides	 of	 the	 other	 k-mer.	 Let	𝑑(∙,∙)	represent	 the	 resulting	 graph	

distance.	 Then	 given	 two	 metagenomic	 samples,	𝑆Sand	𝑆T,	 let	 the	 frequencies	 of	 k-mer	 be	

given	by	𝑓𝑟𝑒𝑞W(𝑆S)	and	𝑓𝑟𝑒𝑞W(𝑆T)	respectively.	These	frequencies	are	thought	of	as	weights	on	

the	vertices	of	the	de	Bruijn	graph.	Now	to	represent	the	transformation	of	one	set	of	weights	

into	the	other,	we	use	the	term	flow	(or	coupling)	which	is	any	real-valued	matrix	𝛾	with	rows	

and	 columns	 indexed	 by	 k-mers,	 such	 that	 the	 row	 sums	 equals	𝑓𝑟𝑒�W(𝑆S)	and	 the	 column	

sums	 equal	𝑓𝑟𝑒𝑞W(𝑆T).	 A	 flow	 represents	 how	 much	 weight	 was	 moved	 where.	 There	 are	

infinitely	many	flows	possible,	but	we	choose	the	most	efficient	flow	which	is	defined	to	be	the	

one	 that	 minimizes	 the	 total	 cost	 (in	 terms	 of	 weight	 times	 distance).	 This	 leads	 to	 the	
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definition	of	the	EMDeBruijn	metric	𝐸𝑀𝐷W 𝑆S, 𝑆S :		

𝐸𝑀𝐷W 𝑆S, 𝑆S ≔ 	min
`	

𝛾 𝑥, 𝑦 ∗ 𝑑(𝑥, 𝑦)
c,d	efghi

	

Hence,	the	EMDeBruijn	metric	measures	the	minimal	cost	of	transforming	one	sample’s	k-mer	

frequency	 vector	 into	 the	 other	 sample’s	 k-mer	 frequency	 vector	 when	 allowable	

transformations	are	restricted	to	moves	along	edges	of	the	de	Bruijn	graph.	

	

To	compute	this	quantity,	we	used	the	FastEMD	implementation	of	the	Earth	Mover’s	Distance	

since	the	graph	metric	𝑑(∙,∙)	is	naturally	thresholded.	We	found	that	a	good	trade-off	between	

algorithmic	run-time	and	effectiveness	of	the	resulting	metric	was	to	use	the	k-mer	size	of	k=6.	

To	 determine	 the	 variation	 explained	 by	 EMdeBruin	 principal	 components,	 we	 adopted	 a	

similar	approach	as	described	above	and	fit	the	following	logistic	regression	model:		

𝑆𝐶𝑍	~	𝑆𝑒𝑥	 + 	𝐴𝑔𝑒	 + 	𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙	𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠	 + 	𝑃𝐶1 + 𝑃𝐶2 + 𝑃𝐶3		

where	PCi	denotes	the	ith	EMdeBruin	principal	component.	

	

	To	 determine	 overlap	 between	 the	 results	 from	 Phylosift	 and	 EMdeBruin,	 we	 correlated	

principal	 components	 of	 EMdeBruin	 PC1	 and	 Phylosift	 PC1	 by	 spearman	 rank	 correlation,	

including	all	samples.	
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Correlation	of	microbial	diversity	with	genetic	risk	for	schizophrenia	

To	 determine	 a	 correlation	 between	 genetic	 risk	 for	 schizophrenia	 and	 alpha	 diversity,	 we	

compared	alpha	diversity	to	the	polygenic	risk	score	for	schizophrenia.	The	polygenic	risk	score	

represents	the	cumulative	genetic	load	of	disease	risk	alleles,	and	is	defined	as	the	sum	of	trait-

associated	alleles	across	many	genetic	loci,	weighted	by	effect	sizes	estimated	from	a	genome-

wide	 association	 study.	 We	 based	 our	 scores	 on	 the	 most	 recent	 genome	 wide	 association	

study	 (Schizophrenia	Working	Group	of	 the	 Psychiatric	Genomics	 Consortium	2014)	with	 our	

samples	removed	(Ripke	et	al.	2013a),	and	used	a	P-value	cut-off	of	P	<	0.05.	For	a	total	of	32	

Schizophrenia	cases,	we	had	both	polygenic	 risk	score	and	alpha	diversity	measures	available	

and	we	performed	a	spearman	rank	correlation.	Similar	results	are	obtained	if	we	use	different	

P-value	cutoffs	to	determine	the	polygenic	risk	score.		

Analyses	 of	 the	 replication	 sample	were	 performed	 in	 an	 analogous	 fashion	 to	 the	methods	

described	above.	Statistical	analysis	was	performed	in	R.	We	represent	data	as	mean	±	standard	

deviation.	Boxplots	are	represented	with	the	first	and	third	quantiles.		

	

Estimation	of	DNA	methylation-derived	cell	proportions	in	whole	blood	

	

DNA	methylation	profiles	of	heterogeneous	tissue	types	reflect	variability	in	underlying	cellular	

composition	 (29,	 30).	 Recent	 studies,	 using	 flow-sorted	 cell	 populations,	 identified	 CpG	 sites	

discriminatory	 for	 distinct	 cell	 populations	 and	developed	 sophisticated	methods	 to	 estimate	

blood	cell	proportions	from	DNA	methylation	data	derived	from	whole	blood	(28-30).	We	use	
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these	 methods	 to	 investigate	 a	 potential	 link	 between	 microbial	 diversity	 and	 the	 immune	

system.		

In	a	control	cohort	of	220	individuals	blood-based	genome-wide	methylation	data	was	collected	

using	 the	 Infinium	 HumanMethylation450	 BeadChip.	We	 used	 the	 epigenetic	 clock	 software	

(Horvath	2013)	with	normalization	to	estimate	cell	abundance	measures.	Briefly,	this	software	

uses	 Houseman’s	 estimation	method	 (Houseman	 et	 al.	 2012;	 Aryee	 et	 al.	 2014)	 to	 estimate	

monocytes,	 granulocytes,	 CD8	 T,	 CD4	 T,	 natural	 killer,	 and	 B	 cells.	 In	 addition,	 it	 predicts	

abundance	measures	for	plasmablasts	(i.e.	 immature	plasma	cells),	CD8.naive,	CD4.naive,	and	

CD8pCD28nCD45RAn	 cells	 (i.e.	 differentiated	 CD8	 T	 cells)	 based	 on	 a	 penalized	 elastic	 net	

regression	model	(Horvath	2013;	Horvath	and	Levine	2015).	

	

Quality	 control	 of	 the	DNA	methylation	data	was	 performed	 as	 follows.	CpG	 sites	with	 bead	

counts	 less	than	5	or	a	detection	p-value	greater	than	0.01	in	more	than	5%	of	samples	were	

removed	using	the	pfilter	function	in	the	wateRmelon	package	in	R.	In	addition,	sample	having	

more	 than	 5%	 of	 CpG	 sites	 with	 a	 detection	 p-value	 greater	 than	 0.01	 or	 having	 gender	

discrepancies	were	excluded	 from	 further	analyses.	Next,	we	 removed	CpG	sites	with	probes	

containing	known	SNPs	(EUR,	MAF	>	0.01)	and	probes	that	are	cross-reactive,	i.e.	non-specific	

(Chen	et	al.	2013;	Price	et	al.	2013).	Data	was	background	corrected	using	the	danen	function	in	

R	(wateRmelon	package)	and	beta	values	were	extracted	for	further	analyses.		

	

We	 investigated	 the	 relationship	 between	 microbiome	 diversity	 and	 the	 immune	 system	 as	

follows.	From	a	cohort	of	n=220	controls	for	which	methylation-derived	cell	proportions	were	
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available,	we	first	obtained	residuals	for	each	cell-type	using	the	following	model:		

	

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛_𝑐𝑒𝑙𝑙_𝑡𝑦𝑝𝑒	~	𝑆𝑒𝑥	 + 	𝐴𝑔𝑒	 + 	𝐵𝑒𝑎𝑑𝑐ℎ𝑖𝑝	 + 	𝐵𝑒𝑎𝑑𝑐ℎ𝑖𝑝	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	 + 	𝑑𝑎𝑡𝑎𝑠𝑒𝑡.	

	

In	addition,	we	used	residuals	from	the	above-described	regression	on	alpha	diversity	using	our	

full	 replication	 cohort.	 Using	 all	 samples	 with	 both	 alpha	 levels	 and	 methylation-based	 cell	

abundance	measures	available	(a	total	of	n=65),	we	next	fitted	a	linear	regression	model	with	

alpha	 diversity	 residuals	 as	 response	 variable	 and	 all	 blood	 cell	 proportion	 residuals	 as	

independent	variables.	Each	independent	variable	was	analyzed	as	it	was	put	in	the	model	last	

to	account	 for	 correlations	among	cell	proportions.	We	 thus	model	 the	 relationship	between	

alpha	diversity	and	individual	cell	types	while	adjusting	for	all	other	cell	types.		

	

Data	access:		

The	data	discussed	in	this	publication	have	been	deposited	in	NCBI's	Gene	Expression	Omnibus	

(Edgar	 et	 al.	 2002)	 and	 are	 accessible	 through	 GEO	 Series	 accession	 number	 GSE80974	

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE80974).	
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