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1 Abstract

Levelt’s Propositions have been a touchstone for experimental and modeling studies of
perceptual multistability. We asked whether Levelt’s Propositions extend to perceptual mul-
tistability involving interocular grouping. To address this question we used split-grating stim-
uli with complementary halves of the same color. As in previous studies, subjects reported
four percepts in alternation: the two stimuli presented to each eye (single-eye percepts), as
well as two interocularly grouped, single color percepts (grouped percepts). Most subjects
responded to increased color saturation by more frequently reporting a single color image,
thus increasing the predominance of grouped percepts (Levelt’s Proposition I). In these sub-
jects increased predominance was due to a decrease in the average dominance duration of
single-eye percepts, while that of grouped percepts remained largely unaffected. This is in
accordance with generalized Levelt’s Proposition II which posits that the average dominance
duration of the stronger (in this case single-eye) percept is primarily affected by changes in
stimulus strength. In accordance with Proposition III, the alternation rate increased as the
difference in the strength of the percepts decreased. To explain the mechanism behind these
observations, we introduce a hierarchical model consisting of low-level neural populations,
each responding to input at a visual hemifield, and higher-level populations representing the
percepts. The model exhibits the changes in dominance duration observed in the data, and
conforms to all of Levelt’s Propositions.

15 Keywords: Multistable perceptual rivalry, Levelt’s propostions, interocular grouping

16 1. Introduction

17 The brain is remarkably adept at interpreting noisy and ambiguous visual inputs (Kersten
18 et al., 2004; Fiser et al., 2010). However, sometimes competing interpretations of a stimulus
19 are not disambiguated, and different interpretations are perceived in alternation. For exam-
20 ple, binocular rivalry occurs when the two eyes are presented with disparate images. Instead
a1 of perceiving a fusion of the two images, one experiences intermittent switching between two
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Figure 1: (A) An example of the stimuli presented to the left and right eyes. Gratings were always split
so that halves with the same color and orientation could be matched via interocular grouping, but were
otherwise randomized across trials and blocks (see Methods). (B) Subjects typically reported seeing one of
four percepts — two single-eye and two grouped — at any given time during a trial. (C) A typical perceptual
time series reported by a subject, showing the stochasticity in both the dominance times and the order of
transitions between percepts.

» distinct percepts (Wheatstone, 1838; Blake and Logothetis, 2002). Multistable perceptual
»3 phenomena have been used extensively to study visual awareness and its underlying cortical
2+ mechanisms (Leopold and Logothetis, 1996; Polonsky et al., 2000; Tong et al., 2006; Sterzer
» et al., 2009)

2% Levelt’s observations (Levelt, 1965) have become a touchstone for experimental and mod-
2 eling studies of perceptual rivalry (Blake, 1989; Moreno-Bote et al., 2007; Shpiro et al., 2007;
s Wilson, 2003; Said and Heeger, 2013; Seely and Chow, 2011). Levelt’s original Propositions
2 relate stimulus strength, predominance (the fraction of time a percept is dominant), and
w0 dominance durations (the duration of the dominant percept) in binocular rivalry (Brascamp
a et al., 2015). However, generalizations of these propositions have been shown to hold in
» many cases of perceptual multistability (Bossink et al., 1993; Bonneh et al., 2001; Brascamp
1 et al., 2006; Moreno-Bote et al., 2010; Klink et al., 2008).

3 We hypothesized that Levelt’s propositions also extend to perceptual multistability in the
55 case of interocular grouping (Kovacs et al., 1996) where observers report alternation between
35 percepts that combine features of two disparate images presented simultaneously to the two
v eyes (Tong et al., 2006; Diaz-Caneja, 1928). For instance, when multiple patches of two visual
;s scenes are intermingled and the results presented to different eyes, observers intermittently
» perceive the original, coherent scenes (Kovacs et al., 1996). In this case conflicting percepts
» arise via interocular grouping — the binding of portions of the visual input from both eyes
s into a coherent percept.

P Levelt’s Propositions generalize naturally to this case: (I) Increasing percept strength of
1 grouped percepts increases the perceptual predominance of those percepts. (II) Increasing
w the difference between the percept strength of grouped percepts and that of single-eye per-
55 cepts increases the average perceptual dominance duration of the stronger percepts. (III)
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s Increasing the difference in percept strengths between grouped percepts and single-eye per-
w cepts reduces the perceptual alternation rate. (IV) Increasing percept strength in both
s grouped percepts and single-eye percepts while keeping it equal among percepts increases
w0 the perceptual alternation rate Brascamp et al. (2015). Here we refer to percept strength
so rather than stimulus strength since both single-eye and grouped percepts share the same
51 visual inputs.

5 To test our hypothesis we used split-grating stimuli (See Fig. 1A) for which subjects
53 reliably reported four percepts in alternation: single-eye percepts — the two stimuli presented
s« to each eye (percepts 1 and 2 in Fig. 1B), as well as two interocularly grouped, single
s color, coherent percepts (3 and 4 in Fig. 1B). We hypothesized that an increase in color
ss saturation increases the strength of the coherent, grouped percepts. Indeed, we found that
s for most subjects an increase in color saturation lead to increased predominance of grouped
s percepts (Proposition I). At the same time the dominance duration of single-eye (stronger)
5o percepts decreased, while that of grouped (weaker) percepts remained largely unaffected
o (Proposition II). As a consequence, the alternation rate increased with a reduction in the
s difference of percept strengths (Proposition III). In addition, we found that an increase in
&2 the predominance of grouped percepts was partly due to an increase in the fraction of visits
63 to grouped percepts.

64 We next investigated whether classical models of binocular rivalry can explain the neural
ss mechanisms behind the present form of perceptual multistability. To do so we developed a
s hierarchical model consisting of four low-level populations responding to input in each hemi-
e field of the two eyes, and higher-level populations representing the four percepts (Wilson,
¢ 2003; Diekman et al., 2013). We assumed that an increase in color saturation increased inte-
s rocular coupling strength between low-level neural populations responding to complementary
70 stimuli. Our model showed that the same neural mechanisms (i.e. mutual inhibition, adap-
7 tation and noise) used to explain binocular rivalry Laing and Chow (2002) also explain the
72 main features of our experimental findings. In addition, the behavior of the model conformed
73 with Proposition IV, which we were not able to test experimentally.

74 Interestingly, the level of change in color saturation in our experiments did not result
75 in changes in interocular grouping in all subjects. However, when the effect was present, it
7 could be explained by the generalization of Levelt’s propositions.

7 2. Methods

s 2.1. Fxperiment

7 Observers. Nine observers with normal or corrected-to-normal vision, including three of the
so authors (AJ, ZK, YW), participated in this experiment. Six were naive to the experimental
a1 hypotheses and three were not. The experiments were conducted according to a protocol
&2 approved by the University of Houston Committee for the Protection of Human Subjects and
&3 in accordance with the federal regulations 45 CFR 46, the ethical principles established by the
sa  Belmont Report, and the principles expressed in the Declaration of Helsinki. All participants
& provided their written informed voluntary consent following the consent procedure approved
g by the University of Houston Committee for the Protection of Human Subjects. Data are
s7  presented for all nine subjects.
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ss  Apparatus. The visual stimuli used in the experiment were generated using a VSG visual
o stimulus generator card (VSG 2/5, Cambridge Research Systems). The stimuli were dis-
o played on a calibrated 19”7 high resolution color monitor with a 100 Hz frame rate. Monitor
o calibration was carried out using CRS colorCAL colorimeter. A head/chin rest was used to
o stabilize observers’ head position. The distance between the monitor and the observer was
i3 set to 108 cm. We used a stereoscopic mirror arrangement (haploscope) in order to present
o the left and right stimuli separately to the left and right eyes. It consisted of four mirrors,
s whose horizontal /vertical positions and inclinations could be adjusted using screws.

o Stimuli. Subjects were presented with variations of the stimulus depicted in Fig. 1A. A
o7 square composed of two orthogonal gratings was presented to each eye using the haploscope.
¢ The orthogonal gratings were arranged so that interocular grouping resulted in a percept
o with single, i.e., uniform orientation (horizontal or vertical). In order to have a stimulus
w0 parameter to control the percept strength for this interocular grouping, we have added color
11 to our stimuli, such that interocular grouping would lead not only to a uniform orientation
102 but also to a uniform color (Fig. 1A). Stalmeier and de Weert (1998) studied the contribution
103 of color and luminance contrast to binocular rivalry. In their experiments, the stimulus to
104 One eye was achromatic concentric rings whereas the stimulus to the other eye was a radial
105 pattern made of isoluminant color pairs. They showed that the dominance duration of the
s colored radial pattern, hence the strength of the chromatic input, increased as the chromatic
w7 distance, d(u,v), between the colors in the CIE 1960 space increased up to d(u,v) ~ 0.1,
s and saturated thereafter. There were also significant differences in dominance durations
1o depending on the criterion for isoluminance (flicker photometry vs minimal distinct border
o (MDB) criterion), and the direction of change in the color space. Finally, their results showed
m  inter-subject variability both in the effectiveness of pure chromatic contrast and achromatic
112 contrast.

13 In preliminary observations, we found color saturation effectively controlled percept
s strength for interocular grouping. Hence, grating halves were assigned a color — either
us red or green — at two different saturation levels, 0.4 or 0.9. The HSV color space coordinates
us for red and green were (0.497, 0.4/0.9, 0.7) and (120.23, 0.4/0.9, 0.7), respectively, with the
u7  pair of values 0.4/0.9 referring to two different levels of color saturation. At low satura-
us tion (S = 0.4), the corresponding CIE 1960 (u,v) coordinates for red were (0.214,0.3) and
no L = 57.7cd/m?; whereas for green they were (0.169,0.315) and L = 72cd/m?. At high sat-
120 uration (S = 0.9), the corresponding CIE 1960 (u,v) coordinates for red were (0.333,0.329)
21 and L = 25.4cd/m?* whereas for green they were (0.127,0.360) and L = 57.6cd/m?. At low
122 saturation, the chromatic distance d(u,v) between the two colors was d(u,v) = 0.05 and
123 the achromatic distance in terms of Michelson Contrast (MC) was MC = 0.11. At high
124 saturation, these values were d(u,v) = 0.21 and MC = 0.388. Hence, by changing color
s saturation from 0.4 to 0.9, stimulus strength was increased significantly both in chromatic
e and achromatic dimensions. It is also noteworthy that the chromatic distance values of 0.05
7 and 0.21 fall to the left and right of the critical distance d(u,v) =~ 0.1 at which the strength
128 of the chromatic stimulus for binocular rivalry starts to saturate as observed by Stalmeier
2o and de Weert (1998).

130 To allow for interocular grouping of complementary patches, the two halves with the same
11 orientation always shared the same color at the same saturation level, and were shown to
132 opposite hemifields of either eye. For example, the combination horizontal green/vertical red
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133 presented to the left eye determined the combination vertical red/horizontal green presented
13 to the right eye, as well as the two grouped percepts — vertical red and horizontal green (See
135 Fig. 1B). In total, there were four possible stimulus arrangements, all completely determined
s by any half of a stimulus presented to one eye. The two squares were displayed on a grey
157 background (0.0, 0.0, 0.2): (u,v) = (0.188,0.442) and L = 23.88cd/m? and were contained
s within a square frame with a protruding horizontal and vertical line to help image alignment.

1o Erperimental procedure. Each session was divided into six 3-minute trials separated by a 90-
1o second resting period. To account for the time it took subjects to adjust to the stimuli and
w1 form stable percepts, the first 30 seconds of each trial were not analyzed. The association
12 between color and orientation was maintained within a single session, but was randomized
13 across sessions. For example, we used a vertical red /horizontal green left eye stimulus across
e some sessions (Fig. 1A). In contrast, saturation and the position of the horizontal grating
us  was randomized across the six trials. Within one session, each saturation level appeared in
s three trials and each grating positioning occurred in three trials.

147 Four subjects finished 6 total sessions (AJ, MA, ZK, ND), three subjects finished 5 ses-
us sions (FG, YW, ML), one subject finished 4 sessions (AB) and the remaining one finished 7
1o sessions (ZM). Therefore, after discarding the initial 30 seconds of each trial, a total of about
150 90 minutes of data over about 36 trials was collected per subject: about 18 trials for each
151 saturation conditions, with 3 trials per level and color/orientation pairing. See the Supple-
152 mentary Material which has been deposited to Github (https://github.com/YunjiaoWang
153 /multistableRivalry.git) for more details. Subjects were asked to indicate the dominant per-
15« cept by holding down one of four different buttons (1, 2, 3, 4) on a gamepad. They were
155 instructed to press button 1 when perceiving a split grating with left part red; button 2 when
156 perceiving split grating with left part green; button 3 when perceiving an all red grating; and
157 button 4 when perceiving an all green grating. When the perceived image did not correspond
158 to one of these four options, subjects were instructed to release all buttons. Such a report
159 typically marked a transition between percepts, but could also be followed by a transition to
10 the same percept. Before the beginning of the experiment, subjects were familiarized with
11 the controller.

w2 2.2. Data analysis

163 We performed the statistical analysis in R and provide a description of the analysis below.
1«  Commented code, as well as all collected data are available in the Supplementary Material.
165 We conducted all data analyses under a Bayesian framework. Standard significance tests

16 would allow us to reject the null hypothesis that a color saturation change has no effect on
17 dominance time, but would not allow us to accept the alternative hypothesis. In contrast, a
18 Bayesian approach allows us to conclude that for some subjects a change in color saturation
1o did affect percept dominance. We believe that showing the probabilities that this effect
o was present is more informative than concluding that a null hypothesis is rejected at some
i (arbitrary) significance level. Our use of Bayesian statistics means that confidence intervals
2 are replaced by credible intervals, and traditional notions of “significance” do not apply.
3 Instead of using a fixed threshold for significance, we provide the probabilities that a change
e in color saturation affects the perception of the stimuli, given the data (Wasserstein and
s Lazar, 2016).
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176 Importantly, in our analysis we use a hierarchical model to analyze concurrently the data
w7 from all subjects in the experiment (Gelman and Hill, 2006). Such models address the issue
s of multiple comparisons and provide efficient estimates (Gelman et al., 2012).

e Predominance of grouped percepts. Using the time series recorded from each trial, we com-
180 puted the predominance of grouped percepts. Predominance is the fraction of time that
181 subjects reported a grouped percept, Tgrouped, by pressing the corresponding gamepad but-
1,2 ton, out of the total time they reported any percept (percepts 1, 2, 3 or 4), i.e.

T(Z) _ Tgrfuped(i) _

Tgrouped (2) + Tsingle (Z)
Here i is the number of the trial, with 18 trials at each color saturation level (0.4 and 0.9).
This is equivalent to the fraction of time that buttons 3 or 4 were pressed out of the total
time any button was pressed during trial 7. In our analysis, we partitioned trials based on the
color saturation level used for each trial, grouping across all other conditions. We analyzed
changes in predominance using a linear Student-t regression model to account for skewness
in the data. We included the condition (low/high color saturation) as a covariate and set
the degrees of freedom of the ¢ distribution to 4 to provide robust inference while avoiding
computational difficulties often encountered when using a prior for the degrees of freedom
(Fonseca et al., 2008). Letting 7;; be the predominance for subject j in trial 7, the model is
specified as:

rij ~ ta(ij, o)
pij = Boj + Bij xij (1)
BOj ~ NOI‘Hl&l(ﬁo, Tg), Blj ~ Normal(ﬁl, 7'12)

18 where x;; is the color saturation indicator (1 for 0.9, 0 for 0.4). The random regression
e coefficients fy; and (31; allow the effects of color saturation to vary across subjects. This hi-
15 erarchical model assumes that the effects from different subjects are similar but not identical
185 and come from the same population with overall means of 5y and ;. Prior distributions
17 for the overall saturation effects 5y and ; were independent and normal with mean 0, and
s variance 10*. We used Uniform(0, 100) priors for the standard deviation of the random
o effects, 79 and 7 and Uniform(0, 1000) for 0. We estimated the mean difference in the
wo fraction of time between the two saturation levels and its 95% credible interval (CI) and the
11 probability that the difference is greater than 0. We performed an equivalent analysis to
12 examine whether the mean dominance time of the single eye or grouped percepts changed
193 across conditions.
From the " trial in each condition, we also computed ratios of the number of visits
to grouped percepts, Ngrouped, Over the number of all visits to either single-eye or grouped
percepts,

(i) = et ®___

Ngrouped (2) + Nsingle (Z)
s We used the model specified in Eq. (1) to analyze n(i) and determine the change in the
105 fraction of visits to the grouped or single-eye percepts across conditions.
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Transition probabilities. To estimate the transition probabilities between percept types, we
classified percepts into two states: single-eye, S, corresponding to percepts 1 and 2, and
grouped, GG, corresponding to percepts 3 and 4. For each trial, we converted the data into
two binary sequences: One sequence contained all transitions from state S with transitions
from S to S denoted by 1, and from S to G by 0. The second sequence contained transitions
from G, those from G to GG denoted by 1, and from G to S by 0. We used all data obtained
by each subject in a given condition (low/high color saturation) to estimate the transition
probability from S to S, and from G to G. The model is specified as

yi; ~ Bernoulli(p;;)
pij = foj + 015 iy ’
0o; ~ Beta(w * (k — 2) + 1, (1 — w) * (k — 2) + 1)), 61; ~ Normal(6;, 77)

e where z;; is the color saturation indicator (1 for 0.9, 0 for 0.4). We used vague priors: a
17 uniform prior on the interval [0, 1] for the mode, w, and a Gamma prior with rate and shape
18 both equal to 0.01 for the concentration parameter, . Prior distributions for the overall
1o saturation effects 6; was independent of these, and normal with mean 0, and variance 10*.
20 We used Uniform(0, 100) prior for the standard deviation of the random effect 7.

21 Model implementation. All Bayesian models were implemented via Markov Chain Monte
22 Carlo methods in JAGS. We used 3 MCMC chains with at least 20,000 iterations after an
203 initial burn-in of 4000 iterations. We assessed convergence by calculating the Gelman-Rubin
204 diagnostic, R for all parameters.

205 2.8. Model formulation and simulation

206 To provide a mechanistic explanation of our observations we used a hierarchical neu-
207 ral population model, based on previous work (Laing and Chow, 2002; Wilson, 2003, 2009;
208 Moreno-Bote et al., 2007; Huguet et al., 2014; Diekman et al., 2013). A schematic represen-
200 tation of the model is shown in Fig. 2. The sub-network at the first level of the hierarchy
210 consists of four neural populations, each receiving input from a different hemifield of the two
a1 eyes (See also Fig.6C of Diekman et al. (2013) and Fig.2B of Tong et al. (2006)).

212 The responses of all four possible pairs of populations at the first level, corresponding to
23 complementary hemifields, are integrated by distinct populations at the second level (Laing
22 and Chow, 2002; Wilson, 2003; Moreno-Bote et al., 2007). Each of these four pairs corre-
215 sponds to one of the four percepts shown in Fig. 1B, and thus each second level population
216 can be associated with a distinct percept. We assumed ezcitatory coupling between pop-
217 ulations receiving input from different hemifields both from the same and from different
a8 eyes. We also assumed inhibitory coupling between populations receiving input from the
219 same hemifield of different eyes, e.g. the left hemifield of the left and the left hemifield of
20 the right eye. This is consistent with electrophysiology and tracing experiments that reveal
21 long-range horizontal connections between cells with non-overlapping receptive fields, and
22 similar orientation preferences (Stettler et al., 2002; Sincich and Horton, 2005). Moreover,
23 cells with orthogonal orientation preferences can inhibit one another through recurrent and
24 feedback circuitry (Ringach et al., 1997; Ferster and Miller, 2000). Finally, we assumed that
»s all populations at the second level inhibit each other. This is consistent with previous com-
26  putational models which have recapitulated results of psychophysics experiments for rivalry
27 between two percepts (Lankheet, 2006; Seely and Chow, 2011).

7
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Figure 2: Computational model of interocular grouping. Neural populations representing stimuli
to the four hemifield-eye combinations at Level 1 provide feedforward input to populations representing
integrated percepts at Level 2, as described by Egs. (3) and (5) (See also Fig. 6C of Diekman et al. (2013)
and Fig. 2B of Tong et al. (2006)). Recurrent excitation within Level 1 is shown, whereas mutual inhibition
between the same hemifield of opposite eyes is not shown. All populations in Level 2 mutually inhibit one
another (Laing and Chow, 2002; Wilson, 2003; Moreno-Bote et al., 2007).

228 The two levels thus form a processing hierarchy (Wilson, 2003; Tong et al., 2006) with
29 the first roughly associated with monocular neural activity generated in LGN and V1 (Wil-
20 son, 2003; Blake, 1989; Polonsky et al., 2000; Tong, 2001), and the second level associated
o with the activity of higher visual areas, such as V4 and MT, that process objects and pat-
2 terns (Leopold and Logothetis, 1999; Wilson, 2003; Lamme and Roelfsema, 2000). However
233 the activity dynamics described by each level is likely to correspond to a distributed process
2% which spans multiple functional layers of the visual system (Sterzer et al., 2009).

Equations describing Level 1. The activity of each neural population receiving input from
one of the four hemifield-eye combinations at Level 1 is described by a firing rate variable
E;, i =1,2,3,4 (corresponding to left hemi/left eye; right hemi/left eye; left hemi/right eye;
and right hemi/right eye, see Fig. 2). These rates are governed by the following equations:

TE, = —Fy + G(I, + aBy 4+ BE; — wF5 — gHy 4 ny), (3a)
TEy = —Fy + G(I, + aEy + BEs — wEy — gHy 4 ny), (3b)
TE; = —F3+ G(I3 + aEy + BE> — wEy, — gHs 4 n3), (3¢)
TEy = —FEy+ Gy + aBs + BE, — wFEy — gHy 4 n4), (3d)

25 with the activity time constant 7 = 10ms (H&usser and Roth, 1997), [; is drive from the
236 stimulus, H; is used to model rate adaptation with strength g, and n; models random fluctu-
27 ations due to network effects and synaptic noise (Faisal et al., 2008). The strength of within
238 eye excitatory coupling is determined by «, while cross-eye excitatory coupling between pop-
230 ulations receiving input from complementary hemifields is described by . The strength of
20 mutual inhibition due to orientation and color competition is determined by w. We used a
2 sigmoidal gain function, G, to relate the total input to the population to the output firing
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242 rate:
0.8

G(x) = 1+ ¢ 10@—02)°

23 'This choice was not essential, as we could have used other gain nonlinearities, such as a
24 Heaviside step or a rectified square root, as long as each individual population, F;, possesses
25 both a low and high firing rate state (Laing and Chow, 2002; Moreno-Bote et al., 2007).

246 The rate adaptation variables, H;, describe the population-wide effects of hyperpolarizing

27 currents, activated due to increases in firing rates (Benda and Herz, 2003),
mwH; = E; — H,,

ug for i = 1,2,3,4 with time constant 7, = 1000ms. Following Moreno-Bote et al. (2007), we
20 modeled the fluctuations in population input currents with an Ornstein-Uhlenbeck process,

oo aﬁsw, 4)
Ts Ts

20 where 74, = 200ms, o = 0.03, and £(¢) is a white-noise process with zero mean. Changing
251 the timescale and amplitude of noise does not impact the results significantly.

Equations describing Level 2. The activity of the neural populations associated with percept
i at Level 2 is described by the mean firing rate P; for i = 1,2, 3,4. The P; are governed by

TP, = —P, + G(c\F\Ey — vPy — yPs — 4Py — kA; + ), (5a)
TPy = —Py + G(cE,Es — vP, — yPs — yPy — kAy + ng), (5b)
TPy = —Py + G(coF\Ey — vPy — YP, — Py — kA3 +n7), (5¢)
TPy = —P, + G(cFyFE3 — vPy — yPy — yPy — kA4 + ng). (5d)

2 We model the feedforward inputs to each second level population as the product of the
23 activities, F;Fy, of the associated populations at the first level. For instance, activity P
s depends on the product FqFEs since percept 1 is composed of the stimuli in the hemifields
5 providing input to populations 1 and 2 at the first level. Previous experimental and mod-
»6 eling studies have pointed to such multiplicative combinations of visual field segments as a
257 potential mechanism for shape selectivity (Salinas and Abbott, 1996; Brincat and Connor,
23 2006). Again, we model rate adaptation using a separate variable, A;, described by

T.A; = P, — A, (6)

0 where we set 7, = 7,. When we replaced the multiplicative input to the second level
20 population with additive input from Level 1, F; + Ej, our results remained qualitatively
61 unchanged.

262 Theorem 2.2 in Diekman et al. (2012) suggests that when 5 = 0 and « is large enough, the
%3 lower level network model can be reduced to a classical mutual inhibitory two-node model.
ss  Here, we choose the parameter ranges of o and I so that all four Levelt’s propositions hold
265 when ﬁ =0.
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Figure 3: Dominance times for two subjects, ML and AJ, approximately follow a gamma distribution. (A,B)
Histograms of single-eye percept durations are unimodal, but somewhat different between the two saturation
conditions. (C,D) Histograms of the grouped percept durations are closer to each other. Each histogram
contains data collected from 18 trials of 2.5 minutes each, amounting to approximately 1200 dominance
duration reports (See Methods and Supplementary Material for more details).

w6 3. Results

267 Nine observers were presented with two split-grating images simultaneously to each eye
28 using a haploscope (See Methods). Subjects reported one of four possible percepts by press-
%0 ing buttons on a game pad. We examined how the fraction of time subjects perceived
20 grouped images (the predominance of grouped images) depended on the color saturation of
on the stimuli. We observed an effect in some subjects, and propose a model to explain it.

a2 Dominance durations follow a gamma distribution. We computed dominance duration as
213 the total time that a subject reported seeing a percept, i.e. the total time that the subject
a2 continuously pressed a button on the gamepad, corresponding to a percept. For all subjects
s the distribution of dominance times for single-eye and grouped percepts had the shape of
a6 a gamma distribution. This is consistent with previous studies of perceptual multistabil-
o ity (Blake and Logothetis, 2002; Brascamp et al., 2005; van Ee, 2009). For some, but not all
s subjects, the mean of single-eye percept times decreased with an increase in color saturation
2o (Fig. 3). A more thorough analysis was therefore needed to determine the effect of color
250  saturation on percept predominance.

21 Predominance of grouped percepts. We first examined whether an increase in color saturation
0 affected the fraction of time grouped percepts were reported. Our hypothesis was that
23 predominance of grouped percepts increases with color saturation, as a result of a stronger
2 visual cue to bind the two complementary halves of the stimuli presented to each eye into
285 a coherent percept (Wagemans et al., 2012). The data supports this effect in five out of
26 nine subjects (Fig. 4): A Bayesian analysis of the data shows that for five out of the nine
27 subjects there was a 0.92 or higher probability that the difference in mean predominance
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Figure 4: (Plot) Grouped percept predominance: each colored bar indicates the mean predominance at
a given color saturation level in a given subject and black error bars denote the 95% credible intervals.
(Table) Differences between ratios at the two color saturation levels: diff. = difference of predominance
means at saturation 0.9 and 0.4; 95% CI stands for 95% credible interval; ‘prob.’ is the probability that
the predominance of grouped percepts is higher at saturation level 0.9 (See Methods). We use the same
ordering of subjects in all subsequent tables and figures, so that the five subjects sensitive to changes in
color saturation are listed first.

23 times increased between the conditions, given the reported percept durations (See Table in
20 Fig. 4). There was no evidence that changes in color saturation impacted predominance in
200 the remaining subjects. We next examined how this change in predominance was related
201 to both changes in average dominance time and the frequency of visits to single-eye versus
22 grouped percepts.

203 3.1. Causes of predominance changes

204 In the case of only two percepts, the number of visits to each percept will differ by at
205 most one per trial (van Ee, 2009), and dominance duration is closely related to predomi-
206 nance. With more than two percepts, they do not simply alternate. The order in which
27 multiple percepts appear affects predominance (Naber et al., 2010; Huguet et al., 2014).
26 'Thus, to understand changes in predominance we must examine how color saturation influ-
200 ences dominance duration, as well as the number of visits to each percept.

0 Single-eye percept durations decrease with color saturation. We compared the average dom-
s inance durations of single-eye and grouped percepts for the two different color saturation
;2 conditions in Fig. 5. In six out of nine subjects, there was a higher than 0.95 probability that
33 dominance duration of single-eye percepts decreased as color saturation increased (subjects
s ZK, AJ, ML, AB, MA, ZM, See Fig. 5A). These included the five subjects for which the
35  predominance of grouped percepts increased. There was no strong evidence that increased
a6 color saturation increased the dominance duration of grouped percept in any subjects. The
s07 - distribution of dominance durations for two subjects in Fig. 3 show a decrease in the mean
38 dominance duration of single-eye percepts (panels A and B) with little change in grouped
20 percept durations (panels C and D).

310 Generalized Levelt’s Proposition II states that increasing the difference between the per-
an cept strength of grouped percepts and that of single-eye percepts primarily increases the
a2 average perceptual dominance duration of the stronger percepts Brascamp et al. (2015). By
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ZK  -0.23 (-0.32,-0.14) 0.999 | ZK  0.04 (-0.05,0.13) 0.777
AJ  -0.26 (-0.36,-0.15) 0.999 | AJ 0.03 (-0.06, 0.11) 0.714
ML -0.32 (-0.43,-0.21) 0.999 | ML -0.02 (-0.10, 0.07) 0.333
AB  -0.21 (-0.34, 0.08) 0.999 | AB -0.10 (-0.26, 0.04) 0.075
MA -0.09 (-0.20, 0.02) 0.950 | MA -0.04 (-0.11, 0.03) 0.142
ND -0.03 (-0.12, 0.06) 0.743 | ND -0.02 (-0.12, 0.08) 0.303
ZM  -0.21 (-0.32,-0.09) 0.999 | ZM -0.29 (-0.47,-0.08) 0.000
FG -0.01 (-0.12,0.11) 0.552 | FG  -0.08 (-0.19, 0.02) 0.052
YW 0.16 (0.06, 0.27) 0.001 | YW -0.01 (-0.09, 0.07) 0.396

Figure 5: Average dominance durations: (A) single-eye percepts and (B) grouped percepts. Single-eye
percept dominance durations decrease as color saturation is increased for the subjects who also experience
increased grouped percept predominance. Here ‘D-prob.” (on left) is the probability that the dominance
duration of single-eye percepts decreases and ‘prob.” (on right) is the probability that the dominance duration
of grouped percepts increases.

a3 increasing color saturation, we decreased the difference in stimulus strength between single-
su eye and grouped percepts: In the low color saturation case, the single-eye percepts were
a5 stronger, as their predominance was higher than that of grouped percepts (Fig. 4, for seven
sis - of the nine subjects the predominance of grouped percepts was below 0.5 with a probability
a7 of 0.94 or higher. See Supplementary Material). At higher color saturation the grouped
ss percepts had a mean predominance of near 0.5 or below for eight subjects. We also note
a0 that grouping during binocular rivalry is dictated by the eye-of-origin (Stuit et al., 2014),
320 SO it is reasonable to assume that single-eye percepts remain stronger even at higher color
s saturation. Thus, for most subjects who were sensitive to a change in percept strength
22 the stronger percepts’ (single-eye) mean dominance duration decreased, while the weaker
23 percepts’ (grouped) durations remained roughly the same. We explore further comparisons
524 with Propositions II-IV in the Discussion.

25  Grouped percept visit frequency increases with color saturation. With multiple percepts, each
»s can occur with a frequency between 0% to 50%, excluding self-transitions. This frequency
27 impacts predominance (Naber et al., 2010; Huguet et al., 2014). We therefore examined
»2s how the frequency of visits to single-eye and grouped percepts depended on color saturation.
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Figure 6: Frequency of visits to grouped percepts out of all visits. The mean increases for eight out of nine
subjects when color saturation is increased from 0.4 to 0.9. The five subjects who experienced an increase
in grouped percept predominance, also showed an increase in the frequency grouped percept visits. Values
in the table are computed in the same way as in Fig. 4.

20 Consistent with our results for grouped percept predominance (Fig. 4), the frequency of visits
30 to grouped percepts increased with color saturation in most subjects (Fig. 6, see Methods
s for details about the analysis): Subjects ZK, AJ, ML and AB (probability > 0.94), and to
32 a lesser degree MA (prob > 0.82), show a consistent increases in the number of visits to
;3 grouped percepts.

334 We conclude that two main factors contributed to increased predominance of grouped
35 percepts with increased color saturation in the five subjects affected by this change: First, the
16 average dominance duration of single-eye percepts decreased, while the dominance durations
337 of grouped percepts remained approximately unchanged. Second, the grouped percepts were
18 visited more frequently in the high color saturation condition.

30 3.2. Transitions to grouped percepts increase with color saturation

340 We also analyzed the transition probability between percepts. We focused on the fre-
s quency of transitions between each percept type: single-eye or grouped percepts (See Fig.
s2 TA). In doing so, we reduced the number of possible transitions to four: single-eye to grouped,
u3  grouped to single-eye, grouped to grouped, and single-eye to single-eye (See Methods). Our
s analysis of the frequency of visits to grouped percepts (Fig. 6) suggests an increase in transi-
us  tions to grouped percepts in the high color saturation condition. Consistent with this trend,
us  we found that there was high probability of a decrease in the ratio of transitions from single-
w7 eye to single-eye percepts for the first five subjects (ZK, AJ, ML, MA, and ZM in Fig. 7B),
us  here ratio of single-to-single= Smgle_to_:ifgglff;fgieo_gmupe 5. The probability of this decreasing
s effect was higher than 0.98 for four of those five subjects and higher than 0.87 for the one
0 remaining. This implies that the ratio of the transitions from single-eye to grouped percepts
1 increased as color saturation increased. In addition, there was high probability that the
2 ratio of grouped percepts to grouped percepts transitions increased as the color saturation
353 for four out of those five subjects (prob> 0.94), see Fig. 7C. Thus, there was an increase in
s the frequency of extended bouts of grouped percepts, whereby each switch yields the oppos-
35 ing grouped percept. This phenomenon has previously been referred to as “trapping”, as it
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FG -0.01 0.08, 0.05) 0.645 | FG  0.02 (-0.05, 0.08) 0.712
YW -0.02 0.08, 0.04) 0.774 | YW -0.04 (-0.10, 0.02)

(- (
(- (
(( (( )
MA  -0.06 (-0.12,-0.01)  0.985 | MA  0.01 (-0.04, 0.05) 0.640
(- (
(- (-
(- (-
(- (-

0.089

Figure 7: (A) Diagram showing the case where single-to-single percept transitions are less likely than
grouped-to-grouped transitions, represented by the thickness of transition arrows. (B,C) The probability of
transitions from (B) single-to-single percepts, and (C) grouped-to-grouped percepts. The probability of a
single-to-single transition tends to decrease with color saturation whereas the grouped-to-grouped transition
probability tends to increase in the cohort of subjects whose grouped predominance increased. The table gives
the posterior probability of a decreases in single-to-single transition, and an increase in grouped-to-grouped
transitions given the data.

16 suggests a subject’s perception is trapped in a subset of all possible percepts (Suzuki and
57 Grabowecky, 2002).

s 3.3. Network mechanisms in a computational rate model

350 Our experimental findings suggest that increased color saturation can facilitate the bind-
30 ing of complementary image halves presented to either eye (as in Fig. 1). This is con-
s sistent with previous experiments demonstrating that collinear patches are grouped more
32 frequently than orthogonal patches (Alais and Blake, 1999). Furthermore, there is evidence
s that collinear facilitation is influenced by chromatic cues (Huang et al., 2007).

364 To examine the neural mechanisms that underlie these observations, we have constructed
s a model of neural activity whose dynamics mirror our experimental findings (Fig. 2). The
w6 network consists of two levels, each containing four neural populations. The populations
7 at the second level correspond to the four possible percepts. Those at the first level each
s correspond to the stimulus in one of the visual hemifields. Recurrent excitation between
w0 populations encoding complementary image halves is facilitated by an increase in color satu-
w0 ration, based on the observation that color saturation reinforces interocular grouping (Noth-
s durft, 1993; Hadjikhani et al., 1998). This leads to an increased chance that populations
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Figure 8: Results of a computational model of interocular grouping in perceptual multistability. (A) Numer-
ical simulation of the model described in Fig. 2. Each trace represents the activity of a different population
at Level 2, corresponding to one of four possible percepts. Note the variability in the order and timing of
activations. (B,C) Dominance time distributions of (B) single-eye and (C) grouped percepts at the different
values of 8 with fixed a = 0.6 (See Supplementary Material for other parameter values).
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Figure 9: Effects of changes in color saturation, modeled by varying the coupling parameter, 8. (A) The
predominance of grouped percepts increases with (3, consistent with experimental data presented in Fig. 4.
(B) The average dominance duration of single-eye percepts decreased with § while that of grouped percepts
remained approximately unchanged, in accordance with experimental data in Fig. 5A. (C) Furthermore, the
frequency of visits to grouped percepts increased with 3, as in experimental data in Fig. 6.

Dom. Duration(s)

sz representing grouped images will be active.

373 As can be seen in a typical numerical simulation (See Fig. 8A), a single percept-related
we population (in Level 2) is active at any given time. Both the ordering and timing of per-
ws  cept dominance were stochastic, but the dominance time distributions were unimodal (Fig.
s 8B,C). As in previous models of perceptual multistability (Laing and Chow, 2002; Wilson,
w7 2003; Moreno-Bote et al., 2007), we assumed perceptual switching is governed both by a
ws  slow adaptation variable as well as internal noise (See Methods). In classical bistable models
wo  of perceptual rivalry, stimulus strengths are represented by input [ (or ;). However, in
;0 the multistable perceptual rivalry model involving interocular grouping, changing any input
s strength I; influences the strengths of single-eye and grouped percepts simultaneously. Thus
;2 in our model, the effects of color saturation were controlled by a single parameter, 3, which
;3 scaled the strength of excitatory coupling between populations responding to complementary
s« image halves of grouped percepts. Another parameter, «, represented the strength of exci-
;s tatory coupling between populations receiving input from the hemifields of the same eye. In
s accordance with our experimental findings (Fig. 3), as § was increased the dominance time
;7 distributions for single-eye percepts shifted left, while the distribution of grouped dominance
;s times remained approximately unchanged.
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Figure 10: Levelt’s proposition II also holds when the coupling strength («) between single-eye halves is
small (o = 0.1) or intermediate (o = 0.3).
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Figure 11: (A) Levelt Proposition IV: As the recurrent coupling between both ipsilateral and contralateral
hemifield populations increases (both « and (), the dominance durations of both types of percepts (single-
eye and grouped) decrease. Since these coupling strengths correspond to both percept strengths, this trend
is consistent with Proposition IV. (B) The mean fractions of the transition rates (grouped to grouped and
single-eye to single-eye). In simulations a = 0.6 (See Methods for other parameter values).

0 Single-eye percept dominance times decrease with color saturation. Our computational net-
0 work model recapitulates the three main observations of our psychophysical experiments.
s First, as 3, the parameter representing color saturation dependent coupling, is increased
32 the predominance of grouped percepts increased (Fig. 9A). This is consistent with the gen-
03 eralized Levelt’s Proposition I (see Introduction): Increasing percept strength of grouped
s percepts increases the predominance of those percepts. As with our experimental data, we
35 explored what factors contributed to this change in predominance by computing average
s  dominance time durations as well as the number of visits to each type of percept. When
s7 fixing o = 0.6, and varying (8 from 0 to 0.6, the average dominance duration of single-eye per-
s cepts decreases while that of grouped percepts shows much less change and the variation is
10 very small when 8 € [0.5,0.6]. This is consistent with experimental data and the generalized
w0 Levelt’s Proposition II: Increasing the difference between the percept strength of grouped
w1 percepts and that of single-eye percepts will increase the average perceptual dominance dura-
w2 tion of the stronger percepts. Proposition II also holds for intermediate (a = 0.3 Fig. 10(A))
w3 and small (« = 0.1 Fig. 10(B)) a-values, which we were not able to test experimentally.

404 Thus, as in our experiments, the two main factors contributing to an increase in the
ws predominance of grouped percepts were a reduction in single-eye percept durations, and
w6 an increase in the number of visits to grouped percepts. Therefore the network mechanisms
w7 reenforcing the collective activation of populations representing complementary image halves
w08 can explain our experimental observations.
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409 We also note that the generalization of Proposition IV holds in our model (See Fig. 11A).
a0 The Proposition states that the alternation rate increases as the strengths of both grouped
a1 and single-eye percepts are increased while keeping it equal. Since o and S correspond
a2 to the strength of single-eye and grouped percepts, respectively, we expect that increasing
a3 them both equally (keeping 8 = «) should increase the perceptual alternation rate. This
ss occurred over a substantial range of both parameters. Overall, our computational model
ns  suggests a combination of neural mechanisms that can account for a generalization of Levelt’s
sne Propositions to interocular grouping.

a7 Transitions to grouped percepts. We were also able to recapitulate the experimentally ob-
ns  served effect of color saturation on the frequency of transitions to grouped percepts. In
no subjects where color saturation affected interocular grouping, increasing color saturation
20 increased the probability of perceptual transition to grouped percepts (Fig. 7). In our com-
21 putational model we found that increasing [ lead to both a decrease in the probability of
12> transitions to single-eye percepts, as well as an increase in transitions to grouped percepts
2 (Fig. 11B), consistent with our experimental observations.

2 4. Discussion

425 Multistable perceptual phenomena have long been used to probe the mechanisms under-
26 lying visual processing (Leopold and Logothetis, 1999). While binocular rivalry is used most
w7 frequently (Blake and Logothetis, 2002), different insights can be obtained by employing
28 visual inputs that are integrated to produce interocularly grouped percepts (Kovacs et al.,
20 1996; Suzuki and Grabowecky, 2002). These experiments are particularly informative when
a0 guided by Levelt’s Propositions, originally developed in the case of binocular rivalry (Levelt,
a1 1965; Brascamp et al., 2015). Here we used this approach to identify how color saturation
s influences the dynamics of perceptual multistability involving interocular grouping.

a3 Color saturation facilitates grouping of complementary image halves. We demonstrated that
s34 increasing the color saturation of ambiguous visual inputs can increase the predominance of
a5 grouped percepts. This is consistent with the Gestalt law of similarity (Wagemans et al.,
s 2012) and previous work, demonstrating that color cues aid in the grouping of complementary
a7 parts of a visual object (Kim and Blake, 2004; Roelfsema, 2006). There is also evidence
s that the neural mechanisms underlying collinear facilitation for chromatic and achromatic
10 contours are different (Beaudot and Mullen, 2003; Huang et al., 2007), suggesting there are
a0 multiple channels in the visual system that affect the grouping of image halves in Fig. 1.
s Ultimately, we propose that color provides one cue that promotes the grouping of objects
w2 between eyes.

443 It is important to note that we only observed an appreciable increase in grouped percept
se  predominance in five out of nine subjects (Fig. 4). In the remaining four subjects we did not
us observe an effect of color saturation on percept predominance. One possible reason for this
s result is that subjects differed in their sensitivity to color saturation (Kaiser and Boynton,
a7 1996). Although no subjects reported problems with distinguishing colors, they may have
us responded differently if the change in color saturation was larger, or if we used different
mo colors. For example, the wide array of sensitivities to contrast across human subjects are
is0 reflected in the range of mean dominance time durations in binocular rivalry (Bossink et al.,
i1 1993; Brascamp et al., 2006; van Ee, 2009). Also, the relationship between color saturation
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»2 and percept predominance is likely nonlinear Stalmeier and de Weert (1998). The color
553 saturation values we used may have fallen in the flat portion of the function that describes
s the relation between color saturation and predominance for the four unaffected subjects.

455 As mentioned previously, Stalmeier and de Weert found significant inter-subject variabil-
s6 ity even when isoluminance points were calibrated individually for each subject Stalmeier
s and de Weert (1998). The effect of chromatic signal strength on binocular rivalry depended
s both on the calibration criterion (flicker photometry versus MDB) and the direction along
ss0  which colors are sampled in the color space. Stalmeier and de Weert also showed signifi-
w0 cant inter-subject variability both in the absolute effectiveness of achromatic contrast and
w1 its relative effectiveness with respect to chromatic contrast Stalmeier and de Weert (1998).
w2 Inter-subject variability has been reported in relatively low-level tasks (e.g. (Halpern et al.,
w3 1999)), as well as in multistable perception (Kleinschmidt et al., 2012), which is interpreted
w4 to include both low-level and high-level factors. Hence, for future studies, we suggest the
w5 use of multiple levels of the percept-strength variable in order to characterize more com-
w6 Ppletely the performance of each subject individually. In addition, it would help us identify
w7 the relative contributions of color saturation and luminance to percept strength, since red
ws and green have different luminance at a fixed saturation (See Methods). This would provide
w0 a test for the generality of our conclusions. Increasing the number of subjects would allow
a0 us to better characterize inter-subject variability, but would likely not make it disappear.

an Fxtending Levelt’s propositions to interocular grouping. Interocular grouping has been re-
a  ported with different sets of patchwork images (Kovacs et al., 1996; Suzuki and Grabowecky,
a3 2002). However, earlier studies did not quantify specific ways in which a stimulus parameter
s could affect the predominance of grouped images. We have shown that color saturation used
a5 as a grouping cue differentially controls the strength of single-eye and grouped percepts,
a6 and increasing color saturation can increase grouped percept predominance. This suggests
a7 color saturation may act as a stimulus strength parameter for grouped percepts, in line with
w3 Proposition I.

479 In agreement with Proposition II, the single-eye percepts began with higher predomi-
s0 nance, and their dominance durations were decreased in the higher color saturation condi-
w1 tion. Consistent with Proposition III, we found the average dominance duration decreased.
s Finally, since we could not determine whether we equally increased the strength of both
i3 single-eye and grouped percepts, it is unclear whether our results are consistent with Levelt
s Proposition IV. Color saturation may affect monocular and binocular integration in different
85 ways (Sincich and Horton, 2005). Stimulus parameter changes obeying Proposition IV would
ss  have to keep predominance fixed, while decreasing mean dominance durations. However, in
s7 our computational model, we find that when single-eye and interocular coupling strengths
s  are equal, i.e. o = 3, then increasing both leads to a decrease in dominance time durations
489 (See Fig. 11A>.

490 Studies of interocular grouping in perceptual multistability have a long history (Diaz-
w1 Caneja, 1928). We focused on split single-eye images for simplicity, but we anticipate that
w2 our findings extend to the patchwork images of Kovacs et al. (1996). The simple grating-
203 based inputs we used were more similar to the geometric images of Suzuki and Grabowecky
we (2002). We expect that our findings extend to achromatic images as long as a parameter
w5 can be identified that affects grouped percept predominance. For example, we could use
w6 achromatic textures as a cue to group complementary stimulus halves. In general, we suggest
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w7 that our findings apply to any stimulus feature that promotes grouping along the lines of
ws Gestalt laws of grouping.

w0 Fxtensions to other computational models. We made several specific choices in our compu-
so0 tational model. First, we described neural responses to input in each visual hemifield by
so0 a single variable. We could also have partitioned population activity based on orientation
s2  selectivity or receptive field location (Ferster and Miller, 2000). This would allow us to
so3 describe the effects of horizontal connections that facilitate the representation of collinear
s« orientation segments in more detail (Bosking et al., 1997; Angelucci et al., 2002). Since there
ss 1S evidence for chromatically-dependent collinear facilitation (Beaudot and Mullen, 2003),
s we could model the effects of image contrast and color saturation as separate contributions
so7 to interocular grouping. In the present model, the effects of color saturation were described
s by a single parameter, 3, representing the coupling between the neural populations at the
so0 first level of our hierarchy. Increasing color saturation could have also impacted the stimu-
s lus strength I, e.g., through changes in luminance. A more detailed study of the effects of
su increasing both § and [ to account for saturation and luminance changes will be pursued
sz in future work. We expect that color saturation also affects neural activity and contextual
si3 feedback in higher visual areas (Sincich and Horton, 2005). We could therefore extend our
s model to account for chromatic effects on the activity at the second level in Fig. 2.

sis  Comparisons with previous models of perceptual multistability. Our computational model is
sis  based on the assumption that perceptual multistability occurs via a winner-take-all process,
sz with a single percept temporarily excluding all others (Wilson, 2003; Shpiro et al., 2007).
si8 Subsequently, some neural process must allow the system to switch from the dominant to
si0 another percepts after a few seconds (Laing and Chow, 2002). The simplest mathematical
s0 model of this process is a multistable system where slow adaptation and/or noise drives
s switches between multiple attractors (Moreno-Bote et al., 2007; Braun and Mattia, 2010).
s22 This framework is common in models of binocular rivalry (Laing and Chow, 2002; Shpiro
s3 et al., 2007), non-eye-based perceptual rivalry (Brascamp et al., 2009), and even perceptual
s multistability with more than two percepts (Diekman et al., 2013; Kilpatrick, 2013; Huguet
s et al., 2014). Each percept typically corresponds to a single neural population which mutually
s26 inhibits the other(s). Spike rate adaptation or short term plasticity then drive the slow
s switching between network attractors (Laing and Chow, 2002), and noise generates variation
s in the dominance times (Moreno-Bote et al., 2007).

529 Our computational model differs from previous ones in a few key ways. First, excitatory
s connectivity at the first level facilitates both single-eye and grouped binocular percepts.
s Second, there is a hierarchy of levels, with percepts represented by neural activity at the
s higher level. Importantly, the strength of excitatory connectivity at the first level determines
533 the input strength to second level populations, and ultimately each percept’s predominance.
s In this way, our model is similar to that of Wilson Wilson (2003), who used a two level
535 model to capture the effects of monocular and binocular neurons. However, Wilson’s model
s  focused on the case of two possible percepts, while our computational model accounts for all
s37  four possible percepts in an interocular grouping task.

s Neural mechanisms of perceptual multistability. Our observations support the prevailing the-
s ory that perceptual multistability is significantly percept-based and involves higher visual
so0 and object-recognition areas (Leopold and Logothetis, 1999). Since the first systematic study
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se1 - on binocular rivalry (Wheatstone, 1838), much work has been devoted to identifying its un-
se2  derlying neural mechanisms: Mutual inhibition allows for the selection of one percept among
ses many (Lumer, 1998; Tong and et al, 1998; Tong, 2001; Lee et al., 2005; Haynes et al., 2005;
s« Meng et al., 2005; Moutoussis et al., 2005; Wunderlich et al., 2005; Seely and Chow, 2011),
ses adaptation can lead to switching between percepts (Kim et al., 2006; Brascamp et al., 2006;
se6 van Ee, 2009), and neuronal noise accounts for the irregularity of perceptual dominance
se7 intervals (Brascamp et al., 2006; Moreno-Bote et al., 2007; Shpiro et al., 2009; Lankheet,
ses 2006). However, a number of issues remain unresolved. Activity predictive of a subject’s
s90 dominant percept has been recorded in lateral geniculate nucleus (LGN) (Haynes and Rees,
sso  2005), primary visual cortex (V1) (Lee and Blake, 2002; Polonsky et al., 2000), and higher
ss0 visual areas (e.g., V2, V4, MT, IT) (Logothetis and Schall, 1989; Leopold and Logothetis,
s> 1996; Sheinberg and Logothetis, 1997). Thus, rivalry likely results from interactions between
53 networks at several levels of the visual system (Freeman, 2005; Wilson, 2003). As a result,
ss« it is important to develop descriptive models that incorporate multiple levels of the visual
55 processing hierarchy.

556 Collinear facilitation involves both recurrent connectivity in V1 as well as feedback con-
ss7 - nections from higher visual areas like V2 (Angelucci et al., 2002; Gilbert and Sigman, 2007),
sss  reenforcing the notion that perceptual rivalry engages a distributed neural architecture. How-
ss0 ever, a coherent theory that relates image features to dominance statistics during perceptual
sso  switching is lacking. It is unclear how neurons that are associated to each subpopulation
ss may interact due to grouping factors such as collinearity and color.

562 Although we only presented one model in this work, we have tested two others: one model
63 assumes that interocular grouping is encoded by strengthening the feedforward coupling from
ssa  the Level 1 to Level 2, and the another model assumes that grouping effects occur via stronger
ses feedback from Level 2 to Level 1. Interestingly, all three models produce similar results.

sso  Conclusion. Our work supports the general notion that perceptual multistability is a dis-
ss7 tributed process that engages several layers of the visual system. Interocular grouping re-
s quires integration in higher visual areas (Leopold and Logothetis, 1996), but orientation pro-
0 cessing and competition occurs earlier in the visual stream (Angelucci et al., 2002; Gilbert
s and Sigman, 2007). Furthermore, the fact that color saturation can modulate the statistics
s of perceptual multistability provides a novel stimulus parameter that can be varied in visual
s.2  inputs to probe the neural mechanisms of visual integration and competition.
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