
Evolutionary dynamics of CRISPR gene drives 
Charleston Noble1-3†, Jason Olejarz1†, Kevin M. Esvelt4, George M. Church2-3, 

Martin A. Nowak1,5-6* 
1Program for Evolutionary Dynamics, Harvard University 
2Wyss Institute for Biologically Inspired Engineering 
3Department of Genetics, Harvard Medical School 
4Media Laboratory, Massachusetts Institute of Technology 
5Department of Mathematics, Harvard University 
6Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA 
02138, USA 
*Correspondence to: martin_nowak@harvard.edu 
†These authors contributed equally to this work. 

Abstract 
The alteration of wild populations has been discussed as a solution to a number of humanity’s most 
pressing ecological and public health concerns. Enabled by the recent revolution in genome edit-
ing, CRISPR gene drives, selfish genetic elements which can spread through populations even if 
they confer no advantage to their host organism, are rapidly emerging as the most promising ap-
proach. But before real-world applications are considered, it is imperative to develop a clear un-
derstanding of the outcomes of drive release in nature. Toward this aim, we mathematically study 
the evolutionary dynamics of CRISPR gene drives. We demonstrate that the emergence of drive-
resistant alleles presents a major challenge to previously reported constructs, and we show that an 
alternative design which selects against resistant alleles greatly improves evolutionary stability. 
We discuss all results in the context of CRISPR technology and provide insights which inform the 
engineering of practical gene drive systems. 

Main Text 
Gene drive systems are selfish genetic elements which bias their own inheritance and spread 
through populations in a super-Mendelian fashion (Fig. 1A). Such elements have been discussed 
as a means of contributing to the eradication of insect-borne diseases such as malaria, reversing 
herbicide and pesticide resistance in agriculture, and controlling destructive invasive species (1–
12). Various examples of gene drive can be found in nature, including transposons (13), Medea 
elements (14, 15), and segregation distorters (16–19), but for ecological engineering purposes, 
endonuclease gene drive systems have received the most significant attention in the literature (1–
10, 20–22). In general, these elements function by converting drive-heterozygotes into drive-ho-
mozygotes through a two-step process: (i) the drive construct, encoding a sequence-specific endo-
nuclease, induces a double-strand break (DSB) at its own position on a homologous chromosome, 
and (ii) subsequent DSB repair by homologous recombination (HR) copies the drive into the break 
site. Any sequence adjacent to the endonuclease will be copied as well; if a gene is present we 
refer to it as ‘cargo’, as it is ‘driven’ by the endonuclease through the population. 
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Though originally proposed over a decade ago (1), the chief technical difficulty of this 
approach—inducing easily programmable cutting at arbitrary target sites—has only recently been 
overcome by the discovery and development of the CRISPR/Cas9 genome editing system (23–
27). Briefly, Cas9 is an endonuclease whose target site is prescribed by an independently expressed 
guide RNA (gRNA) via a 20-nucleotide protospacer sequence. Because virtually any position in a 
genome can be uniquely targeted by Cas9, so-called RNA-guided gene drive elements can be con-
structed by simply inserting a suitable sequence encoding both Cas9 and gRNA(s). 

Recent studies have demonstrated highly functional CRISPR gene drive elements in mos-
quitoes (5, 6), yeast (7), and fruit flies (8). In each case, the basic construct consists of a copy of 
Cas9 with a single corresponding gRNA and cargo sequence (Fig. 1B). Despite drive inheritance 
of about 95% on average in the published studies (compared to 50% expected by Mendelian in-
heritance), the evolutionary stability of these constructs in large populations has been debated due 
to the potential emergence of drive resistance within a population (1, 2, 21). A resistant allele is 
anticipated to arise whenever the cell repairs the drive-induced DSB using non-homologous end 
joining (NHEJ) instead of HR, a process which typically introduces a small insertion or deletion 
mutation at the target sequence. Because the reported constructs cut only at a single site, a large 
fraction of NHEJ events will create drive-resistant alleles which could prevent the construct from 
spreading to the entire population (Fig. 1B). 

Drive resistance was first mathematically studied in the context of single-cutting homing 
endonuclease-based drive elements (21). There, it was concluded that drive is most effective when 
the fitness cost of the drive is low and the fitness cost of resistance is high (see SM Section 1 for 
a description of that work). Unfortunately, in the drive constructs reported thus far, these two re-
quirements are fundamentally at odds: the fitness cost of resistance arises from disruption of the 
target sequence, but the drive copies itself precisely by disrupting the target sequence. 

Here we study the evolutionary dynamics of an alternative drive architecture (2) which 
decouples these effects by rescuing function of the target gene, but only if the drive cassette is 
successfully copied. This is accomplished by targeting multiple sites within the 3’ end of a gene 
for cutting by the drive and including a completely genetically recoded (28, 29) copy of this 3’ 
target sequence in the drive construct (Fig. 1C). The 3' UTR of the gene is also replaced with an 
equivalent sequence in order to remove all homology between the cut sites and the drive compo-
nents, which ensures that the drive cassette is copied as a single unit.  If repair occurs by HR, the 
target gene is restored to functionality as the drive is copied. But if repair occurs by NHEJ, then 
the target gene is mutated, potentially resulting in a knockout and a corresponding loss of fitness. 
Using this design, drive resistance can be selected against by simply choosing an essential or even 
haploinsufficient gene as the drive target. In addition, the construct employs multiple gRNAs. The 
use of multiple gRNAs offers two important benefits with respect to resistance: (i) all gRNA target 
sites must be mutated or lost before a single allele becomes drive-resistant, and (ii) if cutting occurs 
at two or more gRNA target sites simultaneously, then the intervening DNA sequence is lost, re-
sulting in a large deletion and a knockout of the target gene. This is in contrast to single-cutting 
constructs, where a knockout can be avoided by an in-frame indel or substitution mutation. 
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To study this construct, we formulated a deterministic model (SM Sections 2, 7) which 
considers the evolution of a large population of diploid organisms and focuses on a specific locus 
with 2n+2 alleles (Fig. 2A). First, there are the wild-type (W) allele and the gene drive allele with 
n gRNAs (D). There are then n distinct ‘cost-free resistant’ alleles which are resistant to drive-
induced cutting at 1, 2, …, n target sites but are otherwise identical to the wild-type (denoted 
S1,S2,…,Sn). These could arise via, for example, mutations which block cutting by disrupting the 
gRNA target sequences but do not cause a shift in the reading frame. Finally, there are n distinct 
‘costly’ resistant alleles which have fitness effects which are distinct from those of the wild-type 
(denoted R1,R2,…,Rn). Only the alleles Sn and Rn are fully resistant to cutting by the drive. We also 
refer to the wild-type allele as S0 for notational convenience. Finally, we say that individuals hav-
ing genotype AB, where A and B are any of the alleles above, have fitness fAB (alternatively, 
genotype AB is associated with a cost 1-fAB) and produce gametes having haplotype C with prob-
ability pAB,C. Note that these probabilities pAB,C abstract all individual-level drive dynamics and 
are agnostic to the mechanism which produces drive. We allow these parameters to be arbitrary 
for our analytical calculations and derive corresponding results which hold for any underlying 
drive mechanism—including both the previous drive constructs and the new ones considered here.  

For numerical simulations, we further consider a mechanistic model which explicitly de-
scribes the mechanism of drive in individuals (Fig. 2B, Supplementary Material Section 7.3). We 
assume that, in the germline of an individual which is heterozygous for a drive construct and a 
susceptible allele (DSi where 0 <= i < n or DRi where 1 <= i < n), each susceptible target site 
undergoes cutting independently with probability q. If there is at least one cut, then HR occurs 
with probability P, while NHEJ occurs with probability 1-P. If HR occurs, then the cell is con-
verted to a drive homozygote. But if NHEJ occurs, there are a few possibilities, depending on the 
number of cuts. 

If there is exactly one cut, then one gRNA target is lost on the susceptible allele. If the 
susceptible allele was initially functional (Si), then with probability γ it retains function and con-
verts to Si+1, otherwise it loses function and converts to Ri+1. We assume that the parameter γ is the 
probability that the reading frame is unaffected, so γ = 1/3. If the susceptible allele is initially 
nonfunctional (Ri) then we assume that it cannot regain function, so it converts to Ri+1. 

If there are two or more cuts, then all j susceptible gRNA targets between and including 
the outermost targets in the locus are lost (2 <= j <= n-i). The resulting allele is certainly nonfunc-
tional and thus converts to Ri+j. For simplicity, we assume that the i resistant targets are uniformly 
distributed among the n total sites in order to determine a probability distribution for the number 
of targets lost. We assume that sequential cutting and repair events do not occur. 

Now we address two fundamental questions: whether a CRISPR gene drive will invade a 
resident wild-type population and, if so, whether it will be evolutionarily stable (30). We begin 
with the former. We find that a CRISPR gene drive will invade a wild population if: 

 2𝑝#$,$𝑓#$ > 𝑓##.  (1) 
A derivation of this result can be found in Supplementary Material (Sections 3, 7.1). For the drive 
to spread when initially rare, the advantage from inheritance biasing (pWD,D)—typically about 95% 
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in published studies—must overcome the difference in fitness between the drive/wild-type heter-
ozygote (fWD) and the wild-type (fWW). Note that this condition holds in the context of drive re-
sistance and is agnostic to individual-level drive dynamics and thus applies both to previous drive 
architectures and our proposed architecture. Indeed, Eq. 1 explains the apparent success of 
CRISPR drive constructs reported in the literature (5–8), which easily invade wild-type laboratory 
populations—or would be predicted to do so after optimization of drive expression: over short 
timescales, drive resistance is rare and thus does not affect the dynamics.  

However, over longer time scales, NHEJ-mediated resistance will dramatically affect the 
dynamics. We find that a resident drive population is stable against invasion by resistant alleles 
only if: 

 𝑚𝑎𝑥
+∈-∪/

2𝑝$+,+𝑓$+ < 𝑓$$.  (2) 

Here the maximization is over all non-drive alleles S0, …, Sn, R1, …, Rn. Intuitively, the drive is 
stable if and only if no other allele can invade, and each drive allele has an invasion condition 
identical in form to Eq. 1 (SM Sections 4, 7.2). 

Disconcertingly, Eq. 2 suggests that drive constructs are necessarily unstable in sufficiently 
large populations. An individual which is heterozygous for the drive and the fully-resistant cost 
free allele Sn has probability pDSn,Sn = ½ of producing an Sn gamete, and this individual has fitness 
equivalent to (or potentially greater than) the drive/wild-type heterozygote. Thus if the drive con-
struct has lower fitness than the wild-type, and if the fully-resistant cost-free allele has a nonzero 
rate of production in the population, the latter will certainly invade a resident drive population. 
This is especially problematic for highly deleterious population suppression drives, as in (6), which 
have low fitness relative to the wild-type and cost-free resistant alleles. 

Population alteration drives (sometimes referred to as replacement drives) might not re-
quire long-term persistence in a population to produce their desired effect. Indeed, some applica-
tions might still be successful as long as the drive construct attains and persists at a sufficiently 
high frequency in the population over some length of time. 

To quantify the relative effectiveness of the two drive architectures, we considered three 
quantities: (i) the maximum frequency achieved by a drive construct released in a wild population, 
(ii) the time required for a drive construct to attain 90% of its maximum frequency, and (iii) the 
frequency of the drive construct after 200 generations, roughly the longest relevant timescale for 
a typical application. We computed these quantities numerically for drives featuring cutting and 
HR probabilities consistent with average drive inheritance rates observed in previous fruit fly (8) 
and mosquito (5, 6) experiments (q = P = 0.95, corresponding to a drive inheritance rate of 95.1% 
from DW individuals). 

Our results suggest that, as anticipated from Eq. 1, both the previous and proposed drive 
constructs should spread similarly in the short term immediately following release (Fig. 3A, B, 
and D). However, over longer timescales, the two constructs undergo dramatically different dy-
namics. The proposed drive constructs, released at an initial frequency of 1% in a wild population, 
employing five gRNAs and targeting an essential gene, can attain >99% frequency in a population 
(Fig. 3B, C) in 10-20 generations (Fig. 3B, D) and remain above 99% for at least 200 generations 
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(Fig. 3B, E). Furthermore, this is seen over a large range of drive fitness costs, up to approximately 
30% (Fig. 3C-E). The previously demonstrated constructs, in contrast, attain maximum frequen-
cies between 90% and 95% over a narrower range of fitness values (Fig. 3A, C) and demonstrate 
significantly reduced stability (Fig. 3E). In particular, previous constructs exceeding 8% fitness 
cost invariably fall below their initial release frequency in fewer than 200 generations. 

Here we have mathematically shown that previously demonstrated CRISPR gene drives 
constructed as proofs-of-principle should effectively invade wild populations—consistent with ex-
perimental observations—but could have limited utility due to their inherent instability, brought 
about by their production of resistant alleles. We studied an alternative drive architecture which 
contains (i) multiple CRISPR guide RNAs which target the 3’ end of a gene, and (ii) a recoded 
copy of the target gene which is functional but resistant to cutting. We concluded that this archi-
tecture substantially improves the stability of CRISPR gene drives. 

Another alternative strategy which we have not modeled here would involve multiple in-
dependent single-guide drive constructs targeting the same locus. This is conceptually symmetric 
to the strategy considered here: rather than a single drive with multiple (n) gRNAs (“multiple 
guides”), one might consider multiple (n) drives with one gRNA each (“multiple drives”). In this 
strategy, each independent drive would behave similarly to the previously demonstrated constructs 
studied here. This strategy would likely outperform the previous strategy, but we anticipate that it 
would not outperform the multiple guide strategy. This is because, in the multiple drive strategy, 
each gRNA target can undergo NHEJ-mediated mutation independently, providing stepping-
stones to fully-resistant alleles. Furthermore, the multiple drive strategy lacks the benefit of large 
NHEJ knockouts from multiple simultaneous cuts which help combat cost-free resistance (Fig. 
2B, red box), although it would be capable of editing regions unimportant to fitness. 

In conclusion, we suggest three concrete design principles for future CRISPR gene drive 
systems. Constructs will maximize efficacy and stability if (i) multiple guide RNAs with minimal 
off-target effects are employed, (ii) disruption of the target locus is highly deleterious, and (iii) any 
cargo genes are as close to neutral as possible. 
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Fig. 1. CRISPR gene drive inheritance and spread in wild populations. (A), Inheritance and spread of 
a gene drive construct, D, in a population of individuals homozygous for the wild-type, W. In the late 
germline, the drive construct induces a double-strand break at its own position on the homologous chro-
mosome which is repaired either by homologous recombination (HR), converting the individual to a DD 
homozygote, or by non-homologous end joining (NHEJ), producing a small insertion / deletion / substitu-
tion mutation at the cut site which results in a drive resistant allele. There is also the possibility of no 
modification, in which case the W allele remains unchanged. This mechanism can lead to rapid spread of 
the gene drive in a population or the spread of resistant alleles, depending on their relative fitness effects. 
(B), To achieve this mechanism, previously demonstrated drive constructs are inserted at some target se-
quence (blue) and carry a CRISPR nuclease (e.g., Cas9) with a guide RNA (gRNA), as well as a “cargo 
gene” which can be chosen arbitrarily for the desired application. Disruption of the target sequence must 
be nearly neutral for the drive to spread. (C) Our proposed construct reconstitutes the target gene after 
cutting—so an essential gene can be chosen as the target to select against resistant alleles—and employs 
multiple (n) gRNAs.  
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Fig. 2. Modeling framework and representative simulations. (A) We consider 2n+2 alleles, where n is 
the number of drive target sites (prescribed by CRISPR gRNAs): the drive construct (D), the wild-type 
(W), n ‘neutral’ resistant alleles (Si), and n ‘costly’ resistant alleles (Ri). Previous drives (left) have em-
ployed one target site, while our proposed drives employ multiple (right). (B) Conversion dynamics 
within DW germline cells during early gametogenesis. Cutting occurs at each susceptible target inde-
pendently with probability q. Then repair occurs by HR with probability P or by NHEJ with probability 
1-P. In the case of a single cut (light grey), repair produces a functional target gene with probability γ or a 
non-functional target with probability 1-γ. Two or more cuts (light red) certainly produce non-functional 
targets after NHEJ repair. (C) Representative simulations using high cutting and HR probabilities (q = P 
= 0.95), for an initial drive release of 1% in a wild-type population, with γ = 1/3. Fitness parameters are 
(left) fSS = fSR = 1; fSD = 95%; fRR = 99%; fDD = fDR = (99% x 95%) = 94.1%, where S refers to neutral al-
leles (either S or W), and (right) fSS = fSR = 1; fSD = fDD = fDR = 95%; fRR = 1%, where S and R refer to al-
leles W, S1, …, S5 and R1, …, R5, respectively.  
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Fig. 3. Quantitative comparison of proposed and previously demonstrated drive constructs. (A and 
B) Drive frequency over time for three particular scenarios, a low-cost alteration drive carrying a cargo 
gene (red), a low-cost drive whose aim is to disrupt an important target gene (orange), and a high-cost 
drive (tan). (C) The maximum drive allele frequency (heat) observed in simulations across 200 genera-
tions, following an initial release of drive-homozygous organisms comprising 1% of the total population. 
In white hatched regions, Eq. 1 is not satisfied, so no invasion occurs. (D) Generations to 90% of the 
maximum frequency. (E) The frequency of the drive constructs after 200 generations, a measure of stabil-
ity in the population. Parameters used are: (throughout) q = P = 0.95. (proposed drives) n = 5; fSS = fSR = 
1; fSD = fDD = fDR = 1-c; fRR = 1-s; (previous drives) n = 1; fSS = fSR = 1; fSD = 1-c; fDD = fDR = (1-c)(1-s); fRR 
= 1-s, where S and R refer to any alleles S0, …, Sn and R1, …, Rn, respectively. 
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Supplementary Material:
Evolutionary dynamics of CRISPR gene drives

Charleston Noble, Jason Olejarz,

Kevin M. Esvelt, George M. Church, and Martin A. Nowak

In this Supplementary Material, we mathematically study the evolutionary dynamics of a
CRISPR gene drive construct with n guide RNAs. In Section 1, we discuss relevant prior work
on homing endonuclease gene drives. In Section 2, we propose a simple model of population
genetics of RNA-guided gene drives with multiple guide RNAs, and we analyze the selection
pressure acting on an engineered drive construct. In Section 3, we derive a condition for an
engineered drive allele to invade a natural population. In Section 4, we derive a condition
for a population in which the drive has fixed to resist invasion by either wild-type or drive-
resistant alleles. In Section 5, we derive equations for interior equilibria permitted by our
system. In Section 6, we present numerical examples of the system’s dynamics. In Section
7, we extend the model from Section 2 to include the effects of “neutral resistance”.

1 Previous work on homing endonuclease gene drives
Deredec et al. (2008) (Ref. (21) in the main text) mathematically investigates the evolution-
ary dynamics of homing endonuclease gene drives. The authors begin with a two-allele model
precluding resistance, consisting of a wild-type allele and a gene drive allele (pp. 2014–2016
of Deredec et al. (2008)). The model implicitly considers a single guide RNA because it
was motivated by earlier single-target homing endonuclease genes. In their notation, p is
the frequency of the wild-type allele, and q is the frequency of the drive allele. The authors
assume Hardy-Weinberg proportions at all times, and they write a recurrence for q:

q′ = (1− s)q2 + (1− sh)pq(1 + e)
1− sq2 − 2shpq

Here, s is the fitness cost associated with a drive homozygote, sh is the fitness cost associated
with a drive/wild-type heterozygote, and e is the probability that the HEG copies itself onto
the homologous chromosome (“homes”).

The authors identify that there are three possible fixed points:
q∗ = 0
q∗ = 1

q∗ = e− (1 + e)hs
s(1− 2h)

1
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To obtain the invasion condition for the drive allele, the authors solve

e− (1 + e)hs
s(1− 2h) > 0

They obtain
s <

e

h(1 + e)
Intuitively, the fitness cost, sh, of a drive/wild-type heterozygote must be less than a mono-
tonically increasing function of the homing rate, e, for the homing endonuclease gene to
spread when rare. Low fitness costs of the drive and high homing rates facilitate the inva-
sion of the drive. More specifically, the authors show that, if the drive/wild-type heterozygote
has fitness close to the wild-type (i.e., h close to zero), then the drive invades and fixes (if
s is small relative to e), coexists with the wild-type allele (if s is comparable in magnitude
to e), or does not invade and is unstable (if s is large relative to e). The authors also show
that, if the drive/wild-type heterozygote has fitness close to the drive homozygote (i.e., h
close to one), then the drive invades and fixes (if s is small relative to e), is bistable with the
wild-type allele (if s is comparable in magnitude to e), or does not invade and is unstable
(if s is large relative to e). These are important insights into the evolutionary dynamics of
homing endonuclease gene drives.

Deredec et al. then extend their model to consider also a single resistant allele (pp.
2018–2019 of Deredec et al. (2008)). In their notation, p is the frequency of the wild-type
allele, qH is the frequency of the drive allele, and qM is the frequency of the misrepaired
(resistant) allele. The authors assume Hardy-Weinberg proportions at all times, and they
write recurrences for qH and qM :

q′H = q2
H(1− sH) + pqH(1 + e(1− γ))(1− hHsH) + qMqH(1− sI)

W

q′M = q2
M(1− sM) + pqM(1− hMsM) + pqH(1− hHsH)eγ + qMqH(1− sI)

W

Here, W is the mean fitness of the population, and γ is the probability of misrepair.
The authors then consider a variety of special cases and make observations about each.

A general theme is that low misrepair rates, high fitness of the drive, and low fitness of
resistance alleles all act to improve drive spread. These are crucial points for understanding
the evolutionary dynamics of homing endonuclease genes.

For a classic homing endonuclease gene drive, the latter two properties—high fitness
of the drive and low fitness of resistance alleles—are naturally difficult to reconcile with
each other, as we describe in the main text. Since cost-free resistance to a drive construct
arises, alternative drive designs are necessary for effective genome editing. The recently
developed CRISPR/Cas9 genome editing technology facilitates targeting arbitrary locations
in a genome, greatly expanding the creative potential for manipulating wild populations.
While CRISPR/Cas9 constructs offer enhanced opportunities for constructing functional
gene drives, they also inevitably exhibit more complex dynamics that must be firmly under-
stood.

2
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2 Model for the evolutionary dynamics of a CRISPR
gene drive with n guide RNAs

Consider a wild population of diploid organisms. Our aim is to manipulate the population
by modifying a particular locus which may be important, for example, for the organism’s
survival, reproduction, disease transmission, etc. Using CRISPR/Cas9 genome editing tech-
niques, one can engineer a CRISPR gene drive with n guide RNAs to target this locus. See
the main text and corresponding Fig. 1 for specific discussion of our proposed design.

To describe the evolutionary dynamics of such a construct, we consider a drive allele, D,
a wild-type allele, 0, and n resistance alleles, i (with 1 ≤ i ≤ n). (In the main text, we use
the notation “W” for a wild-type allele instead of “0”. The notation “0” is more natural for
doing calculations.) There are (n + 2) + (n + 2)(n + 1)/2 possible individual genotypes in
the population: ij (with 0 ≤ i ≤ n and 0 ≤ j ≤ n), iD (with 0 ≤ i ≤ n), and DD. The
drive mechanism works as follows:

Consider a type 0D individual; one allele is wild-type, and the other allele is the drive.
There are n guide RNAs and therefore n targets for the drive to cut. At meiosis, the drive
can cut any number of targets between 0 and n. If the drive cuts no targets, then the
individual remains with genotype 0D. If the drive cuts k targets (with 1 ≤ k ≤ n), then one
of several things can happen: One possibility is that homologous recombination copies the
drive allele onto the damaged chromosome, so that the individual’s genotype becomes DD.
This is how the drive construct effects its spread through a population. Another possibility
is that non-homologous end joining repairs the damaged chromosome without restoring the
lost targets, so that the individual’s genotype becomes iD (with 1 ≤ i ≤ k). This is how
resistance to the drive construct emerges. Yet another possibility is that non-homologous
end joining perfectly repairs the damaged chromosome, so that the individual’s genotype
remains 0D.

The drive allele can effect its spread as long as there is at least one remaining target.
For example, in an individual with genotype iD, the drive can cut at any number, k, of the
n − i remaining targets (so that 1 ≤ k ≤ n − i). After cutting, the individual can become
homozygous in the drive allele (DD), the individual can lose additional targets by acquiring
genotype jD (with i+ 1 ≤ j ≤ i+ k), or the individual can remain with genotype iD.

Using these rules, we can formally express the rates at which each of the n + 2 types of
gametes are produced in terms of the frequencies of individuals in the population. We denote
by FD(t) the rate (at time t) at which drive gametes (D) are produced by individuals in
the population. We denote by Fi(t) the rate (at time t) at which wild-type gametes (i = 0)
or gametes with varying levels of resistance (1 ≤ i ≤ n) are produced by individuals in the
population. We have

FD(t) = fDDxDD(t) +
n∑
k=0

pkD,DfkDxkD(t)

Fi(t) =
i∑

k=0
pkD,ifkDxkD(t) +

n∑
k=0

1 + δki
2 fkixki(t).

(1)

δki is the Kronecker delta. We use the following notation: xki(t) denotes the frequency of
individuals (at time t) with only wild-type or resistance alleles, xkD(t) denotes the frequency

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2016. ; https://doi.org/10.1101/057281doi: bioRxiv preprint 

https://doi.org/10.1101/057281
http://creativecommons.org/licenses/by-nc-nd/4.0/


of individuals (at time t) with one wild-type or resistance allele and one drive allele, and
xDD(t) denotes the frequency of individuals (at time t) that are homozygous in the drive
allele. (We define xki(t) for k 6= i and xkD(t) such that the ordering of the indices does
not matter, i.e., xki(t) = xik(t) is the total frequency of individuals with either genotype
ki or genotype ik, and xkD(t) = xDk(t) is the total frequency of individuals with either
genotype kD or genotype Dk.) fki denotes the fitness of individuals with only wild-type
or resistance alleles, fkD denotes the fitness of individuals with one wild-type or resistance
allele and one drive allele, and fDD denotes the fitness of individuals that are homozygous in
the drive allele. pkD,D denotes the probability that an individual of genotype kD produces
a D gamete. pkD,i denotes the probability that an individual of genotype kD produces an i
gamete. From conservation of probability, we have the following identity:

pkD,D +
n∑
i=k

pkD,i = 1.

Notice that a type nD individual is fully resistant to being manipulated by the drive con-
struct; such a fully resistant individual shows standard Mendelian segregation in its produc-
tion of gametes. Thus, we have

pnD,n = 1
2 .

We understand Equations (1) as follows: Type DD individuals only produce type D
gametes, hence the term fDDxDD(t) in the equation for FD(t). Type kD individuals produce
type D gametes with probability pkD,D, hence the terms pkD,DfkDxkD(t) in the equation for
FD(t). Type kD individuals produce type i gametes with probability pkD,i, hence the terms
pkD,ifkDxkD(t) in the equation for Fi(t). Type ki individuals produce type i gametes with
probability 1 if k = i or with probability 1/2 if k 6= i, hence the terms [(1 + δki)/2]fkixki(t)
in the equation for Fi(t).

The selection dynamics are modeled by the following system of equations:

ẋij(t) = (2− δij)Fi(t)Fj(t)− ψ2(t)xij(t)
ẋiD(t) = 2Fi(t)FD(t)− ψ2(t)xiD(t)
ẋDD(t) = F 2

D(t)− ψ2(t)xDD(t).
(2)

Here, an overdot denotes the time derivative, d/dt. In formulating the population dynamics,
we assume random mating; i.e., two random gametes meet to form a new individual. Notice
that the products (2 − δij)Fi(t)Fj(t), 2Fi(t)FD(t), and F 2

D(t) in Equations (2) represent
the pairings of the different types of gametes to make new offspring. The quantity ψ2(t)
represents a density-dependent death rate for the individuals in the population.

At any given time, t, we require that the total number of individuals sums to one:

xDD(t) +
n∑
i=0

xiD(t) +
j∑
i=0

n∑
j=0

xij(t) = 1. (3)

To enforce this density constraint, we set

ψ(t) = FD(t) +
n∑
i=0

Fi(t). (4)
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Throughout this SM, we choose to work in the framework of continuous time (Equations
(2)), since we feel that this approach simplifies the mathematical analysis. In much of the
remainder of this SM, we omit explicitly writing the time dependence on dynamical quantities
for notational convenience.

3 Invasion of the drive construct
Consider a wild-type population in which all individuals have genotype 00. We perturb the
wild-type population by introducing a small amount of the drive allele, D. What happens?
Does the drive allele catalyze its own spread in the population, or is it eliminated?

For a perturbation to a wild-type population, we write the frequencies of the individual
genotypes as

x00 = 1 −εδ(1)
00 − ε2δ

(2)
00 −O(ε3)

x0D = +εδ(1)
0D + ε2δ

(2)
0D +O(ε3)

x0i = +εδ(1)
0i + ε2δ

(2)
0i +O(ε3)

xij = + ε2δ
(2)
ij +O(ε3)

xiD = + ε2δ
(2)
iD +O(ε3)

xDD = + ε2δ
(2)
DD +O(ε3).

(5)

In Equations (5), it is implied that 1 ≤ i ≤ n. The expansions (5) are understood as follows.
The frequency of the wild-type allele is approximately one, since we only introduce a small
amount of the drive allele. The frequency of the drive allele is of order ε � 1. The small
number of 0D individuals in the population also produce resistance alleles, and the frequency
of these resistance alleles shortly after the perturbation is also small (i.e., of order ε � 1).
Notice that:
• New type 00 individuals are produced by pairing two wild-type gametes (each at fre-

quency O(1)), so new type 00 individuals are generated at a rate of order 1.

• New type 0D individuals are produced by pairing a wild-type gamete (at frequency
O(1)) and a drive gamete (at frequencyO(ε)), so new type 0D individuals are generated
at a rate of order ε.

• New type 0i individuals (for 1 ≤ i ≤ n) are produced by pairing a wild-type gamete (at
frequency O(1)) and a resistant gamete (at frequency O(ε)), so new type 0i individuals
are generated at a rate of order ε.

• New type ij individuals (for 1 ≤ i ≤ n and 1 ≤ j ≤ n) are produced by pairing two
resistant gametes (each at frequency O(ε)), so new type ij individuals are generated
at a rate of order ε2.

• New type iD individuals are produced by pairing a resistant gamete (at frequencyO(ε))
and a drive gamete (at frequency O(ε)), so new type iD individuals are generated at
a rate of order ε2.
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• New typeDD individuals are produced by pairing two drive gametes (each at frequency
O(ε)), so new type DD individuals are generated at a rate of order ε2.

Also, notice that a nonzero amount of the drive allele and the resistant allele are each
produced at order ε2 by type ij, iD, and DD individuals, so there also exist terms of order
ε2 in the expansions for x0D and x0i. Hence, we arrive at the expansions (5).

Note that (5) and (3) impose a constraint on the O(ε) terms in the genotype frequencies:

δ
(1)
00 = δ

(1)
0D +

n∑
i=1

δ
(1)
0i . (6)

Also, note that (5) and (3) impose a constraint on the O(ε2) terms in the genotype frequen-
cies:

δ
(2)
00 = δ

(2)
0D + δ

(2)
DD +

n∑
i=1

δ
(2)
0i +

n∑
i=1

δ
(2)
iD +

j∑
i=1

n∑
j=1

δ
(2)
ij . (7)

Substituting (4), (1), (5), and (6) into the equation for ẋ0D in (2), we obtain

δ̇
(1)
0D = f00 (2p0D,Df0D − f00) δ(1)

0D.

The drive allele invades a wild-type population if δ̇(1)
0D > 0, i.e., if

2p0D,Df0D > f00. (8)

4 Stability of the drive construct
Consider a population in which the drive construct has fixed, so that all individuals have
genotype DD. We perturb the DD population by introducing a small amount of the wild-
type allele, 0. What happens? Is the DD population stable to perturbations, or does the
wild-type allele or one of the resistance alleles invade the population?

For a perturbation to a population in which the drive construct has fixed, we write the
frequencies of the individual genotypes as

xDD = 1 −εδ(1)
DD − ε2δ

(2)
DD −O(ε3)

xiD = +εδ(1)
iD + ε2δ

(2)
iD +O(ε3)

xij = + ε2δ
(2)
ij +O(ε3).

(9)

The expansions (9) are understood as follows. The frequency of the drive allele is approxi-
mately one, since we only introduce a small amount of the wild-type allele. The frequency of
the wild-type allele is of order ε� 1. The small number of 0D individuals in the population
also produce resistance alleles, and the frequency of these resistance alleles shortly after the
perturbation is also small (i.e., of order ε� 1). Notice that:

• New typeDD individuals are produced by pairing two drive gametes (each at frequency
O(1)), so new type DD individuals are generated at a rate of order 1.

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2016. ; https://doi.org/10.1101/057281doi: bioRxiv preprint 

https://doi.org/10.1101/057281
http://creativecommons.org/licenses/by-nc-nd/4.0/


• New type iD individuals (for 0 ≤ i ≤ n) are produced by pairing a non-drive gamete
(at frequency O(ε)) and a drive gamete (at frequency O(1)), so new type iD individuals
are generated at a rate of order ε.

• New type ij individuals (for 0 ≤ i ≤ n and 0 ≤ j ≤ n) are produced by pairing two
non-drive gametes (each at frequency O(ε)), so new type ij individuals are generated
at a rate of order ε2.

Also, notice that a nonzero amount of the non-drive alleles are produced at order ε2 by type
ij individuals, so there also exist terms of order ε2 in the expansions for xiD. Hence, we
arrive at the expansions (9).

Note that (9) and (3) impose a constraint on the O(ε) terms in the genotype frequencies:

δ
(1)
DD =

n∑
i=0

δ
(1)
iD . (10)

Also, note that (9) and (3) impose a constraint on the O(ε2) terms in the genotype frequen-
cies:

δ
(2)
DD =

n∑
i=0

δ
(2)
iD +

j∑
i=0

n∑
j=0

δ
(2)
ij . (11)

Substituting (4), (1), (9), and (10) into the equations for ẋiD in (2), we obtain

δ̇
(1)
iD =

i−1∑
k=0

Ak,iδ
(1)
kD +Biδ

(1)
iD . (12)

Here, we use the shorthand notation

Ak,i = 2pkD,ifkDfDD
Bi = Ai,i − f 2

DD.

The solution to (12) is

δ
(1)
iD = Ci exp (Bit) +

i−1∑
k=0

Ck exp (Bkt)
∑∏ A

Bk −B
. (13)

The quantities Ci in (13) are arbitrary constants of integration. The sum of products in (13)
is equal to ∑∏ A

Bk −B
= Ak,i
Bk −Bi

+
i−1∑

m=k+1

Ak,mAm,i
(Bk −Bm)(Bk −Bi)

+ · · ·

+
i−1∑

m=k+1

Am−1,m+1

Bk −Bm+1

i∏
u=k+1
u 6=m
u 6=m+1

Au−1,u

Bk −Bu

+
i∏

u=k+1

Au−1,u

Bk −Bu

.
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Notice that the time dependence in (13) appears only in the exponential factors. If all
Bi < 0, then all δ(1)

iD approach zero in the long-time limit, and, from (10), we have that δ(1)
DD

approaches zero in the long-time limit. Therefore, if Bi < 0 for all values of 0 ≤ i ≤ n, then
the drive construct is evolutionarily stable.

If, instead, Bi > 0 for at least one value of i, then δ(1)
iD has a term whose magnitude grows

exponentially in time. The leading-order (in ε) terms in the expansions for xiD in (9) are
necessarily positive. Therefore, if the condition Bi > 0 is satisfied for at least one value of i,
then δ(1)

iD is positive and grows exponentially in time; i.e., the DD population is unstable to
perturbations.

The resulting condition is that the DD population is stable to perturbations with a
wild-type allele if

2 max (pkD,kfkD) < fDD. (14)

4.1 Completely recessive fitness cost for a resistance mutation
Here, we consider a special case in which the fitness cost associated with having resistance
to the drive is completely recessive. If the fitness of each heterozygote with a resistance
allele, fkD, exactly equals fDD for all k, then is the DD population stable to perturbations?
We expect that pkD,k < 1/2 for all 0 ≤ k < n. Therefore, if fkD = fDD for all k, then the
inequality (14) is satisfied for all k < n and becomes an equality for k = n.

All resistance alleles with at least one target (0 ≤ k < n) are removed from the population
by selective forces. We must focus on the fully resistant allele, n. To probe the stability of
the DD population, we substitute (4), (1), (9), (10), and (11) into (2), and we keep terms
that are O(ε2). We have

−δ̇(2)
DD = fDD (fDD − 2fnn) δ(2)

nn + 1
4f

2
DD

[
δ

(1)
DD

]2
. (15)

We also have
δ̇(2)
nn = −f 2

DDδ
(2)
nn + 1

4f
2
DD

[
δ

(1)
DD

]2
. (16)

We can integrate (16). We get

δ(2)
nn = 1

4
[
δ

(1)
DD

]2 [
1− exp

(
−f 2

DDt
)]
. (17)

We are interested in the regime 1� t� ε−1. We must consider the sign of δ̇(2)
DD at large

times t � 1 but before the terms in (9) become similar in magnitude. Our condition for
stability of the DD population is therefore

lim
εt→0
t→∞

δ̇
(2)
DD < 0.

On a short time scale, the exponential in the solution for δ(2)
nn will approach zero. Substituting

(17) into (15) and simplifying, we see that the DD population is stable to perturbations if

fnn < fDD. (18)
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5 Interior equilibria
A drive construct increases in frequency when rare if Equation (8) is satisfied. A drive
construct that has already fixed is stable to perturbations if Equation (14) is satisfied (or if
Equation (18) is satisfied for the case of a completely recessive fitness cost for resistance).
But if a small amount of the drive construct is introduced into a wild-type population, then
does the drive spread completely to fixation?

To answer this question, it is helpful to know if the model for the drive dynamics, Equa-
tions (2), admits an interior equilibrium. Notice that, if all time derivatives are zero, then
Equations (2) simplify to

xij = (2− δij)FiFj
ψ2

xiD = 2FiFD
ψ2

xDD = F 2
D

ψ2 .

(19)

Next, we define xi to equal the frequency of allele i in the population. Thus, x0 is the
frequency of the wild-type allele, and xi for 1 ≤ i ≤ n is the frequency of a resistance allele
with i damaged targets. Also, xD is the frequency of the drive allele. These allele frequencies
can be calculated from the frequencies of individuals of the various genotypes:

xi = 1
2xiD +

n∑
j=0

1 + δij
2 xij

xD = xDD + 1
2

n∑
i=0

xiD.

(20)

Similarly to Equation (3), the sum of all allele frequencies equals 1 at all times:

xD +
n∑
i=0

xi = 1. (21)

We directly compute the following results:

x2
i =

1
2xiD +

n∑
j=0

1 + δij
2 xij

2

= F 2
i

ψ4

(
FD +

n∑
i=0

Fi

)2

= F 2
i

ψ2 = xii

x2
D =

(
xDD + 1

2

n∑
i=0

xiD

)2

= F 2
D

ψ4

(
FD +

n∑
i=0

Fi

)2

= F 2
D

ψ2 = xDD

2xixD = 2FiFD
ψ2 = xiD

(2− δij)xixj = (2− δij)FiFj
ψ2 = xij.

(22)

In summary, we obtain
xij = (2− δij)xixj
xiD = 2xixD
xDD = x2

D.

(23)
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Thus, notice that, at an equilibrium point of the dynamics, the individual frequencies are
exactly at Hardy-Weinberg proportions.

From (22), we have that
ψxi = Fi

ψxD = FD.
(24)

By substituting Equations (1) for Fi and FD into (24), and substituting (23), we obtain

ψxi = 2
i∑

k=0
pkD,ifkDxkxD +

n∑
k=0

fkixkxi

ψxD = fDDx
2
D + 2

n∑
k=0

pkD,DfkDxkxD.

(25)

If the drive construct is at a nonzero frequency (xD > 0), then we can cancel an overall
factor of xD from the second equation of (25):

ψ = fDDxD + 2
n∑
k=0

pkD,DfkDxk. (26)

Substituting (26) into the first equation of (25), we have(
fDDxD + 2

n∑
k=0

pkD,DfkDxk

)
xi = 2

i∑
k=0

pkD,ifkDxkxD +
n∑
k=0

fkixkxi. (27)

We can also substitute the density constraint, (21), into (27). We obtain[
fDD

(
1−

n∑
k=0

xk

)
+ 2

n∑
k=0

pkD,DfkDxk

]
xi = 2

i∑
k=0

pkD,ifkDxk

1−
n∑
j=0

xj

+
n∑
k=0

fkixkxi (28)

Equations (28) are a set of n+ 1 independent conditions in n+ 1 variables that must be
simultaneously satisfied for each interior fixed point. If Equations (28) cannot be simulta-
neously solved for a given set of parameter values, then no interior fixed point exists.

5.1 One guide (n = 1)
It is instructive to consider the system of equations (28) for the case of a single guide (n = 1).
Substituting i = 0 into (28), we obtain one equation:

0 = [f00 + fDD − 2 (p0D,0 + p0D,D) f0D]x2
0

+ [f10 + fDD − 2 (p0D,0f0D + p1D,Df1D)]x0x1

+ [2p0D,0f0D − fDD]x0.

(29)

Substituting i = 1 into (28), we obtain another equation:

0 = [−2p0D,1f0D]x2
0

+ [f11 + fDD − 2 (p1D,1 + p1D,D) f1D]x2
1

+ [f10 + fDD − 2 (p0D,1f0D + p0D,Df0D + p1D,1f1D)]x0x1

+ [2p0D,1f0D]x0

+ [2p1D,1f1D − fDD]x1.

(30)
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If Equations (29) and (30) cannot be simultaneously satisfied for given values of the
parameters f00, fDD, f11, f0D, f1D, f10, p0D,D, and p0D,0, then no interior fixed point exists.

6 Numerical examples
Numerical simulations of Equations (2) are helpful for understanding the evolutionary dy-
namics of a drive construct. For simplicity, we consider a single guide (n = 1), and we choose
the following parameter values:

f00 = f10 = 1
f0D = f1D = fDD = 1− c

f11 = 1− s
p0D,0 = 0.

(31)

We make the following assumptions: The fitness cost of the drive, c, is dominant. The fitness
cost of the resistant allele, s, is recessive. Also, the drive construct in a 0D heterozygote
always cuts at the target, and either the drive allele is copied by homologous recombination
or resistance emerges. Thus, we have p0D,0 = 0.

In Fig. S1 (a and b), numerical simulations demonstrate evolutionary invasion of the drive
construct. For these simulations, the initial condition is xAA = 1 − 10−4 and xDD = 10−4.
The relevant condition for determining evolutionary invasion is Equation (8).

• In Fig. S1 (a), we set p0D,D = 0.75 and s = 0.4. From Equation (8), the critical value
of c for invasion is 1/3. If c = 0.34 (green curve), then the drive construct does not
invade. If c = 0.33 (blue curve), then the drive construct invades.

• In Fig. S1 (b), we set p0D,D = 0.65 and s = 0.3. From Equation (8), the critical value
of c for invasion is 1/3. If c = 0.235 (green curve), then the drive construct does not
invade. If c = 0.225 (blue curve), then the drive construct invades.

In Fig. S1 (c and d), numerical simulations demonstrate evolutionary stability of the drive
construct. For these simulations, the initial condition is xDD = 1 − 10−2 and xAA = 10−2.
From (31), notice that the condition (14) becomes an equality. Therefore, the relevant
condition for determining evolutionary stability is Equation (18).

• In Fig. S1 (c), we set p0D,D = 0.75 and c = 0.32. From Equation (18), the critical
value of s for stability is 0.32. If s = 0.315 (green curve), then the drive construct is
unstable. If s = 0.325 (blue curve), then the drive construct is stable.

• In Fig. S1 (d), we set p0D,D = 0.65 and c = 0.2. From Equation (18), the critical value
of s for stability is 0.2. If s = 0.195 (green curve), then the drive construct is unstable.
If s = 0.205 (blue curve), then the drive construct is stable.

In Fig. S1 (e and f), numerical simulations demonstrate fixation of the drive construct.
For these simulations, the initial condition is xAA = 1 − 10−4 and xDD = 10−4. If Equa-
tions (29) and (30) cannot simultaneously be solved numerically, then there is no internal
equilibrium.
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• In Fig. S1 (e), we set p0D,D = 0.75 and c = 0.32. From numerical analysis of Equations
(29) and (30), the critical value of s for non-existence of an interior equilibrium is
approximately 0.82. If s = 0.81 (green curve), then the drive construct reaches an
equilibrium frequency that is strictly between 0 and 1. If s = 0.82 (blue curve), then
the drive construct spreads to fixation.

• In Fig. S1 (f), we set p0D,D = 0.65 and c = 0.2. From numerical analysis of Equations
(29) and (30), the critical value of s for non-existence of an interior equilibrium is
approximately 0.29. If s = 0.28 (green curve), then the drive construct reaches an
equilibrium frequency that is strictly between 0 and 1. If s = 0.29 (blue curve), then
the drive construct spreads to fixation.

7 Neutral resistance
In this section, we present an extension of the model which accounts for the phenomenon of
“neutral resistance”. This can occur if non-homologous end-joining results in repair at a cut
site which disrupts the recognition sequence of a guide RNA while nonetheless leaving the
function of the target gene intact. This can occur, for example, via an in-frame insertion
or deletion or synonymous mutation. The resulting allele is similar (with respect to the
drive mechanism) to the resistant alleles discussed in previous sections: the repaired target
is immune to cutting by its corresponding guide RNA. However, the mutation conferring
this resistance is not deleterious.

We represent this scenario by an extension of our original model (Section 2). We consider
a drive allele, D, n “costly” resistant alleles, Ri (with 1 ≤ i ≤ n), n “neutral” resistant alleles,
Si (with 1 ≤ i ≤ n), and the wild-type allele, S0. The drive mechanism works as follows (see
Figure 2 in the main text for an illustration):

Consider a type S0D individual; one allele is wild-type, and the other allele is the drive.
There are n guide RNAs and therefore n targets for the drive to cut. At meiosis, the drive
can cut any number of targets between 0 and n. If the drive cuts no targets, then the
individual remains with genotype S0D. If the drive cuts k targets (with 1 ≤ k ≤ n), then
one of several things can happen:

• One possibility is that homologous recombination copies the drive allele onto the dam-
aged chromosome, so that the individual’s genotype becomes DD. This is how the
drive construct effects its spread through a population.

• Another possibility is that non-homologous end joining repairs the damaged chromo-
some. We assume that each of the k cut sites are repaired such that they are resistant
to later cutting, and the resulting resistant allele is either costly, in which case the in-
dividual’s genotype becomes DRk, or cost-free, in which case the individual’s genotype
becomes DSk.

The drive allele can effect its spread as long as there is at least one remaining target. In
an individual with genotype RiD or SiD, the drive can cut at any number, k, of the n − i
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(a) (b)

(c) (d)

(e) (f)

Fig. S1. Numerical simulations of the evolutionary dynamics demonstrate the conditions
for drive invasion and stability. If no interior equilibrium exists, then an initially rare drive
construct spreads to fixation.
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remaining targets (so that 1 ≤ k ≤ n − i). After cutting, the individual can become ho-
mozygous in the drive allele (DD), or the individual can lose additional targets by acquiring
genotype RjD or SjD (with i + 1 ≤ j ≤ i + k). We assume that costly resistant alleles Ri

cannot convert to cost-free resistant alleles Sj, but cost-free resistant alleles Si can convert
to costly resistant alleles Rj.

Using these rules, we can formally express the rates at which each of the 2n+ 2 types of
gametes are produced in terms of the frequencies of individuals in the population. We denote
by FD(t) the rate (at time t) at which drive gametes (D) are produced by individuals in the
population. We denote by FRi

(t) the rate (at time t) at which gametes with varying levels of
costly resistance (1 ≤ i ≤ n) are produced by individuals in the population. And we denote
by FSi

(t) the rate (at time t) at which wild-type gametes (i = 0) or gametes with varying
levels of cost-free resistance (1 ≤ i ≤ n) are produced by individuals in the population. We
have

FD(t) = fDDxDD(t) +
n∑
k=1

pDRk,DfDRk
xDRk

(t) +
n∑
k=0

pDSk,DfDSk
xDSk

(t)

FRi
(t) =

n∑
k=1

1 + δki
2 fRkRi

xRkRi
(t) +

n∑
k=0

1
2fRiSk

xRiSk

+
i∑

k=1
pDRk,Ri

fDRk
xDRk

(t) +
i∑

k=0
pDSk,Ri

fDSk
xDSk

(t)

FSi
(t) =

n∑
k=0

1 + δki
2 fSkSi

xSkSi
(t) +

n∑
k=1

1
2fSiRk

xSiRk
+

i∑
k=0

pDSk,Si
fDSk

xDSk
(t).

(32)

Here, δki is the Kronecker delta. xIJ(t) denotes the frequency of individuals (at time t) with
genotype IJ , where I, J = D,S0, S1, . . . , Sn, R1, . . . , Rn. Similarly, fIJ is the fitness of IJ
individuals, and pIJ,K denotes the probability of an individual with genotype IJ producing
a K gamete. From conservation of probability, we have the following identities:

pDRk,D +
n∑
i=k

pDRk,Ri
= 1

pDSk,D +
n∑
i=k

pDSk,Si
+

n∑
i=k

(1− δ0i) pDSk,Ri
= 1

Notice that type RnD and type SnD individuals are fully resistant to being manipulated
by the drive construct; such a fully resistant individual shows standard Mendelian segregation
in its production of gametes. Thus, we have

pDRn,Rn = pDSn,Sn = 1
2 .
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The selection dynamics are modeled by the following system of equations:

ẋDD(t) = F 2
D(t)− ψ2(t)xDD(t)

ẋDRi
(t) = 2FD(t)FRi

(t)− ψ2(t)xDRi
(t)

ẋDSi
(t) = 2FD(t)FSi

(t)− ψ2(t)xDSi
(t)

ẋRiSj
(t) = 2FRi

(t)FSj
(t)− ψ2(t)xRiSj

(t)
ẋRiRj

(t) = (2− δij)FRi
(t)FRj

(t)− ψ2(t)xRiRj
(t)

ẋSiSj
(t) = (2− δij)FSi

(t)FSj
(t)− ψ2(t)xSiSj

(t).

(33)

The quantity ψ2(t) represents a density-dependent death rate for the individuals in the
population.

At any given time, t, we require that the total number of individuals sums to one:

xDD(t)+
n∑
i=1

xRiD(t)+
n∑
i=0

xSiD(t)+
j∑
i=0

n∑
j=1

xSiRj
(t)+

j∑
i=1

n∑
j=1

xRiRj
(t)+

j∑
i=0

n∑
j=0

xSiSj
(t) = 1 (34)

To enforce this density constraint, we set

ψ(t) = FD(t) +
n∑
i=1

FRi
(t) +

n∑
i=0

FSi
(t).

7.1 Invasion of the drive construct
The steps for determining if the drive construct invades when there is neutral resistance are
the same as in Section 3. The drive allele invades a wild-type population if

2pS0D,DfS0D > fS0S0 .

7.2 Stability of the drive construct
The steps for determining if the drive construct is stable when there is neutral resistance are
the same as in Section 4. The DD population is stable to perturbations with a wild-type
allele if

2 max
A∈S∪R

(pAD,AfAD) < fDD.

7.3 Explicit cellular model of CRISPR gene drive
Previously, we considered a model which abstracts the mechanism of drive within cells and
only deals with inheritance probabilities, pAB,C , and fitness values fAB. These were allowed
to be arbitrary in our analytical calculations. However, to perform numerical simulations
we must choose values for these parameters. To motivate these choices, we now formulate a
model which explicitly describes how CRISPR gene drive acts within individuals.

First, we consider fitness. We assume that the wild-type has the maximum fitness of
fS0S0 = 1 and that cost-free resistant alleles Si are identical to the wild-type allele with
respect to fitness. We assume that the cost conferred by the drive is dominant (we call
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this cost c), while the cost conferred by costly resistant alleles—which are disrupted copies
of the target gene—is recessive (we call this cost s). Furthermore, we assume—for our
proposed construct—that the drive allele contains a functional copy of the target gene, so
drive homozygotes do not incur the recessive cost for target disruption. Thus, we have
fDD = fDRi

= fDSi
= 1− c, fRiRj

= 1− s, fRiSj
= fSiSj

= 1.
For the previously demonstrated CRISPR gene drive constructs described in the main

text (Figs. 1 and 2), we again assume that disruption of the target gene produces a reces-
sive fitness cost, s, and that the gene drive construct produces a dominant fitness cost, c.
However, since the previously demonstrated drive constructs copied themselves by inserting
at (and thus disrupting) the target sequence, we assume that the drive allele contains a
disrupted copy of the target gene. Thus DD and DR individuals incur both the cost of the
drive construct, c, and the recessive cost of resistance, s. We assume that these two costs are
independent and thus the corresponding fitness effects are multiplicative, i.e., (1− c)(1− s).
Thus, we have fDD = fDR = (1− c)(1− s), fDS = 1− c, fRR = 1− s, fRS = fSS = 1.

Now, we consider the drive-heterozygote gamete production probabilities pDA,B. We
assume that the proposed drive construct employs n gRNAs, while the previously demon-
strated drive construct employs a single (n = 1) gRNA. Finally, we assume the cellular-level
process described in the main text (Fig. 2), and this leads to the following:

• DRi individuals produce Ri gametes precisely when no cutting occurs. Each of the
n − i sites is susceptible to cutting, and cutting occurs independently at each with
probability q, so we have

pDRi,Ri
= 1

2(1− q)n−i.

• DRi individuals produce Rk gametes (with k > i) by cutting at k − i sites (where
each cut occurs with probability q), followed by NHEJ repair (with probability 1−P ).
Since we assume that costly resistant alleles cannot convert back to cost-free alleles,
we do not consider the efficacy of repair by NHEJ. In this case, we have

pDRi,Rk
= 1− P

2

(
n− i
k − i

)
qk−i(1− q)n−k.

• DRi individuals produce D gametes by inheriting the existing D allele, or by cutting
at one or more sites on the Ri chromosome (each with probability q) and undergoing
HR repair (with probability P ). We have

pDRi,D = 1
2 + P

2 (1− (1− q)n−i).

• DSi individuals produce Si gametes precisely when no cutting occurs. Each of the
n − i sites is susceptible to cutting, and cutting occurs independently at each with
probability q, so we have

pDSi,Si
= 1

2(1− q)n−i.
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• DSi individuals produce Sk gametes (with k > i) by cutting at k− i targets (each with
probability q), undergoing NHEJ repair (with probability 1− P ), and repairing every
cut perfectly (each with probability γ). We have

pDSi,Sk
= 1− P

2

(
n− i
k − i

)
qk−i(1− q)n−kγk−i.

• DSi individuals produce Rk gametes (with k > i) by cutting at k − i targets (each
with probability q), undergoing NHEJ repair (with probability 1 − P ), and repairing
at least one cut imperfectly (which occurs with probability 1− γk−i). We have

pDSi,Rk
= 1− P

2

(
n− i
k − i

)
qk−i(1− q)n−k(1− γk−i).

• DSi individuals produce D gametes by inheriting the existing D allele, or by cutting at
one or more sites (each with probability q) and undergoing HR repair (with probability
P ). We have

pDSi,D = 1
2 + P

2 (1− (1− q)n−i).

We then employ these values in the numerical simulations shown in the main text (Figs.
2C and 3), using q = P = 0.95 and γ = 1/3, with n = 5 for the proposed construct and
n = 1 for the previous constructs.
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