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ABSTRACT  

Many SNPs that are predicted to encode deleterious amino acid variants. These mildly 

deleterious mutations may provide unique insights into population history, the dynamics 

of selection, and the genetic bases of phenotypes. This may be especially true for 

domesticated species, where a history of bottlenecks and selection can contribute to the 

accumulation of deleterious SNPs (dSNPs). Here we investigate the numbers and 

frequencies of deleterious variants in Asian rice (O. sativa), focusing on two varieties 

(japonica and indica) that may have been domesticated independently and their wild 

relative (O. rufipogon). Most dSNPs were lost during domestication, but comparative 

analyses in two population datasets indicated that the remaining dSNPs shifted in site 

frequency spectrum (SFS) relative to synonymous SNPs. Moreover, dSNPs were 

enriched within low recombination regions of the genome and experienced frequency 

increases similar to synonymous SNPs within regions of putative selective sweeps. A 

characteristic feature of rice domestication was a shift in mating system from outcrossing 

to predominantly selfing. Forward simulations suggest that this shift in mating system 

may have been the dominant factor in shaping extant rice diversity.   
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INTRODUCTION 

Several studies have suggested that there is a “cost of domestication” (Schubert et 

al., 2014), because domesticated species may accumulate slightly deleterious mutations 

that reduce their relative fitness (Lu et al., 2006). Under this hypothesis, the small 

effective population size (Ne) during a domestication bottleneck reduces the efficacy of 

genome-wide selection (Charlesworth and Willis, 2009), leading to the accumulation of 

slightly deleterious variants (Lohmueller et al., 2008, Casals et al., 2013). The fate of 

these variants also relies on linkage, because selection is less effective in genomic regions 

of low recombination (Hill and Robertson, 1966, Felsenstein and Yokoyama, 1976) and 

because deleterious variants may hitchhike with alleles that are positively selected for 

agronomic traits (Fay and Wu, 2000, Hartfield and Otto, 2011, Campos et al., 2014). 

Overall, the cost of domestication is expected to increase the frequency of deleterious 

variants in small relative to large populations, in regions of low recombination, and near 

sites of positive selection. 

 This hypothesis about the cost of domestication closely parallels the debate regarding 

the genetic effects of migration-related bottlenecks and demographic expansion in human 

populations (Lohmueller et al., 2008, Casals et al., 2013, Peischl et al., 2013, Simons et 

al., 2014). The debate regarding human populations is contentious, perhaps in part 

because it suggests that some human populations may, on average, carry a greater load of 

deleterious variants than others. Studies in humans also suggest that subtlety of 

interpretation is required when considering the relative frequency of deleterious variants 

in populations; both the effect size and relative dominance of deleterious variants likely 

play a role in how mutations impact the fitness of populations (Henn et al., 2016). 

Moreover, deleterious variants in non-equilibrium populations, such as those that have 

experienced a recent bottleneck, may also return to pre-bottleneck frequencies more 

rapidly than neutral variants (Brandvain and Wright, 2016). It nonetheless remains an 
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important task to identify the frequency and genomic distribution of deleterious variants 

in humans, for the purposes of disentangling evolutionary history and for understanding 

the association between deleterious variants and disease (Kryukov et al., 2007, 

Eyre-Walker, 2010, Simons et al., 2014).  

In plant crops, the potential for the accumulation of deleterious variants was first 

examined in Asian rice (O. sativa) (Lu et al., 2006). At the time, limited resequencing 

data were available, so Lu et al (2006) compared two O. sativa reference genomes to that 

of a related wild species (O. brachyntha). They found that radical, presumably 

deleterious amino acid variants were more common within O. sativa genomes, suggesting 

a cost of domestication. A handful of studies have since analyzed deleterious variants in 

crops based on resequencing data (Gunther and Schmid, 2010, Nabholz et al., 2014, 

Renaut and Rieseberg, 2015, Kono et al., 2016), and together they suggest that an 

increased frequency of deleterious variants is a general outcome of domestication. More 

limited analyses have also shown that deleterious variants are enriched within genes 

associated with phenotypic traits (Mezmouk and Ross-Ibarra, 2014, Kono et al., 2016), 

suggesting that the study of deleterious variants is crucial for understanding potentials for 

crop improvement (Morrell et al., 2011). While a general picture is thus beginning to 

emerge, most of these studies have suffered from substantial shortcomings, such as small 

numbers of genes, low numbers of individuals, or the lack of an outgroup to infer 

ancestral states. Moreover, no study of crops has yet investigated the prevalence of 

deleterious variants in putative selective sweep regions, which is especially important 

given that hypotheses that artificial selection has increased the frequency of deleterious 

mutations (Lu et al., 2006).  

In this study, we reanalyze genomic data from hundreds of accessions of Asian rice 

and its wild relative O. rufipogon. Asian rice feeds more than half of the global 

population (International Rice Genome Sequencing Project, 2005), but the domestication 

of the two main varieties of Asian rice (ssp. japonica and ssp. indica) remains enigmatic. 
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It is unclear whether the two varieties represent independent domestication events (Londo 

et al., 2006, Civian et al., 2015), a single domestication event with subsequent divergence 

(Gao and Innan, 2008, Molina et al., 2011), or separate events coupled with substantial 

homogenizing gene flow of beneficial domestication alleles (Caicedo et al., 2007, Sang 

and Ge, 2007, Zhang et al., 2009, Huang et al., 2012a, b). It is clear, however, that 

domestication has included a shift in mating system: from predominantly outcrossing O. 

rufipogon [which has outcrossing rates between 5% and 60%, depending on the 

population of origin and other factors (Oka and Miroshima, 1967)] to predominantly 

selfing rice [which has outcrossing rates of ~1% (Oka, 1988)]. This shift in mating 

system has the potential to affect the population dynamics of deleterious variants, 

because inbreeding exposes partially recessive variants to selection (Lande and Schemske, 

1985), which may in turn facilitate purging of deleterious alleles (Arunkumar et al., 

2015).  

Commensurate with its agronomic importance, the population genetics of Asian rice 

have been studied in great detail. Comparative resequencing studies have estimated that 

nucleotide sequence diversity is ~2 to 3-fold higher in indica than in japonica varieties 

(Zhu et al., 2007, Huang et al., 2012b), the latter of which is often separated into 

temperate and tropical germplasm. Sequence polymorphism data have also shown that 

the derived site frequency spectrum (SFS) of both varieties exhibits a distinct U-shaped 

distribution relative to O. rufipogon, due either to the genome-wide effects of selection or 

migration (Caicedo et al., 2007). Surprisingly, however, the population genetics of 

putatively deleterious variants have not been studied across O. sativa genomes.  

In this study, we reanalyze genomic data from hundreds of indica, japonica, and O. 

rufipogon accessions to focus on the population frequencies of putatively deleterious 

genetic variants. To assess the robustness of our results, we have utilized two O. sativa 

datasets: one with many accessions (n = 766) but low sequencing coverage (1-2x), the 

other with fewer individuals (n = 45) but enhanced coverage. For both datasets, we have 
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re-mapped raw reads and then applied independent computational pipelines for SNP 

variant detection. We have also used two different approaches – PROVEAN (Choi et al., 

2012) and SIFT (Kumar et al., 2009)- to predict deleterious variants from 

nonsynonymous SNPs. Armed with results from multiple datasets and different 

methodological approaches, we address four questions. First, what has been the fate of 

deleterious mutations during domestication, and does this fate reflect a ‘cost of 

domestication’ in Asian rice? Second, does the diversity of deleterious variants vary with 

recombination rate, suggesting a pervasive effect of linkage? Third, is the frequency of 

deleterious variants altered in genomic regions that may have experienced a selective 

sweep? Finally, can we garner insights into the relative contributions of demography, 

linkage, positive selection, and inbreeding on the population dynamics of deleterious 

variants?  
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RESULTS 

Data sets 

To investigate the population dynamics of deleterious variants, we collated two rice 

datasets. The first was based on the genomic data of 1,212 accessions reported in Huang 

et al. (2012b) (Table S1). This dataset, which we call the ‘BH’ data after the senior author, 

contains raw reads from 766 individuals of Asian rice, including 436 indica accessions 

and 330 japonica accessions. The BH dataset also included 446 accessions representing 

three populations of O. rufipogon, the wild ancestor of cultivated rice (Table 1). Huang et 

al. (2012b) determined that their O rufipogon accessions represented three different wild 

populations, which we denote WI, WII and WIII. They also inferred that WI was ancestral 

to indica rice and that WIII was ancestral to japonica rice. Accordingly, we based our 

cultivated-to-wild comparisons on indica vs. WI and japonica vs. WIII for the BH data, 

but when appropriate we also included comparisons to the complete set of wild 

accessions (Wall). For these BH data, we remapped sequencing reads to the japonica 

reference sequence (Goff et al., 2002), then used ANGSD (Korneliussen et al., 2014) to 

apply cut-offs for quality and coverage and to estimate the SFS (see Materials and 

Methods).  

The second dataset, which we call the ‘3K’ data (Li et al., 2014), consisted of 15 

cultivated, high-coverage (>12x) accessions for each of indica, tropical japonica, and 

temperate japonica (Table S2). We also included data from 15 wild O. rufipogon 

individuals, which we denote W15; this sample includes the 15 individuals from Huang et 

al. (2012) with the highest (>5x) coverage (Table S1). For this dataset, reads were again 

mapped to the japonica reference, but SNPs were called using tools from GATK and 

SAMtools (see Materials and Methods). The 3K dataset was used to assess the robustness 

of results based on the larger, lower coverage dataset, but the greater read depth and 

quality of these data permitted additional analyses. 
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The number and diversity of deleterious variants 

Based on reads in the BH dataset, we identified between >230,000 SNPs from the 

cultivated samples and >1.6M SNPs from each of WI, WII and WIII wild populations 

(Table 1). Once identified, we annotated SNPs as either non-coding (ncSNPs), 

synonymous (sSNPs), Loss of Function (LoF) or nonsynonymous. LoF SNPs were those 

that contribute to apparent splicing variation, the gain of a stop codon or the loss of a stop 

codon. Nonsynonymous SNPs were predicted to be tolerant (tSNPs) or deleterious 

(dSNPs) based on PROVEAN (Choi et al., 2012) or SIFT (Ng and Henikoff, 2003).  

In the japonica and indica BH samples, we identified hundreds of LoF mutations and 

predicted 4,530 and 7,506 dSNPs using PROVEAN (Table 1). Table 1 reports mean 

pairwise diversity, averaged across polymorphic sites (𝜋). This diversity value tended to 

be higher in cultivated samples, regardless of SNP class. For example, 𝜋 was higher for 

indica compared to WI for both dSNPs (0.1848 vs. 0.1523) and sSNPs (0.2014 vs. 0.1717; 

Table 1), and japonica rice had higher diversity compared to WIII (dSNPs: 0.1517 vs. 

0.1170; sSNPs: 0.1641 vs. 0.1391). Despite fewer accessions, we identified more SNPs 

within the 3K data, owing to higher sequence coverage (Table 1). The 3K data indicated 

increased mean pairwise diversity for polymorphic sites in indica and tropical japonica, 

but not temperate japonica, relative to the species-wide W15 sample (Table 1). 

 

Site frequency spectra 

To better test whether the frequency distribution of dSNPs shifted during 

domestication, we defined SNPs as either ancestral or derived based on comparison to 93 

O. barthii accessions (Table S3) and then plotted the SFS for different SNP categories. 

For the BH data, we reduced the sample size to 70 for each population, based on 

sampling and coverage criteria (Materials and Methods). The resulting SFS had a 

U-shape for all SNP categories in cultivated rice, as observed previously (Caicedo et al., 

2007), but not for ancestral O. rufipogon (Figures 1 & S1). The SFS differed significantly 
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between wild and domesticated samples for all SNP categories (Kolmogorov-Smirnoff 

tests; p<0.001; Figures 1 & S1). The SNPs in Table 1 were based on detecting 

polymorphisms within each taxon separately, which limited the ability to infer the zero 

and fixed classes of the SFS. To include these classes, we followed the precedent of 

Simons et al. (2014) and identified SNPs within the entire n=60 sample of the 3K dataset, 

focusing only on sites without missing data and on sites that segregate within the 

combined sample. This subset of the 3K data included 2,266,987 SNPs, including 22,377 

dSNPs, 65,594 tSNPs, 81,648 sSNPs and 4,102 LoF variants. With this subset of SNPs, 

most comparisons between the wild and cultivated SFS were not significant 

(Kolmogorov-Smirnoff; p>0.05), but the resulting SFS were similar to the BH data in 

exhibiting hints of a U-shaped SFS for all three cultivated taxa and for most site 

categories (Figures 2 & S2). This U-shape included enhanced frequencies of fixed and 

high frequency (>12) derived variants and a dearth of low frequency (<3) variants in 

domesticates compared to the W15 sample (Figures 2 & S2). Importantly, these 

comparisons also illustrate that the zero class was greatly enhanced in domesticated taxa, 

which is indicative of the loss of rare, low frequency variants.  

Overall, both 3K and BH data showed that the derived variants that remained after 

domestication were shifted to higher frequency, as is expected following a bottleneck 

(Simons et al., 2014). These inferred shifts in the SFS were robust to: i) dataset, because 

the 3K and BH datasets yielded similar results, ii) SNP calling approaches, because 

different methods were applied to the 3K and BH datasets, iii) the composition of the 

wild sample, because similar patterns were observed when the BH japonica and indica 

samples were compared to Wall (p ≤ 1.93e-08 for all comparisons in both varieties) (Figure 

S3), iv) variation in sample sizes (n) among taxa, because the BH data did not have the 

same number of individuals per taxon, while the 3K data did (Table 1), and v) the 

prediction approach used to identify dSNPs (i.e., PROVEAN or SIFT; Figures S4 & S5).  
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Effects on dSNPs 

A primary question is whether frequency shifts affected dSNP differentially. To 

investigate this question, we plotted the ratio of the number of derived dSNPs vs. derived 

sSNPs for each frequency category of the SFS. Figure 3 shows that both indica and 

japonica have enhanced numbers of derived dSNPs to sSNPs across the entire frequency 

range for the BH data (Wilcoxon rank sum: indica vs.WI, p = 4.98e-16; japonica vs. WIII, p 

< 2.20e-16; Fig 3). The 3K dataset exhibited similar properties throughout most of the 

frequency range, with the exception of the zero class, but the distributions remained 

significantly different overall (Wilcoxon rank sum: indica 3K vs. W15, p = 0.029; tropical 

japonica 3K vs. W15, p = 0.017; Figure 3).  

We also calculated R(A/B), a measure that compares the frequency and abundance of 

dSNPs vs. sSNPs in one population (A) relative to another (B) (Xue et al., 2015). When 

R(A/B) is > 1.0, it reflects an overabundance of derived dSNPs (or LoF variants) relative to 

sSNPs in one population over another across the entire frequency range. As expected 

from SFS analyses, we found that R(A/B) was > 1.0 for LoF variants and for dSNPs in 

indica relative to the WI population (p ≤ 2.30e-139 for all three comparisons; Figure 3) and 

in japonica relative to WIII (p ~ 0.000 for the three comparisons; Figure 3). The subset of 

3K data, which included both the zero and fixed classes of variants, yielded similar 

results (p ~ 0.000 for all six comparisons; Figure 3). Hence, all cultivated samples 

contained increased proportions of derived dSNPs to derived sSNPs compared to wild 

samples.  

 

Diversity as a function of recombination rate 

Theory predicts that diversity should be lower in low recombination regions (Begun 

and Aquadro, 1992, Charlesworth, 1994) and also that fate of dSNPs relative to sSNPs 

may differ between high and low recombination regions due to interference (Felsenstein, 

1974b). To test these predictions, we used a genetic map to calculate recombination rate 
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in windows across rice chromosomes, and then estimated diversity using mean pairwise 

diversity averaged separately across dSNPs and sSNPs within each window. Owing to 

different numbers of SNPs, we used larger (3MB) windows for the BH data than the 3K 

data (2MB). We first found that the diversity of both sSNPs and dSNPs were 

significantly positively correlated with recombination rate (Table 2; Figure 4), indicating 

reduced diversity in low recombination regions (Begun and Aquadro, 1992, Charlesworth, 

1994).  

We then investigated diversity of dSNPs relative to sSNPs in each window, based on 

the ratio of 𝜋 for dSNPs and sSNPs. For the BH dataset, the ratio was negatively 

correlated with recombination, but not significant for either indica or japonica (Figure 4 

and Table 2). However, the correlation was significantly negative for all three cultivated 

samples of the 3K data (Figure S6 and Table 2). These negative correlations are similar 

observations within other plant genomes (Lu et al., 2006a, Renaut and Rieseberg, 2015, 

Rodgers-Melnick et al., 2015, Kono et al., 2016) and consistent with less efficacious 

selection against dSNPs in low recombination regions.  

 

dSNPs in regions of putative selective sweeps 

Regions linked to selective sweeps (SS) may have increased frequencies of derived 

mutations (Fay and Wu, 2000), including dSNPs (Hartfield and Otto, 2011). Consistent 

with this expectation, a previous study of domesticated dogs has shown that the 

frequency of both dSNPs and sSNPs are inflated within SS regions (Marsden et al., 2016). 

Prompted by these observations, we investigated the distribution of deleterious and 

synonymous variants in putative SS regions, to test two hypotheses. The first was that SS 

regions have increased frequencies of derived SNPs relative to the remainder of the 

genome. The second was that SS regions alone explain the accumulation of high 

frequency derived dSNPs in Asian rice.  

To test our hypotheses, we made use of previously identified SS regions. Huang et al. 
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(2012c) defined SS regions based on the relative difference in π between wild and 

domesticated populations (Huang et al., 2012c). That is, the regions were based on  πd/πw, 

where π is measured per base pair, and the subscripts refer to domesticated and wild 

samples. We also inferred selective sweeps using two additional approaches: SweeD 

(Pavlidis et al., 2013) and XP-CLR (Chen et al., 2010). SweeD identifies regions of 

skewed SFS relative to background levels for a single population (i.e., the rice sample). 

In contrast, XP-CLR searches for genomic regions for which the change in allele 

frequency between two populations (cultivated vs. wild samples) occurred too quickly at 

a locus, relative to the size of the region, to be caused by genetic drift. Both SweeD and 

XP-CLR were applied with a 5% cutoff. Because XP-CLR requires explicit genotypes, 

we used the 3K datasets for all of the SS analyses (Methods).  

Focusing first on the indica 3K dataset, the three approaches identified different 

numbers, locations and sizes of selective sweeps (Table 3). For example, Huang et al. 

(2012c) defined 84 SS regions that encompassed 9.98% of the genome. In contrast, 

SweeD identified 485 SS regions, and XP-CLR distinguished an intermediate number of 

161 SS regions. Consistent with the 5% cutoff, SweeD and XP-CLR identified 4.61% and 

5.02% of the genome, respectively, as having been under selection (Table 3). To see if 

the same genes were identified with different SS identification methods, we calculated 

the degree of overlap across methods, focusing on the percentage of genes that two 

methods identified in common (see Methods). The overlap was surprisingly low (Figure 

5 & S7-S17). Across the entire genome, the putative SS regions defined by SweeD and 

Huang et al (2012c) shared 6.24% of genes. Similarly, the regions defined by XP-CLR 

shared 8.51% and 8.69% of genes with Huang et al. (2012c) and SweeD, respectively.  

To determine if SS regions have increased frequencies of derived dSNPs, we 

contrasted the SFS between SS and non-SS regions for derived segregating and fixed 

sSNPs and dSNPs (Marsden et al., 2016). The SFS were skewed for SS regions relative 

to non-SS regions for both SNP classes, independent of the method used to detect 
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selective sweeps (Figure 5A). We summarized the shift in frequencies by counting the 

number of derived alleles (DAC) per SNP (Figure 5B) (Marsden et al., 2016), which 

showed that SS regions also contained higher DACs (Figure 5B). Note that these results 

were not completely unexpected, because all of the methods used to define SS regions 

rely, in part, on identifying a skewed SFS relative to the genomic background (see 

Discussion).  

Did sweeps affect dSNPs more or less than sSNPs? To investigate this question, we 

calculated the ratio of the mean DAC for SS and non-SS regions. There was some 

variation among SS methods. For example, the SS regions exhibited a 1.27-fold 

enrichment for dSNPs vs. a slightly smaller 1.21-fold enrichment for sSNPs when SS 

regions were based on SweeD (Table S4). Similarly, the SS regions defined by Huang et 

al. (2012c) included a 1.17- and 1.13-fold enrichment for dSNPs and sSNPs, respectively. 

SS regions defined by XP-CLR showed the reverse: slightly higher enrichment for sSNPs 

(1.32) than for dSNPs (1.30). Altogether, the extent to which hitchhiking drove dSNPs 

and sSNPs to higher frequency seems to roughly equivalent.  

Enhanced SNP frequencies in SS regions raise the possibility that selective sweeps 

alone explain the shifted SFS of indica rice relative to O. rufipogon. To examine this 

second hypothesis, we removed all SS regions (as defined by SweeD, XP-CLR and πd/πw) 

from the indica 3K dataset and recalculated the SFS for non-SS regions. Even with SS 

regions removed, the SFS for wild and cultivated samples remained significantly 

different for sSNPs and dSNPs (p ≤ 0.0067). These results imply either that positive 

selection is not the only cause of the U-shaped SFS in indica rice (Caicedo et al., 2007) 

or, alternatively that linked selection has affected more of the genome than is 

encompassed within the identified SS regions.  

We performed these analyses of SS regions for the 3K temperate and tropical 

japonica datasets (Table 3), with similar results. First, although a greater extent of the 

genome tended to be identified as SS regions in japonica (Table 3), the overlap among 
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SS regions identified by different methods was again low (< 9%). Second, for both 

japonica datasets, derived sSNPs and dSNPS were generally at higher frequencies in 

putative SS regions, although the effect was not as apparent for sweeps identified with 

SweeD (Figure S18). Third, like indica rice, the SS regions alone did not account for the 

difference in SFS between wild and tropical or temperate japonica (p ≤ 0.0049 for both 

comparisons).  

 

Factors affecting the distribution of variants 

Finally, we sought to gain insights into the relative effects of processes that have to 

the distribution of genetic variation in Asian rice. To do so, we first measured the ‘mean 

derived allele frequency’ (MDAF) for the subset of the 3K data, for which derived counts 

are comparable across populations (Simons et al., 2014). The MDAF was calculated as 

the average number of derived sites per individual, divided by twice the number of sites 

containing derived variants within that taxon (Methods). Similar to Simons et al. (2014), 

we calculated the MDAF separately for different site classes. The empirical results 

indicate that the MDAF was higher for all three rice groups than for the W15 O. rufipogon 

sample, regardless of SNP type (Figure 7A).  

Rice has a complex history that includes a population bottleneck, positive selection 

and a shift in mating system. We were curious about the relative effect of these 

evolutionary forces on genetic diversity, as summarized by the MDAF, and so employed 

forward simulations to model these varied forces. We simulated models with and without 

a domestication bottleneck, with and without positive selection, and with and without 

inbreeding (Methods). To investigate relative effects on different classes of sites, all 

simulations included both neutral (synonymous) variants and deleterious variants.       

Figure 7B presents simulation results for six models: an outcrossing population (out), 

an outcrossing population with a bottleneck (out+bot), an outcrossing population with a 

bottleneck and positively selected alleles (out+bot+pos) and three analogous models that 
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included complete selfing that co-occurs with the bottleneck (inb,	
  inb+bot,	
  inb+bot+pos). 

Focusing first on simulations for outcrossing populations, the MDAF was higher for 

synonymous compared to deleterious sites, as was found in the empirical data (Figure 

7A). The MDAF of both site classes increased under a bottleneck (out+bot) and yet again 

with positive selection (out+bot+pos), indicating that both processes drive surviving 

variants to higher frequency. As the models progressed from out to out+bot to 

out+bot+pos, the difference in mean MDAF between synonymous and deleterious 

variants became larger (from 0.035 to 0.083 to 0.088, respectively).  

The inclusion of selfing (inb) had a more substantive effect on the shift of the MDAF 

than the inclusion of either a bottleneck or positive selection (Figure 7B). Under 

inbreeding models, the inclusion of a population bottleneck (inb+bot) and positive 

selection (inb+bot+pos) had no effect on the mean MDAF of synonymous sites (t-tests, 

p>0.55). However, the addition of a bottleneck did increase the mean MDAF of 

deleterious sites (t-test, p<0.05), such that the difference in mean MDAF between 

synonymous and deleterious variants became less pronounced from inb (mean difference 

= 0.067) to inb+bot (0.058). In other words, the MDAF of dSNPs was enriched relative 

to sSNPs as our models progressed from inb è inb+bot è inb+bot+pos.   

 

DISCUSSION  

Recent focus on the population genetics of dSNPs in humans (Henn et al., 2015, 

2016), plants (Lu et al., 2006b, Gunther and Schmid, 2010, Mezmouk and Ross-Ibarra, 

2014, Nabholz et al., 2014, Renaut and Rieseberg, 2015, Rodgers-Melnick et al., 2015, 

Kono et al., 2016) and animals (Schubert et al., 2014, Marsden et al., 2016, Robinson et 

al., 2016) reflect an emerging recognition that dSNPs may provide unique clues into 

population history, the dynamics of selection and the genetic bases of phenotypes. This is 

especially true for the case of domesticated species, where the increased frequency of 

deleterious variants reflect a potential “cost of domestication” (Schubert et al., 2014).  
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Our analyses have provided a snapshot of the fate of deleterious variants during rice 

domestication. First, dSNPs are typically found at low frequency in wild populations 

(Figures 1 and 2) and at lower average diversity than corresponding sSNPs (Table 1). 

Second, many of these low frequency SNPs were lost during domestication, probably due 

to increased rates of genetic drift during the domestication bottleneck and/or due to 

inbreeding. The phenomenon of loss is reflected in the large zero class in the SFS of 

domesticated vs. wild germplasm (Figure 2). Third, the surviving dSNPs shifted toward 

higher frequency (Figures 1 and 2). Both of these processes – i.e., the loss of rare variants 

and a shifted SFS – also apply to sSNPs, but our data suggest a differential effect on 

dSNPs vs. sSNPs. This differential effect is evident in the higher proportion of derived 

dSNPs to sSNPs in domesticated rice than wild rice across most frequency classes and in 

significant R(A/B) measures (>1.0) for dSNPs (Figure 3). For all of these measures, the 

results were largely consistent between different types of presumably deleterious variants 

(i.e., dSNPs vs. LoF variants; Figure 3), different methods to predict deleterious SNPs 

(PROVEAN vs SIFT; Figs. S4 and S5), and rice datasets (BH data vs. 3K data).  

What do these results imply about the “cost of domestication”? In their landmark 

study of human populations, Simons et al (2014) have argued that demographic processes 

have little impact on the individual burden of deleterious mutations. Indeed, we find that 

the average number of dSNPs per individual is nearly identical among the four groups in 

the subset of the 3K data based on the combined population (W15 O. rufipogon: 3184.1 

dSNPs per individual, on average; indica: 3192.3; tropical japonica: 3158.8; temperate 

japonica: 3149.3). This result mimics that of Simons et al. (2014) and suggests that the 

loss of dSNPs through domestication perfectly balances the increase of surviving 

deleterious variants. If the number of deleterious mutations per individual is equivalent to 

genetic load, then there has been no increase in genetic load during domestication by this 

measure. However, as noted by Lohmueller (2014), genetic load may not be proportional 

to the number of deleterious alleles within an individual, because load is also a function 
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of the way “…those alleles are distributed into heterozygous and homozygous 

genotypes”. For all practical purposes, selfing in Asian rice eliminates heterozygosity and 

the possibility that heterozygous deleterious alleles are hidden by recessive effects. Thus, 

load is likely higher in rice compared to heterozygous O. rufipogon, assuming that some 

deleterious alleles in O. rufipogon are not dominant.  

 

Processes that contribute to frequency enrichment of dSNPs 

Our principle finding is that the frequency of derived SNPs has shifted from wild O. 

rufipogon to domesticated Asian rice and that this shift is more pronounced for dSNPs 

than sSNPs (Figures 1-3). At least four major evolutionary factors could influence this 

trajectory: i) population size, particularly bottlenecks associated with domestication 

(Caicedo et al., 2007, Zhu et al., 2007), ii) linkage effects, especially to selective sweeps 

(Hartfield and Otto, 2011, Marsden et al., 2016), iii) selfing, because the domestication of 

rice included a shift in mating system and, finally, iv) relaxed selection on wild traits that 

are no longer important under cultivation (Renaut and Rieseberg, 2015).  

Evidence about linkage effects is accumulating. The enrichment of dSNPs in low 

recombination regions appears to be a general phenomenon, based on studies in 

Drosophila (Campos et al., 2014), humans (Hussin et al., 2015), sunflower (Renaut and 

Rieseberg, 2015), soybean (Kono et al., 2016) and rice (Lu et al., 2006; Figure 4). Note 

that we detect this effect despite the fact that selfing should reduce the strength of this 

relationship (Marais et al., 2004). It remains unclear whether differences between high 

and low recombination regions of the genome are driven by lower Ne in regions of low 

recombination (Hill and Robertson, 1966, Felsenstein, 1974a, Charlesworth et al., 1993) 

or by linkage effects to positively selected variants (Begun and Aquadro, 1992). 

Another aspect of linkage is the enrichment of dSNP frequencies near genes that have 

experienced selective sweeps (SS). In domesticated dogs, Marsden et al. (2016) 

document that the average DAC of dSNPs is significantly elevated within SS regions and 
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also that dSNPs experienced the same increase in frequency as sSNPs due to hitchhiking. 

We find similar effects in rice – i.e., roughly equivalent increases in DACs for dSNPs and 

sSNPs due to hitchhiking (Fig. 4B). This suggests that alleles within selected genes, 

which are presumably of phenotypic importance, may be more often associated with 

mildly deleterious variants. One must nonetheless be cautious about our approach, 

because methods that detect SS regions, including πd/πw, rely to some extent on a skew of 

the SFS. This skew should manifest itself as elevated DACs. It is therefore difficult to 

separate potential methodological artifacts from true signal, but we take some comfort 

from the fact that the signal is consistent among SS methods (Figure 5).     

Finally, we address the concomitant shift in population size and mating system in rice. 

It is generally thought that a shift to selfing offers advantages for an incipient crop, such 

as reproductive assurance, reduced opportunities for gene flow between an incipient crop 

and its wild ancestor (Dempewolf et al., 2012), and the creation of lines that “breed true” 

for agronomically advantageous traits (Allard, 1999). This shift may also affect the 

accumulation of deleterious mutations, but the effect can be difficult to predict, because 

of antagonistic effects (Arunkumar et al., 2015). On one hand, inbreeding increases 

homozygosity, exposing recessive deleterious mutations to natural selection (Lande and 

Schemske, 1985) and potentially leading to the purging of deleterious alleles 

(Charlesworth and Willis, 2009). On the other hand, inbreeding reduces both population 

size and effective recombination rates (Nordborg, 2000), thereby reducing the efficiency 

of selection and contributing to the retention and possible fixation of deleterious variants 

(Takebayashi and Morrell, 2001).  

We have used forward simulations to examine the interplay between inbreeding and 

demographic (bottleneck) effects under parameters thought to be similar to those of O. 

sativa domestication. These simulations are unlikely to precisely mimic rice genome 

history, but they do offer some insight into the relative effects of evolutionary forces that 

may have shaped segregating variation in rice. Under our outcrossing model, a bottleneck 
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increases the MDAF, and positive selection increases it even further for both deleterious 

and synonymous variants (Figure 7B). However, the MDAF became progressively more 

different between site classes (Figure 7B). Under the selfing model, the MDAF of 

synonymous sites increased dramatically. The addition of a bottleneck and positive 

selection enriched the MDAF of deleterious variants, but not synonymous variants, such 

that the MDAF of synonymous and deleterious variants became more similar (Figure 

7B).  

To the extent that these are representative models, they suggest that the observed 

difference in MDAFs between O. rufipogon and domesticated rice may be influenced by 

selfing more than a bottleneck or positive selection. A fitting comparison is dog 

domestication, which has occurred in two stages: a population bottleneck associated with 

domestication ~15,000 years ago (Vonholdt et al., 2010) and inbreeding within the last 

few hundred years to produce modern breeds. In rice, we find that inbreeding may have 

had the larger effect, but we have also made myriad assumptions in our models. We have, 

for example, assumed that selfing was coincident with the domestication bottleneck, but 

we cannot know this with certainly, especially given the lengthy ‘pre-domestication’ of 

some crops (Purugganan and Fuller, 2009, Meyer et al., 2016). We have also made 

assumptions about population sizes, the timing of demographic events, recovery times 

from those events (Brandvain and Wright, 2016), dominance coefficients (h=5), and 

patterns of positive selection. In future, it will be important to vary these parameter 

values more widely to better understand their potential effects on crop diversity and 

particularly deleterious variants.  

 

Caveats and Assumptions 

We close with consideration of the caveats and assumptions of our analyses. While 

we have tried to overcome potential pitfalls by using multiple approaches (different 

datasets, SNP calling methods, dSNP predictors, and SS inference metrics), important 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2016. ; https://doi.org/10.1101/057224doi: bioRxiv preprint 

https://doi.org/10.1101/057224
http://creativecommons.org/licenses/by-nc/4.0/


	
   20	
  

limitations remain. One is the potential for a reference bias, because the use of the 

japonica reference is expected to decrease the probability that a japonica variant (as 

opposed to an indica variant) returns a low PROVEAN or SIFT score (Lohmueller et al., 

2008). We have adjusted for this bias by submitting the ancestral allele -- rather than the 

reference allele -- to annotation programs (Kono et al., 2016). Without this adjustment, a 

reference bias was patently obvious, because the SFS of japonica dSNPs lacked a high 

frequency peak, and the U-shape of tSNPs became commensurately more extreme. We 

cannot know that we have corrected completely for reference bias but do advocate 

caution when interpreting results from dSNP studies that make no attempt to correct for 

reference bias. The effect can be substantial.  

Our treatment of reference bias requires accurate ancestral inferences. To date, most 

population genetic studies of Asian rice have relied on outgroup sequences from O. 

meridionalis e.g., (Caicedo et al., 2007, Gunther and Schmid, 2010), a species that 

diverged from O. sativa ~2 million years ago (Zhu and Ge, 2005). When we used O. 

meridionalis as the sole outgroup, we inferred a U-shaped SFS in wild O. rufipogon, 

which is suggestive of consistent parsimony misinference of the ancestral state 

(Keightley et al., 2016). We instead inferred ancestral states relative to a dataset of 93 

accessions of African wild rice (O. barthii) (Wang et al., 2014). O barthii is closer 

phylogenetically to O. sativa than O. meridonalis, but O. barthii sequences form clades 

distinct from O. sativa (Zhu and Ge, 2005). Even so, we have found that ~10% of SNPs 

sites with minor allele frequencies > 5% are shared between African wild rice and Asian 

rice.  

We do not believe that the use of O. barthii has distorted our primary inferences, for 

two reasons. First, systematic misinference of the ancestral state should lead to a 

U-shaped SFS, which is lacking from O. rufipogon. Instead, the U-shaped SFS is unique 

to O. sativa and differentiates wild from domesticated species. Second, we have 

confirmed our inferences by using O. meridonalis and O. barthii together as outgroups 
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(Keightley et al., 2016), considering only the sites where the two agree on the ancestral 

state. The use of two outgroups decreases the number of SNPs with ancestral states by 

~10% and ~15% for the BH and 3K datasets, but all analyses based on these reduced 

SNP sets were qualitatively identical to those with only an O. barthii outgroup (e.g., 

Figure S19).  

Finally, we focus briefly on the locations of SS regions identified by three different 

methods (Figure 5 and FiguresS7 to 17), which rarely overlapped (Table 3). In other 

words, the three methods identified almost completely independent regions of the rice 

genome. The lack of convergence among methods may reflect that different tests are 

designed to capture different signals of selection. However, the results are also sobering, 

because overlaps in SS regions have been used by a number of groups to argue for or 

against independent domestication of indica and japonica rice (He et al., 2011, Molina et 

al., 2011). Recently, both Huang et al. (2012b) and Civian et al. (2015) have argued for 

independent domestication events for japonica and indica based on the observation that 

there is little overlap in SS regions between the two taxa. [The Civian et al. (2015) 

analyses also have other critical flaws (Huang and Han, 2015).] The fact that we find 

little overlap among SS regions identified by different methods mirrors the lack of 

overlap of SS regions identified across the human genome by different studies (Akey, 

2009), between domesticated grasses (Gaut, 2015), and between independent 

domestication events of common bean (Gaut, 2015). Because the inferred locations of SS 

regions vary markedly by method, sampling and taxon, they should be interpreted with 

caution, particularly as markers of independent domestication events.  

 

MATERIALS AND METHODS 

Sequence polymorphism data  

All of the data used in this study are publicly available. Illumina paired-end reads for 

the BH and 3K dataset were downloaded from the European Nucleotide Archive (ENA; 
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http://www.ebi.ac.uk/ena) (see Tables S1 and S2 for accession numbers). The 3K 

accessions were chosen randomly among the total set of accessions with >12X coverage 

for an equal representation (n=15 for each set) of indica, tropical japonica and temperate 

japonica rice accessions. We also downloaded resequencing reads from O. barthii to 

polarize SNPs as either ancestral or derived. Sequencing reads for 93 O. barthii 

accessions (Wang et al., 2014) were obtained from the Sequence Read Archive (SRA) 

database of the National Center for Biotechnology Information (NCBI; 

http://www.ncbi.nlm.nih.gov/sra/) (see Table S3 for accession numbers). Sequencing 

reads for another outgroup taxon, O. meridonalis were obtained from NCBI (BioProject 

No: PRJNA264483) (Zhang	
  et	
  al.,	
  2014). 

 

Read alignment and SNP detection 

Paired-end reads for O. sativa and O. rufipogon data were assessed for quality using 

FastQC V0.11.2, and then preprocessed to filter adapter contamination and low quality 

bases using Trimmomatic V0.32 (Bolger	
  et	
  al.,	
  2014). The trimmed reads were mapped 

to the reference genome for japonica Nipponbare rice (MSU V7), which was downloaded 

from the Rice Genome Annotation Project (http://rice.plantbiology.msu.edu). Mapping 

was performed with the ALN and SAMPE commands implemented in the software 

Burrows-Wheeler Aligner (BWA) V0.7.8 (Li and Durbin, 2010), using default 

parameters. All reads with a mapping quality score of < 30 were discarded.  

 The method of SNP calling varied with the dataset. For the BH data, alignment files 

from BWA mapping were processed further by removing PCR duplicates and by 

conducting indel realignments using Picard tools and GATK, and then used as input for 

ANGSD V0.901, which is designed to deal with sequences of low depth (Korneliussen	
  

et	
  al.,	
  2014). ANGSD was run with the command line: 

angsd -b BAMLIST -anc OUTGROUP –out OUTFILE -remove_bads -uniqueOnly 1 

-minMapQ 30 -minQ 20 -only_proper_pairs 1 -trim 0 -minInd NUMBER -P 
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CPUNUMBERS -setMinDepth 3 -setMaxDepth 15 -GL 1 -doSaf 1 -doMaf 2 

-SNP_pval 1e-3 -doMajorMinor 1 -baq 1 –C 50 –ref REFSEQ  

We considered only SNPs that had between 3X and 15X coverage, with the high-end 

implemented to avoid regions with copy number variation (Huang	
  et	
  al.,	
  2012b). For 

SNP calling, we used only uniquely mapping reads, and bases with quality score of < 20 

were removed. SNP sites with >50% missing data were discarded.  

For the higher coverage ‘3K’ dataset, we used SAMtools V1.2 (Li	
  et	
  al.,	
  2009) and 

GATK V3.1 (McKenna et al., 2010) to call SNPs. After mapping reads of each accession 

onto the reference genome, alignments were merged and potential PCR duplications were 

removed using Picard tools V1.96 

(http://sourceforge.net/projects/picard/files/picard-tools/1.96/). Unmapped and 

non-unique reads were filtered using SAMtools V1.2. We realigned reads near indels by 

using the IndelRealigner and BaseRecalibrator packages in GATK to minimize the 

number of mismatched bases. The resulting mapping alignments were used as input for 

UnifiedGenotyper package in GATK and for SAMtools. SNPs that were identified by 

both tools, with no missing data and a minimum phred-scaled confidence threshold of 50, 

were retained. Subsequently, SNP calls were further refined by using the 

VariantRecalibrator and ApplyRecalibration packages in GATK on the basis of two sets 

of “known” rice SNPs (9,713,967 and 2,593,842) that were downloaded from the dbSNP 

and SNP-Seek databases (Alexandrov	
  et	
  al.,	
  2015). These same SNP detection methods 

were applied to the subset of 29 O. rufipogon with >4X coverage that were used as the 

diversity panel to infer SS regions (Table S1), although no prior variants were available.   

Finally, sequence reads for the outgroup dataset were aligned to the reference 

genome using stampy V1.0.21 (Lunter	
  and	
  Goodson,	
  2011), and then a 

pseudo-ancestral genome sequence was created using ANGSD (Korneliussen	
  et	
  al.,	
  

2014) with the parameters “-doFasta 2 -doCounts 1”. This pseudo-ancestral genome was 

used to determine the ancestral state of each SNP in O. sativa and O. rufipogon. 
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SNP Annotation and Deleterious Mutation Prediction  

SNPs were annotated using the latest version of ANNOVAR (Wang et al., 2010) 

relative to the japonica reference genome (MSU v 7.0). SNPs were annotated as 

synonymous, nonsynonymous, intergenic, splicing, stop-gain and stop-loss related. 

Throughout the study, we combined SNPs that contribute to splicing variation, stop-gain 

and stop-loss and called them loss-of-function (LoF) mutations.  

To discriminate putatively deleterious nSNPs from tolerant nSNPs, nSNPs were 

predicted as deleterious or tolerated using PROVEAN V1.1.5 against a search of the 

NCBI nr protein database (Choi et al., 2012). To reduce the effects of reference bias, 

predictions of deleterious variants were inferred using the ancestral (rather than the 

reference) variant. Following previous convention (Renaut and Rieseberg, 2015), we 

considered an nSNP to be a deleterious dSNP if it had a PROVEAN score ≤ -2.5 and a 

tolerant tSNP when a PROVEAN score was > -2.5. To assess consistency, we also 

employed SIFT (Kumar et al., 2009) to predict nSNPs as dSNPs or tSNPs. For these 

analyses, a nSNP was defined as a dSNP if it had a normalized probability < 0.05, and an 

nSNP was predicted to be a tSNP with a SIFT score ≥ 0.05.  

 

Calculating site frequency spectra 

Following Huang et al. (2012b), we separated the BH dataset of 1,212 accessions 

into five populations: indica, japonica (mostly temperate) and three O. rufipogon 

subpopulations (WI, WII, and WIII). The five subpopulations were composed of 436, 330, 

155, 121, and 170 individuals, respectively (Table S1).  

To calculate the site frequency spectrum (SFS) for BH subpopulations, we initially 

projected the sample size of all five subpopulations to that smallest WII population of 

n=121. However, many of the 121 accessions had low sequencing depth and high levels 

of missing data. We therefore focused on the WII population to find criteria suitable for 
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inclusion. Ultimately, we sought to retain ≥ 90% of SNP sites within each SNP category, 

which resulted in a sample size of n = 70 for the WII population. Accordingly, we 

randomly sampled n = 70 individuals from the remaining four subpopulations, so long as 

the sample retained ≥ 90% of SNP sites for each category, to mimic the WII sample.  

Given a sample of n = 70 for each of the five subpopulations, the SFS for each 

subpopulation was calculated using the formula proposed by (Nielsen	
  et	
  al.,	
  2005), 

where the O. barthii sequence was used as an outgroup to determine the polarity of the 

mutations.  

 (1) 
In this formula (1), pi,70 represents the probability of the derived allele frequency (DAF) 

of SNPs found in i individuals in a sample size of 70; k is the total number of SNPs in the 

dataset; nj and fj are the sample size and the number of derived alleles of the jth SNP, 

respectively. The SFS for the 3K data were calculated by focusing on a common set of 

SNPs that had no missing data and that were segregating in the total population of n=60 

individuals. The SFS for sSNPs, tSNPs, dSNPs and LoF SNPs were compared with the 

Kolmogorov-Smirnov test, based on proportions of SNPs at different frequencies.  

   

RA/B - A relative measure of dSNPs frequency enhancement 

We adopted a metric to assess the accumulation of deleterious variants in either 

cultivated or wild rice populations (Xue et al., 2015). In this analysis, the statistic LA,B(C) 

compares two populations (A and B) within a given particular category, C, of SNP sites 

(e.g., dSNPs). It was calculated by counting the derived alleles found at specific sites in 

population A rather than B and then normalized by the same metric calculated in 

synonymous sites (S). The calculation of LA,B(C) was: 
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 (2) 

where fi
A and fi

B are the observed derived allele frequency at each site i in populations A 

and B, respectively, and S refers to sSNPs. The ratio RA/B(C) = LA,B(C) / LB,A(C) then 

measures the relative number of derived alleles that occur more often in population A 

than that in population B. To obtain the standard errors of RA/B(C) we used the 

weighted-block jackknife method (HR,	
  1989), where each of the tested SNP datasets was 

divided into 50 contiguous blocks and then the RA/B(C) values were recomputed. A P 

value was assigned by using a Z score assuming a normal distribution (Do	
  et	
  al.,	
  2015). 

 

Calculation of recombination rate 

The high-density rice genetic map was downloaded from 

http://rgp.dna.affrc.go.jp/E/publicdata/geneticmap2000/index.html, on which a total of 

3,267 EST markers were anchored. We extracted the sequences of these markers from the 

dbEST database in NCBI, which were used as query to perform a BLAST search against 

the rice genome sequences (MSU V7) to annotate their physical positions. Finally, we 

normalized the recombination rate to centiMorgans (cM) per 100kb between different 

markers, and then calculated the average recombination rate in 3 or 2MB window 

segments for the BH and 3K datasets.  

 

Identification of selective sweep regions 

Both SweeD (Pavlidis et al., 2013) and XP-CLR (Chen et al., 2010) were used for 

identifying selective sweep (SS) regions separately in indica and japonica populations. 

SweeD was used with a sliding window size of 10kb, and the O. barthii genome 

sequence (Zhang et al., 2014) was used as an outgroup to determine whether alleles were 

ancestral or derived. XP-CLR was applied to the 3K datasets along with a subset of 29 O. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2016. ; https://doi.org/10.1101/057224doi: bioRxiv preprint 

https://doi.org/10.1101/057224
http://creativecommons.org/licenses/by-nc/4.0/


	
   27	
  

rufipogon individuals that had > 4X coverage and for which we could infer explicit 

genotypes (Table S1). Both packages were applied with 5% cutoffs to define putative 

sweep regions.  

We calculated the percentage of genes overlapping between two sets of SS regions, 

defined as: 

  Overlap%= number of genes in common/ ((number of genes in the first set 

of SS regions + number of genes in the second set of SS regions)-number of 

genes in common))*100 

 

Forward simulations and MDAF 

We conducted forward simulations using the software SLiM V1.8 (Messer,	
  2013). 

SLiM includes both selection and linkage in a Wright–Fisher model with 

non-overlapping generations. Similar to previous demographic studies of Asian rice 

domestication (Caicedo et al., 2007), we simulated a population of N = 10,000 

individuals, which were run for 10N generations to reach equilibrium. We then 

introduced a domestication bottleneck of size Nb/N = 0.01 at generation 11N until 

generation 15N, when the population size recovered to size N. For the selfing populations, 

the population switched from outcrossing to total inbreeding (inbreeding coefficient F = 

1) at the beginning of the domestication bottleneck.  

All simulations assumed a constant mutation rate (µ = 6.5 x 10-9 substitutions per site 

per generation) (Gaut et al., 1996) and recombination rate (ρ = 4 x 10-8 recombinants per 

generation) (Gaut et al., 2007) across a single chromosome of 100 Mb with alternating 

400 bp of noncoding and 200 bp of coding DNA. All noncoding and 75% of coding 

sequences were selectively neutral (s = 0). The remaining 25% of coding sequences were 

under negative selection under an additive model, with s following a gamma distribution 

with shape parameter 0.3 and mean -0.05. This DFE was taken from another study of 

plant mating system (Arunkumar et al., 2015), but we also estimated the DFE of O. 
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rufipogon empirically using dfe-alpha-release-2.15 (Eyre-Walker and Keightley, 2009) 

and the unfolded SFS of the W15 sample. The estimated DFE for wild rice was nearly 

identical to that from Arunkumar et al. (2015), because s had an estimated shape 

parameter of 0.28 (95% CI: 0.25 to 0.31) and a mean of -0.048 (95% CI:-0.055 to 

-0.043). Given the similarities between the estimated and assumed DFE, we performed 

simulations using only the DFE from Arunkumar et al. (2015).  

For the inbreeding model without a bottleneck, we followed the method of 

(Arunkumar et al., 2015) to adjust population size after the outcrossing-selfing transition 

by calculating the reduction in silent genetic diversity (θw = 4Neµ, where θw is genetic 

diversity, Ne is effective population size and µ is mutation rate). This makes the measures 

equivalent and the simulations comparable between the inbreeding and outcrossing 

models that do not include a population bottleneck or positive selection (i.e, out vs. int; 

Figure 7B).  

For the simulations with positive selection, we introduced 20 predetermined 

mutations with s drawn from an exponential distribution of mean 0.05 at the beginning of 

domestication. Positive selection was applied throughout the entirety of the population 

simulation, not only during domestication. For all mutations under positive or negative 

selection, we assumed a dominance coefficient h = 0.5 (i.e., an additive model).  

The results for each model were summarized over 20 separate runs of SLiM; the 

SLiM input is available as Supplementary Text. The MDAF was calculated for simulated 

data sets and the 3K data as the sum of frequency of derived alleles across sites divided 

by twice the total number of (segregating sites + fixed sites). Note that this definition 

varies from that of Simons et al (2014) by not including the zero class, but it allows our 

simulated and empirical results to be compared directly.      
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Table 1: The number and category of SNPs identified from different datasets 

 

Sample n ncSNP1 sSNP1 dSNP1 tSNP1 LoF1 𝜋(sSNP)2  𝜋(dSNP)2 

BH data 
indica 436 319,679 21,063 7,506 22,295 1,254 0.2014 0.1848 
japonica 330 201,829 11,120 4,530 12,928 780 0.1641 0.1517 
WI 155 1,446,653 67,971 20,410 59,793 4,430 0.1717 0.1523 
WII 121 3,366,795 110,967 32,352 92,162 6,673 0.1602 0.1191 

WIII 170 2,911,717 124,325 34,092 101,428 7,214 0.1391 0.1170 
3K data 

indica 15 2,958,247 92,045 21,085 80,643 5,319 0.2944 0.2830 
japonica 
temperate 

15 
2,424,551 74,749 17,660 66,619 4,282 0.2587 0.2537 

japonica 
tropical 

15 
2,549,598 78,634 18,681 70,570 4,527 0.3323 0.3187 

W15
 15 1,752,998 69,399 17,434 54,703 3,373 0.2956 0.2459 

 

1 ncSNP=non-coding; sSNP=synonymous; dSNP=deleterious; tSNP=tolerated; LoF = 

Loss of Function. dSNPs were predicted with PROVEAN.  
2 𝜋is the average of π, the average number of pairwise differences, across SNP sites  
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Table 2: Correlation coefficients comparing rice diversity statistics to recombination 

rate (cM/100kb) 

 π(sSNPs)
1 π(dSNPs)

 π(dSNPs)/π(sSNPs)
 

Data Set r2 p-value2 r p-value r p-value 

BH indica 0.364 2.35e-5 0.353 4.26e-5 -0.098 0.271 

BH japonica 0.199 2.45e-2 0.214 1.51e-2 -0.103 0.246 

3K indica 0.397 1.28e-8 0.353 5.29e-7 -0.263 2.33e-4 

3K japonica 

(temperate) 

0.310 1.32e-5 0.272 1.39e-4 -0.249 5.04e-4 

3K japonica 

(tropical) 

0.376 8.17e-8 0.308 1.45e-5 -0.303 1.98e-5 

1 π(sSNPs), π(dSNPs) and their ratio were calculated in non-overlapping 3Mb windows for 

the BH dataset and 2Mb windows for the 3K dataset.  
2 r is the Spearman correlation coefficient, with corresponding p-value.	
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Table 3: The number and percentage of SS regions identified by different methods, based 

on 3K data.  

 

 indica japonica 

(temperate) 

japonica (tropical) 

 No. Extent2 No. Extent2 No. Extent2 

Huang et al 

(2012b) 

841 9.98% 1033 15.32% 1033 15.32% 

SweeD 485 4.61% 461 4.76% 389 4.81% 

XP-CLR 161 5.02% 160 8.41% 171 5.62% 
1 Based on 60 SS regions identified as specific to indica, which overlapped with 31 of 55 

regions identified in the combined samples of indica and japonica rice, for a total of 

[60+(55-31)]=84. 
2 Extent = the percentage of the reference genome covered by SS regions. 
3 Based on 62 SS regions identified as specific to japonica, which overlapped with 14 of 

55 regions identified in the combined samples of indica and japonica rice, for a total of 

[62+(55-14)]=103. 
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FIGURE LEGENDS: 
Figure 1: The site frequency spectrum (SFS) for cultivated rice and O. rufipogon, based 
on BH data. The top row represents sSNPs, and the bottom row represents dSNPs.  
Additional SNP classes are graphed in Figure S1. The two columns represent indica rice 
on the left and japonica rice on the right. As per Huang et al (2012b), indica rice is 
contrasted to the accessions from wild population I (WI) and japonica rice is contrasted to 
wild sample population III (WIII). The Density on the y-axis is the proportion of alleles in 
a given allele frequency. Each graph reports the p-value of the contrast in SFS between 
cultivated and wild samples.  
 
Figure 2: The SFS for cultivated rice and O. rufipogon, based on 3K data for the indica 
and tropical japonica samples. The top row represents sSNPs, and the bottom row 
represents dSNPs. Additional SNP classes are graphed in Figure S2. The two columns 
represent indica rice on the left and tropical japonica rice on the right; temperate 
japonica is included in Figure S2.  
  
Figure 3: Comparisons of the number of derived dSNP to sSNP between wild and 
cultivated samples based on their frequencies. The top row reports results based on the 
BH data. From left to right, the panels represent: left) the ratio of the number of dNSPs to 
sSNPs (y-axis) at each derived allele frequency (x-axis) between indica rice and the WI 
sample; middle) the ratio of the number of dSNPs to sSNPs (y-axis) at each derived allele 
frequency (x-axis) between between japonica rice and the WIII sample and right) a 
measure R(A/B) of the relative accumulation of SNPs in indica or japonica rice compared 
to O. rufipogon, where a value > 1.0 indicates an increased population density of that 
SNP type relative to wild rice. Bars indicate standard errors. The bottom row reports the 
3K data, and the three panels (left to right) are equivalent to those from the BH data.  
 
Figure 4: Patterns of genomic variation relative to recombination, based on the BH 
dataset. The x-axis for each graph is the recombination rate (x-axis) as measured by 
centiMorgans (cM) per 100 kb. The y-axis varies by row. The top row is the diversity of 
dSNPs, as measured by π in 3Mb windows; the middle row is the diversity of sSNPs in 
3Mb windows; and the bottom row is the ratio of π for dSNPs to sSNPs in 3MB sliding 
windows. The p-values for correlations are provided in the plot, but also within Table 2. 
A similar figure for the 3K data is provided in Figure S6.  
 
Figure 5: A graph of the location of inferred SS regions along Chromosome 1 for the 3K 
indica dataset. The x-axis is the location along the chromosome, measured in base pairs. 
The top graph (red) indicates the ratio of π for the indica accessions against a set of wild 
accessions. The (grey) background represents values for windows of 10kb with a step 
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size of 1kb. Values > 2.0 were omitted for ease of presentation, and the line was 
smoothed. The middle graph shows values of π for the indica accessions. The bars at the 
bottom represent inferred SS regions using SweeD and XP-CLR, along with predefined 
SS regions (BH) defined by Huang et al. (2012b). The red and blue colors are included to 
help differentiate SS regions; the orange bars represent additional SS regions defined by 
Huang et al. (2012b) on the basis of their combined indica+japonica dataset. The width 
of each bar is proportional to the length of the corresponding SS region along 
chromosome. Similar graphs for chromosomes 2 through 12 are available as 
supplemental figures (Figures S7 to S17).  
 
Figure 6: A comparison between selective sweep (SS) and non-SS regions based on the 
indica 3K dataset. The rows correspond to different methods employed to detect sweeps, 
including SS regions from Huang et al (2012b) (top row), SweeD (middle row), and 
XP-CLR (bottom row). The set of histograms on the right compare the derived allele 
count (DAC) of segregating or fixed synonymous site or putatively deleterious sites 
between SS regions and the remainder of the genome (non-SS regions).  
 
Figure 7: Mean derived allele frequency (MDAF) of empirical (A) and simulated data 
(B). The x-axis in Fig. 7B defines the six models; ‘out’ represents an outbred (random 
mating) population with a constant population size; ‘inb’ represents an inbred (selfing) 
population with a comparable population size; ‘bot+out’ and ‘bot+inb’ represents 
outbred and inbred populations with a domestication bottleneck; ‘bot+out+pos’ and 
‘bot+inb+pos’ include positively selected alleles. 
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