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Abstract1

Two recent studies have re-analyzed published data and found that when datasets are2

analyzed independently there was limited support for the widely accepted hypothesis that3

changes in the microbiome are associated with obesity. This hypothesis was reconsidered4

by increasing the number of datasets and pooling the results across the individual datasets.5

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)6

guidelines were applied to identify 10 studies for an updated and more synthetic analysis.7

Alpha diversity metrics and the relative risk of obesity based on those metrics were used to8

identify a limited number of significant associations with obesity; however, when the results9

of the studies were pooled using a random effects model significant associations were10

observed between Shannon diversity, number of observed OTUs, and Shannon evenness11

and obesity status. They were not observed for the ratio of Bacteroidetes and Firmicutes12

or their individual relative abundances. Although these tests yielded small P-values, the13

difference between the Shannon diversity index of non-obese and obese individuals was14

2.07%. A power analysis demonstrated that only one of the studies had sufficient power to15

detect a 5% difference in diversity. When Random Forest machine learning models were16

trained on one dataset and then tested using the other 9 datasets, the median accuracy17

varied between 33.01 and 64.77% (median=56.67%). Although there was support for a18

relationship between the microbial communities found in human feces and obesity status,19

this association is relatively weak and its detection is confounded by large interpersonal20

variation and insufficient sample sizes.21

Importance22

As interest in the human microbiome grows there is an increasing number of studies that23

can be used to test numerous hypotheses across human populations. The hypothesis24
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that variation in the gut microbiota can explain or be used to predict obesity status has25

received considerable attention and is frequently mentioned as an example for the role of26

the microbiome in human health. Here we assess this hypothesis using ten independent27

studies and find that although there is an association, it is smaller than can be detected28

by most microbiome studies. Furthermore, we directly tested the ability to predict obesity29

status based on the composition of an individual’s microbiome and find that the median30

classification accuracy is between 33.01 and 64.77%. This type of analysis can be used to31

design future studies and expanded to explore other hypotheses.32
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Introduction33

Obesity is a growing health concern with approximately 20% of the youth (aged 2-19) in34

the United States classified as either overweight or obese (1). This number increases35

to approximately 35% in adults (aged 20 or older) and these statistics have seen little36

change since 2003 (1). Traditionally, the body mass index (BMI) has been used to classify37

individuals as non-obese or obese (2). Recently, there has been increased interest in38

the role of the microbiome in modulating obesity (3, 4). If the microbiome does affect39

obesity status, then manipulating the microbiome could have a significant role in the future40

treatment of obesity and in helping to stem the current epidemic.41

There have been several studies that report observing a link between the composition42

of microbiome and obesity in animal models and in humans. The first such study used43

genetically obese mice and observed the ratio of the relative abundances of Bacteroidetes44

to Firmicutes (B:F) was lower in obese mice than lean mice (5). Translation of this result45

to humans by the same researchers did not observe this effect, but did find that obese46

individuals had a lower diversity than lean individuals (6). They also showed that the47

relative abundance of Bacteroidetes and Firmicutes increased and decreased, respectively,48

as obese individuals lost weight while on a fat or carbohydrate restricted diet (7). Two49

re-analysis studies interrogated previously published microbiome and obesity data and50

concluded that the previously reported differences in community diversity and B:F among51

non-obese and obese individuals could not be generalized (8, 9). Regardless of the results52

using human populations, mechanistic studies using animal models that were manipulated53

with antibiotics or colonization with varied communities were manipulated with antibiotics or54

underwent colonization with varied communities appears to support the association since55

these manipulation yielded variation in animal weight (10–13). The purported association56

between the differences in the microbiome and obesity have been widely repeated with57

little attention given to the lack of a clear signal in human cohort studies.58
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The recent publication of additional studies that collected BMI data for each subject as59

well as other studies that were not included in the earlier re-analysis studies offered the60

opportunity to revisit the question relating the structure of the human microbiome to obesity.61

One critique of the prior re-analysis studies is that the authors did not aggregate the62

results across studies to increase the effective sample size. It is possible that there were63

small associations within each study that were not statistically significant because the64

individual studies lacked sufficient power. Alternatively, diversity metrics may mask the65

appropriate signal and it is necessary to measure the association at the level of microbial66

populations. Walters et al. (8) demonstrated that Random Forest machine learning models67

were capable of predicting obesity status within a single cohort, but did not attempt to test68

the models on other cohorts. The purpose of this study was to perform a meta-analysis of69

the association between differences in the microbiome and obesity status by analyzing70

and applying a more systematic and synthetic approach than was used previously.71

Results72

Literature Review and Study Inclusion. We followed the Preferred Reporting Items73

for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to identify studies to74

include in our meta-analysis (14). A detailed description of our selection process and75

the exact search terms are provided in the Supplemental Text and in Figure 1. Briefly,76

we searched PubMed for original research studies that involved studying obesity and the77

human microbiome. The initial search yielded 187 studies. We identified ten additional78

studies that were not designed to explicitly test for an association between the microbiome79

and obesity. We then manually curated the 196 studies to select those studies that80

included BMI and sequence data. This yielded 10 eligible studies. An additional study was81

removed from our analysis because no individuals in the study had a BMI over 30. Among82

the final 10 studies, 3 were from identified from our PubMed search (10, 15, 16), 5 were83
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originally identified from the 10 studies that did not explicitly investigate obesity but included84

BMI data (17–21), and two datasets were used (22, 23) because these publications did85

not specifically look for any metabolic or obesity conditions but had control populations86

and enabled us to help mitigate against publication biases associated with the bacterial87

microbiome and obesity. The ten studies are summarized in Table 1.88

Alpha diversity analysis. We calculated the Shannon diversity index, observed richness,89

and Shannon evenness, the relative abundance of Bacteroidetes and Firmicutes, and90

the ratio of their relative abundance (B:F) for each sample. Once we transformed each91

of the six alpha diversity metrics to make them normally distributed, we used a t-test92

to identify significant associations between the alpha diversity metric and whether an93

individual was obese for each of the ten studies. The B:F and the relative abundance94

of Firmicutes were not significantly associated with obesity in any study. We identified95

seven P-values that were less than 0.05: three studies indicated obese individuals had96

a lower richness, two studies indicated a significantly lower diversity, one study indicated97

a significantly lower evenness, and one study indicated a significantly higher relative98

abundance of Bacteroidetes (Figures 2 and S1). These results largely match those of the99

Walters and Finucane re-analysis studies. Interestingly, although only two of the ten studies100

observed the previously reported association between lower diversity and obesity, the101

other studies appeared to have the same trend, albeit the differences were not statistically102

significant. We used a random effects linear model to combine the studies using the103

study as the random effect and found statistical support for decreased richness, evenness,104

and diversity among obese individuals (all P<0.011). Although there was a significant105

relationship between these metrics and obesity status, the effect size was quite small.106

The obese individuals averaged 7.47% lower richness, 0.88% lower evenness, and 2.07%107

lower diversity. There were no significant associations when we pooled the phylum-level108

metrics across studies. These results indicate that obese individuals do have a statistically109

significant lower diversity than non-obese individuals; however, it is questionable whether110

6

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2016. ; https://doi.org/10.1101/057331doi: bioRxiv preprint 

https://doi.org/10.1101/057331
http://creativecommons.org/licenses/by/4.0/


the difference is biologically significant.111

Relative risk. Building upon the alpha diversity analysis we calculated the relative risk112

of being obese based on an individual’s alpha diversity metrics relative to the median113

metric for that study. The results using relative risk largely matched those of using the114

untransformed alpha diversity data. Across the ten studies and six metrics, the only115

significant relative risk values were the richness, evenness, and diversity values from the116

Goodrich study (Figures 3 and S2). Again, although the relative risk values were not117

significant for other studies, the values tended to be above one. When we pooled the118

data using a random effects model, the relative risk associated with having a richness,119

evenness, or diversity below the median for the population was significantly associated120

with obesity (all P<0.0044). The relative risks associated with alpha diversity were small.121

The relative risk of having a low richness was 1.30 (1.13-1.49), low evenness was 1.20122

(1.06-1.37), and low diversity was 1.27 (1.09-1.48). There were no significant difference123

in the phylum-level metrics. Again, the relative risk results indicate that individuals with a124

lower richness, evenness, or diversity are at statistically significant increased risk of being125

obese, it is questionable whether that risk is biologically or clinically relevant.126

Beta diversity analysis. Following the approach used by the Walters and Finucane127

re-analysis studies, for each dataset we calculated a Bray-Curtis distance matrix to128

measure the difference in the membership and structure of the individuals from each129

study. We then used AMOVA to test for significant differences between the structure130

of non-obese and obese individuals (Table 1). The Escobar, Goodrich, and Turnbaugh131

datasets indicated a significant difference in community structure (all P<0.05). Because132

it was not possible to ascertain the directionality of the difference in community structure133

nor perform a pooled analysis using studies that had non-overlapping 16S rRNA gene134

sequence regions it is unclear whether these differences reflect a broader, but perhaps135

small, shift in community structure between non-obese and obese individuals.136
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Development of a microbiome-based classifier of obesity. The Walters re-analysis137

study suggested that it was possible to classify individuals as being non-obese or obese138

based on the composition of their microbiota. We repeated this analysis with additional139

datasets using OTU and genus-level phylotype data. For each study we developed a140

Random Forest machine learning model to classify individuals. Using ten-fold cross141

validation, the observed AUC values varied between 0.52 and 0.69 indicating a relatively142

poor ability to classify individuals (Figure 4A). So that we could test models on other143

datasets, we trained models using genus-level phylotype data for each dataset. The144

cross-validated AUC values for the models applied to the training datasets varied between145

0.51 and 0.65, again indicating a relatively poor ability to classify individuals from the146

original dataset (Figure 4B). For each model we identified the probability where the sum147

of the sensitivity and specificity was the highest. We then used this probability to define148

a threshold for calculating the accuracy of the models when applied to the other nine149

datasets (Figure 5). Although there was considerable variation in accuracy values for each150

model, the median accuracy for each model varied between 0.33 (Turnbaugh) and 0.65151

(HMP) (median=0.57). When we considered the number of samples, balance of non-obese152

and obese individuals, and region within the 16S rRNA gene it was not possible to identify153

factors that predictably affected model performance. The ability to predict obesity status154

using the relative abundance of OTUs and genera in the communities is only marginally155

better than random. These results suggest that given the large diversity of microbiome156

compositions it is difficult to identify a taxonomic signal that can be associated with obesity.157

Power and Sample Size Estimate Simulations. The inability to detect a difference158

between non-obese and obese individuals could be due to the lack of a true effect or159

because the study had insufficient statistical power to detect a difference because of160

insufficient sampling, large interpersonal variation, and unbalanced sampling of non-obese161

and obese individuals. To assess this, we calculated the power to detect differences of162

1, 5, 10, and 15% in each of the alpha diversity metrics using the sample sizes used in163
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each of the studies (Figures 6, S3-S8). Although there is no biological rationale for these164

effect sizes, they represent a range that is plausible. Only the Goodrich study had power165

greater than 0.80 to detect a 5% difference in Shannon diversity and six of the studies had166

enough power to detect a 10% difference (Figure 6). None of the studies had sufficient167

power to detect a 15% difference between B:F values (Figure S5). In fact, the maximum168

power among any of the studies to detect a 15% difference in B:F values was 0.25. Among169

the tests for relative risk, none of the studies had sufficient power to detect a Cohen’s170

d of 0.10 and only two studies had sufficient power to detect a Cohen’s d of 0.15. We171

next estimated how many individuals would need to have been sampled to have sufficient172

power to detect the four effect sizes assuming the observed interpersonal variation from173

each study and balanced sampling between the two groups. To detect a 1, 5, 10, or174

15% difference in Shannon index, the median required sampling effort per group was175

approximately 3,400, 140, 35, or 16 individuals, respectively. To detect a 1, 5, 10, and 15%176

difference in B:F values, the median required sampling effort per group was approximately177

160,000, 6,300, 1,600, or 700 individuals, respectively. To detect a 1, 5, 10, and 15%178

difference in relative risk values using Shannon diversity, the median required sampling179

effort per group was approximately 39,000, 1,500, 380, or 170 individuals, respectively.180

These estimates indicate that most microbiome studies are underpowered to detect modest181

effect sizes using either metric. In the case of obesity, the studies were underpowered to182

detect the 0.90 to 6% difference in diversity that was observed across the studies.183

Discussion184

Our meta-analysis helps to provide clarity to the ongoing debate of whether or not there185

are specific microbiome-based markers that can be associated with obesity. We performed186

an extensive literature review of the existing studies on the microbiome and obesity and187

performed a meta-analysis on the studies that remained based on our inclusion and188
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exclusion criteria. By statistically pooling the data from ten studies, we observed significant,189

but small, relationships between richness, evenness, and diversity and obesity status as190

well as the relative risk of being obese based on these metrics. We also generated Random191

Forest machine learning models trained on each dataset and tested on the remaining192

datasets. This analysis demonstrated that the ability to reliably classify individuals as being193

obese based on the composition of their microbiome was limited. Finally, we assessed the194

ability of each study to detect defined differences in alpha diversity and observed that most195

studies were underpowered to detect modest effect sizes. Considering these datasets196

are among the largest published, it appears that most human microbiome studies are197

underpowered to detect differences in alpha diversity.198

Alpha diversity metrics are attractive because they distill a complex dataset to a single199

value. For example, diversity is a measure of the entropy in a community and integrates200

richness and evenness information. Two communities with little taxonomic similarity can201

have the same diversity. Among ecologists the relevance of these metrics is questioned202

because it is difficult to ascribe a mechanistic interpretation to their relationship with203

stability or disease. Regardless, the concept of a biologically significant effect size needs204

to be developed among microbiome researchers. Alternative metrics could include the205

ability to detect a defined difference in the relative abundance of an OTU representing a206

defined relative abundance. What makes for a biologically significant difference or relative207

abundance is an important point that has yet to be discussed in the microbiome field. The208

use of operationally defined effect sizes should be adequate until it is possible to decide209

upon an accepted practice.210

By selecting a range of possible effect sizes, we were able to demonstrate that most211

studies are underpowered to detect modest differences in alpha diversity metrics and212

phylum-level relative abundances. Several factors interact to limit the power of microbiome213

studies. There is wide interpersonal variation in the diversity and structure of the human214
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microbiome. In addition, the common experimental designs limit their power. As we215

observed, most of the studies included in our analysis were unbalanced for the variable216

that we were interested in. This was also true of those studies that originally sought to217

identify associations with obesity. Even with a balanced design, we showed that it was218

necessary to obtain approximately 140 and 6,300 samples per group to detect a 5%219

difference in Shannon diversity or B:F, respectively. It was interesting that these sample220

sizes agreed across studies regardless of their sequencing method, region within the 16S221

rRNA gene, or subject population (Figure 6). This suggests that regardless of the treatment222

or category, these sample sizes represent a good starting point for subject recruitment223

when using stool samples. Unfortunately, few studies have been published with this level224

of subject recruitment. This is troubling since the positive predictive rate of a significant225

finding in an underpowered study is small leading to results that cannot be reproduced226

(24). Future microbiome studies should articulate the basis for their experimental design.227

Two previous reviews (8, 9) have stated that there was not a consistent association between228

alpha diversity and obesity; however, neither of these studies made an attempt to pool229

the existing data together to try and harness the additional power that this would give and230

they did not assess whether the studies were sufficiently powered to detect a difference.231

Additionally, our analysis used 16S rRNA gene sequence data from ten studies whereas232

the Finucane study used 16S rRNA gene sequence data from three studies (7, 10, 21)233

and a metagenomic study (25) and the Walters study used 16S rRNA gene sequence234

data from five studies (10, 15, 20, 21, 26); two studies were included in both analyses (10,235

21). Our analysis included four of these studies (10, 15, 20, 21) and excluded three of236

the studies because they were too small (7), only utilized metagenomic data (25), or used237

short single read Illumina HiSeq data that has a high error rate making it untractable for238

de novo OTU clustering (26). The additional seven datasets were published after the two239

reviews were performed and include datasets with more samples than were found in the240

original studies. Our collection of ten studies allowed us to largely use the same sequence241
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analysis pipeline for all datasets and relied heavily on the availability of public data and242

access to metadata that included variables beyond the needs of the original study. To243

execute this analysis, we created an automated data analysis pipeline, which can be easily244

updated to add additional studies as they become available. Similarly, it would be possible245

to adapt this pipeline to other body sites and treatment or variables (e.g. subject’s sex or246

age).247

Similar to our study, the Walters et al (8) generated Random Forest machine learning248

models to differentiate between non-obese and obese individuals. They obtained similar249

AUC values to our analysis; however, they did not attempt to test these models on the250

other studies in their analysis. When we performed the inter-dataset cross validation the251

median accuracy across datasets was only 56.67% indicating that the models did a poor252

job when applied to other datasets. This could be due to differences in subject populations253

and methods. Considering the median AUC for models trained and tested on the same254

data with ten-fold cross validation only varied between 0.51 and 0.65 and there was not255

a strong signal in the alpha diversity data, we suspect that there is insufficient signal to256

reliably classify individuals.257

Although we failed to find an effect this does not necessarily mean that there is no role258

for the microbiome in obesity. There is strong evidence in murine models of obesity that259

the microbiome and level of adiposity can be manipulated via genetic manipulation of the260

animal and manipulation of the community through antibiotics or colonizing germ free mice261

with diverse fecal material from human donors (5, 10–13). These studies appear to conflict262

with the observations using human subjects. Recalling the large interpersonal variation in263

the structure of the microbiome, it is possible that each individual has their own signatures264

of obesity. Alternatively, it could be that the involvement of the microbiome in obesity is at265

the level of a common set of metabolites that can be produced from different structures of266

the microbiome.267
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Methods268

Sequence Analysis Pipeline. All sequence data were publicly available and were269

downloaded from the NCBI Sequence Read Archive, the European Nucleotide Archive,270

or the investigators’ personal website (https://gordonlab.wustl.edu/TurnbaughSE/_10/_09/271

STM/_2009.html). In total seven studies used 454 (6, 15, 16, 18, 20–22) and three studies272

used Illumina sequencing (17, 19, 23). All of these studies used amplification-based273

16S rRNA gene sequencing. Among the studies that sequenced the 16S rRNA gene,274

the researchers targeted the V1-V2 (20), V1-V3 (15, 16, 18), V3-V5 (21, 22), V4 [(19);275

(23); ], and V3-4 (17) regions. For those studies where multiple regions were sequenced,276

we selected the region that corresponded to the largest number of subjects (6, 21). We277

processed the 16S rRNA gene sequence data using a standardized mothur pipeline. Briefly,278

our pipelines attempted to follow previously recommended approaches for 454 and Illumina279

sequencing data (27, 28). All sequences were screened for chimeras using UCHIME and280

assigned to operational taxonomic units (OTUs) using the average neighbor algorithm281

using a 3% distance threshold (29, 30). All sequence processing was performed using282

mothur (v.1.37.0) (31).283

Data Analysis. We split the overall meta-analysis into three general strategies using R284

(3.3.0). First, we followed the approach employed by Finucane et al (9) and Walters et al285

(8) where each study was re-analyzed separately to identify associations between BMI286

and the relative abundance of Bacteroidetes and Firmicutes, the ratio of Bacteroidetes287

and Firmicutes relative abundances (B:F), Shannon diversity, observed richness, and288

Shannon evenness. After each variable was transformed to fit a normal distribution a289

two-tailed t-test was performed for comparison of non-obese and obese individuals (i.e. BMI290

> 35.0). We performed a pooled analysis on these measured variables using linear random291

effect models to correct for study effect to asses differences on the combined dataset292

between non-obese and obese groups using the lme4 (v.1.1-12) R package. Next, we293
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compared the community structure from non-obese and obese individuals using analysis294

of molecular variance (AMOVA) with Bray-Curtis distance matrices (32). This analysis was295

performed using the vegan (v.2.3-5) R package. For both analyses, the datasets were296

rarefied (N=1000) so that each study within a study had the same number of sequences.297

Second, for each study we partitioned the subjects into a low or high group depending298

on whether their alpha diversity metrics were below or above the median value for the299

study. The relative risk (RR) was then calculated as the ratio of the number of obese300

individuals in the low group to the number of obese individuals in the high group. We then301

performed a Fisher exact-test to investigate whether the RR was significantly different from302

1.0 within each study and across all of the studies using the epiR (0.9-77) and metafor303

(1.9-8) packages. Third, we used the AUCRF (1.1) R package to generate Random Forest304

models. For each study we developed models using either OTUs or genus-level phylotypes.305

The quality of each model was assessed by measuring the area under the curve (AUC) of306

the Receiver Operating Characteristic (ROC) using ten-fold cross validation. Because the307

genus-level phylotype models were developed using a common reference, it was possible308

to use one study’s model (i.e. the training set) to classify the samples from the other studies309

(i.e. the testing sets). The optimum threshold for the training set was set as the probability310

threshold that had the highest combined sensitivity and specificity. This threshold was311

then used to calculate the accuracy of the model applied to the test studies. To generate312

ROC curves and calculate the accuracy of the models we used the pROC (1.8) R package.313

Finally, we performed power and sample number simulations for different effect sizes for314

each study using the pwr (1.1-3) R package and base R functions. We also calculated the315

actual sample size needed based on the effect size of each individual study.316

Reproducible methods. A detailed and reproducible description of how the data were317

processed and analyzed can be found at https://github.com/SchlossLab/Sze_Obesity_318

mBio_2016/.319
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Figure 1: PRISMA flow diagram of total records searched (33).327

Figure 2: Individual and combined comparison of obese and non-obese groups for328

Shannon diversity (A) and B:F (B).329

Figure 3: Meta analysis of the relative risk of obesity based on Shannon diversity330

(A) or B:F (B).331

Figure 4: ROC curves for each study based on classification of non-obese or obese332

groups using OTUs (A) or genus-level classification (B).333

Figure 5: Overall accuracy of each study to predict non-obese and obese334

individuals based on that study’s Random Forest machine learning model applied335

to each of the other studies.336

Figure 6: Power (A) and sample size simulations (B) for Shannon diversity for337

differentiating between non-obese versus obese for effect sizes of 1, 5, 10, and338

15%. Power calculations use the sampling distribution from the original studies and the339

sample size estimations assume an equal amount of sampling from each treatment group.340
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Figure S1: Individual and Combined comparison of Obese and Non-Obese groups341

Based on Evenness (A), Richness (B), or the Relative Abundance of Bacteroidetes342

(C) and Firmictues (D).343

Figure S2: Meta Analysis of the Relative Risk of Obesity Based on Evenness (A),344

Richness (B), or the Relative Abundance of Bacteroidetes (C) and Firmictues (D).345

Figure S3: Power (A) and sample size simulations (B) for B:F for differentiating346

between non-obese versus obese for effect sizes of 1, 5, 10, and 15%. Power347

calculations use the sampling distribution from the original studies and the sample size348

estimations assume an equal amount of sampling from each treatment group.349

Figure S4: Power (A) and sample size simulations (B) for richness for differentiating350

between non-obese versus obese for effect sizes of 1, 5, 10, and 15%. Power351

calculations use the sampling distribution from the original studies and the sample size352

estimations assume an equal amount of sampling from each treatment group.353

Figure S5: Power (A) and sample size simulations (B) for evenness for354

differentiating between non-obese versus obese for effect sizes of 1, 5, 10,355

and 15%. Power calculations use the sampling distribution from the original studies and356

the sample size estimations assume an equal amount of sampling from each treatment357

group.358

Figure S6: Power (A) and sample size simulations (B) for the relative abundance of359

Bacteroidetes for differentiating between non-obese versus obese for effect sizes360

of 1, 5, 10, and 15%. Power calculations use the sampling distribution from the original361

studies and the sample size estimations assume an equal amount of sampling from each362

treatment group.363

Figure S7: Power (A) and sample size simulations (B) for the relative abundance of364
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Firmicutes for differentiating between non-obese versus obese for effect sizes of365

1, 5, 10, and 15%. Power calculations use the sampling distribution from the original366

studies and the sample size estimations assume an equal amount of sampling from each367

treatment group.368

Figure S8: Power (A) and sample size simulations (B) for relative risk of obesity369

based on Shannon diversity. Power calculations use the sampling distribution from the370

original studies and the sample size estimations assume an equal amount of sampling371

from each treatment group.372
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Table 1. Summary of obesity, demographic, sequencing, and beta-diversity analysis data for the studies
used in the meta-analysis. NA indicates that those metadata were not available for that study.

Study Subjects
(N)

Obese
(%)

Average BMI
(Min-Max)

Female
(%)

Average Age
(Min-Max)

Non-Hispanic
White (%)

Sequencing
Method

16S rRNA
Gene Region

AMOVA
(P-value)

Baxter 172 27.3 27.0 (17.5-46.9) 64.5 54.3 (29.0-80.0) 87.8 MiSeq V4 0.078
Escobar 30 33.3 27.4 (19.5-37.6) 46.7 38.1 (21.0-60.0) NA 454 V2 0.047
Goodrich 982 19.7 26.3 (16.2-52.4) 98.9 61.0 (23.0-86.0) NA MiSeq V4 <0.001
Hmp 287 10.8 24.3 (19.0-34.0) 49.1 26.3 (18.0-40.0) 81.5 454 V3-V5 0.322
Ross 63 60.3 31.6 (22.1-47.9) 76.2 57.0 (33.0-81.0) 0.0 454 V1-V3 0.845
Schubert 104 32.7 28.2 (18.5-62.5) 66.3 52.8 (19.0-88.0) 82.7 MiSeq V4 0.180
Turnbaugh 146 67.8 NA NA NA 51.4 454 V2 0.040
Wu 64 7.8 24.3 (14.0-41.3) 53.1 26.3 (2.16-50.0) NA 454 V1-V2 0.577
Zeevi 731 NA 26.4 (16.4-47.0) NA 43.4 (18.0-70.0) NA MiSeq V3-V4 0.135
Zupancic 207 36.2 28.2 (18.2-127.0) 57.0 46.7 (20.0-79.0) 100.0 454 V3-V5 0.206
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